PDF of Entire Thesis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bioclimatic and Phytosociological Diagnosis of the Species of the Nothofagus Genus (Nothofagaceae) in South America
International Journal of Geobotanical Research, Vol. nº 1, December 2011, pp. 1-20 Bioclimatic and phytosociological diagnosis of the species of the Nothofagus genus (Nothofagaceae) in South America Javier AMIGO(1) & Manuel A. RODRÍGUEZ-GUITIÁN(2) (1) Laboratorio de Botánica, Facultad de Farmacia, Universidad de Santiago de Compostela (USC). E-15782 Santiago de Com- postela (Galicia, España). Phone: 34-881 814977. E-mail: [email protected] (2) Departamento de Producción Vexetal. Escola Politécnica Superior de Lugo-USC. 27002-Lugo (Galicia, España). E-mail: [email protected] Abstract The Nothofagus genus comprises 10 species recorded in the South American subcontinent. All are important tree species in the ex- tratropical, Mediterranean, temperate and boreal forests of Chile and Argentina. This paper presents a summary of data on the phyto- coenotical behaviour of these species and relates the plant communities to the measurable or inferable thermoclimatic and ombrocli- matic conditions which affect them. Our aim is to update the phytosociological knowledge of the South American temperate forests and to assess their suitability as climatic bioindicators by analysing the behaviour of those species belonging to their most represen- tative genus. Keywords: Argentina, boreal forests, Chile, mediterranean forests, temperate forests. Introduction tually give rise to a temperate territory with rainfall rates as high as those of regions with a Tropical pluvial bio- The South American subcontinent is usually associa- climate; iii. finally, towards the apex of the American ted with a tropical environment because this is in fact the Southern Cone, this temperate territory progressively dominant bioclimatic profile from Panamá to the north of gives way to a strip of land with a Boreal bioclimate. -
NEWSLETTER NUMBER 84 JUNE 2006 New Zealand Botanical Society
NEW ZEALAND BOTANICAL SOCIETY NEWSLETTER NUMBER 84 JUNE 2006 New Zealand Botanical Society President: Anthony Wright Secretary/Treasurer: Ewen Cameron Committee: Bruce Clarkson, Colin Webb, Carol West Address: c/- Canterbury Museum Rolleston Avenue CHRISTCHURCH 8001 Subscriptions The 2006 ordinary and institutional subscriptions are $25 (reduced to $18 if paid by the due date on the subscription invoice). The 2006 student subscription, available to full-time students, is $9 (reduced to $7 if paid by the due date on the subscription invoice). Back issues of the Newsletter are available at $2.50 each from Number 1 (August 1985) to Number 46 (December 1996), $3.00 each from Number 47 (March 1997) to Number 50 (December 1997), and $3.75 each from Number 51 (March 1998) onwards. Since 1986 the Newsletter has appeared quarterly in March, June, September and December. New subscriptions are always welcome and these, together with back issue orders, should be sent to the Secretary/Treasurer (address above). Subscriptions are due by 28th February each year for that calendar year. Existing subscribers are sent an invoice with the December Newsletter for the next years subscription which offers a reduction if this is paid by the due date. If you are in arrears with your subscription a reminder notice comes attached to each issue of the Newsletter. Deadline for next issue The deadline for the September 2006 issue is 25 August 2006 Please post contributions to: Joy Talbot 17 Ford Road Christchurch 8002 Send email contributions to [email protected] or [email protected]. Files are preferably in MS Word (Word XP or earlier) or saved as RTF or ASCII. -
Dynamics of Even-Aged Nothofagus Truncata and N. Fusca Stands in North Westland, New Zealand
12 DYNAMICS OF EVEN-AGED NOTHOFAGUS TRUNCATA AND N. FUSCA STANDS IN NORTH WESTLAND, NEW ZEALAND M. C SMALE Forest Research Institute, Private Bag, Rotorua, New Zealand H. VAN OEVEREN Agricultural University, Salverdaplein 11, P.O. Box 9101, 6700 HB, Wageningen, The Netherlands C D. GLEASON* New Zealand Forest Service, P.O. Box 138, Hokitika, New Zealand and M. O. KIMBERLEY Forest Research Institute, Private Bag, Rotorua, New Zealand (Received for publication 30 August, 1985; revision 12 January 1987) ABSTRACT Untended, fully stocked, even-aged stands of Nothofagus truncata (Col.) Ckn. (hard beech) or N. fusca (Hook, f.) Oerst. (red beech) of natural and cultural origin and ranging in age from 20 to 100 years, were sampled using temporary and permanent plots on a range of sites in North Westland, South Island, New Zealand. Changes in stand parameters with age were quantified in order to assess growth of these stands, and thus gain some insight into their silvicultural potential. Stands of each species followed a similar pattern of growth, with rapid early height and basal area increment. Mean top height reached a maximum of c. 27 m by age 100 years. Basal area reached an equilibrium of c. 41 m2/ha in N. truncata and 46 m2/ha in N. fusca as early as age 30 years. Nothofagus truncata stands had, on average, a somewhat lower mean diameter at any given age than N. fusca stands, and maintained higher stockings. Both species attained similar maximum volume of c. 460 m3/ha at age 100 years. Keywords: even-aged stands; stand dynamics; growth; Nothofagus truncata; Nothofagus fusca. -
Dieback in New Zealand Nothofagus Forests!
Pacific Science (1983), vol. 37, no. 4 © 1984 by the University of Hawaii Press. All rights reserved Dieback in New Zealand Nothofagus Forests! J. A. WARDLE 2 and R. B. ALLEN 2 ABSTRACT: Dieback has been observed in New Zealand Nothofagus forests for some time, and a number of causal factors have been recognized. Some understanding of the effects of dieback on forest structure has been gained in a study of events after snowfalls had caused partial damage to an area of mountain beech forest. The results of this study are used to interpret the structure of beech forests elsewhere in New Zealand. Nothofagus FORESTS in New Zealand are branch ofthe Rakaia River in inland Canter generally associated with mountain environ bury. These forests, which clothe the upper ments and are consequently subjected to valley between 650 m altitude and the sub frequent disturbance, often ofclimatic origin. alpine timberline at about 1350 m, cover an The effects of these are usually local and area of 5000-6000 ha. The forest is simple contained, but sometimes a relatively minor monotypic Nothofagus solandri var. cliffort event may predispose the forest to damage by ioides (Hook. f.) Poole (mountain beech) and other, often biotic, agents causing extensive there are virtually no other tree species dieback of the forest canopy. As yet, there is (Figure 1). little information on the long-term effect of Two hundred and seventeen permanent 2 canopy dieback on forest structure or on the plots, each 400 m , were established through characteristics that make one stand vulner out the Harper forests during the 1970-1971 able and another not. -
Functional Plant Biology
Functional Plant Biology Contents Volume 34 Issue 2 2007 Review: Stable oxygen isotope composition of plant Barbour has made a substantial contribution to the fields of tissue: a review isotope theory and biochemical physiology, for which she was Margaret M. Barbour 83–94 awarded the New Zealand Society of Plant Biologists’ Outstanding Physiologist award 2006. This paper provides a concise review of the latest mechanistic understanding of stable isotope effects that control the oxygen isotope composition of plant organic material, and describes some of the applications of measurements of oxygen isotope composition of plants. Hypothesis: Air embolisms exsolving in the transpiration A hypothesis derived from Bernoulli’s Theorem that air content water – the effect of constrictions in the xylem pipes of the xylem should decrease sharply at sunrise is confirmed in a Martin J. Canny, Jed P.Sparks, Cheng X. Huang time domain reflectrometry record of the wood of Pinus over and Michael L. Roderick 95–111 125 summer days. The authors use similar reasoning to explain declining flow of water perfused through detached plant organs, and departures from Poiseuille’s Law. Contrasting responses by respiration to elevated CO2 in This study addresses the question of whether elevated CO2 intact tissue and isolated mitochondria concentrations directly inhibit mitochondrial respiration in plants, Dan Bruhn, Joseph T. Wiskich and and advances our understanding of the regulation of mitochondrial Owen K. Atkin 112–117 electron transport. The authors measured the redox poise of the ubiquinone pool in mitochondria titrated with increasing concentrations of CO2 to identify the point at which elevated CO2 – concentration inhibits respiration. -
Chile: a Journey to the End of the World in Search of Temperate Rainforest Giants
Eliot Barden Kew Diploma Course 53 July 2017 Chile: A Journey to the end of the world in search of Temperate Rainforest Giants Valdivian Rainforest at Alerce Andino Author May 2017 1 Eliot Barden Kew Diploma Course 53 July 2017 Table of Contents 1. Title Page 2. Contents 3. Table of Figures/Introduction 4. Introduction Continued 5. Introduction Continued 6. Aims 7. Aims Continued / Itinerary 8. Itinerary Continued / Objective / the Santiago Metropolitan Park 9. The Santiago Metropolitan Park Continued 10. The Santiago Metropolitan Park Continued 11. Jardín Botánico Chagual / Jardin Botanico Nacional, Viña del Mar 12. Jardin Botanico Nacional Viña del Mar Continued 13. Jardin Botanico Nacional Viña del Mar Continued 14. Jardin Botanico Nacional Viña del Mar Continued / La Campana National Park 15. La Campana National Park Continued / Huilo Huilo Biological Reserve Valdivian Temperate Rainforest 16. Huilo Huilo Biological Reserve Valdivian Temperate Rainforest Continued 17. Huilo Huilo Biological Reserve Valdivian Temperate Rainforest Continued 18. Huilo Huilo Biological Reserve Valdivian Temperate Rainforest Continued / Volcano Osorno 19. Volcano Osorno Continued / Vicente Perez Rosales National Park 20. Vicente Perez Rosales National Park Continued / Alerce Andino National Park 21. Alerce Andino National Park Continued 22. Francisco Coloane Marine Park 23. Francisco Coloane Marine Park Continued 24. Francisco Coloane Marine Park Continued / Outcomes 25. Expenditure / Thank you 2 Eliot Barden Kew Diploma Course 53 July 2017 Table of Figures Figure 1.) Valdivian Temperate Rainforest Alerce Andino [Photograph; Author] May (2017) Figure 2. Map of National parks of Chile Figure 3. Map of Chile Figure 4. Santiago Metropolitan Park [Photograph; Author] May (2017) Figure 5. -
Bosque Pehuén Park's Flora: a Contribution to the Knowledge of the Andean Montane Forests in the Araucanía Region, Chile Author(S): Daniela Mellado-Mansilla, Iván A
Bosque Pehuén Park's Flora: A Contribution to the Knowledge of the Andean Montane Forests in the Araucanía Region, Chile Author(s): Daniela Mellado-Mansilla, Iván A. Díaz, Javier Godoy-Güinao, Gabriel Ortega-Solís and Ricardo Moreno-Gonzalez Source: Natural Areas Journal, 38(4):298-311. Published By: Natural Areas Association https://doi.org/10.3375/043.038.0410 URL: http://www.bioone.org/doi/full/10.3375/043.038.0410 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. R E S E A R C H A R T I C L E ABSTRACT: In Chile, most protected areas are located in the southern Andes, in mountainous land- scapes at mid or high altitudes. Despite the increasing proportion of protected areas, few have detailed inventories of their biodiversity. This information is essential to define threats and develop long-term • integrated conservation programs to face the effects of global change. -
Bioclimatic and Phytosociological Diagnosis of the Species of the Nothofagus Genus (Nothofagaceae) in South America
International Journal of Geobotanical Research, Vol. nº 1, December 2011, pp. 1-20 Bioclimatic and phytosociological diagnosis of the species of the Nothofagus genus (Nothofagaceae) in South America Javier AMIGO(1) & Manuel A. RODRÍGUEZ-GUITIÁN(2) (1) Laboratorio de Botánica, Facultad de Farmacia, Universidad de Santiago de Compostela (USC). E-15782 Santiago de Com- postela (Galicia, España). Phone: 34-881 814977. E-mail: [email protected] (2) Departamento de Producción Vexetal. Escola Politécnica Superior de Lugo-USC. 27002-Lugo (Galicia, España). E-mail: [email protected] Abstract The Nothofagus genus comprises 10 species recorded in the South American subcontinent. All are important tree species in the ex- tratropical, Mediterranean, temperate and boreal forests of Chile and Argentina. This paper presents a summary of data on the phyto- coenotical behaviour of these species and relates the plant communities to the measurable or inferable thermoclimatic and ombrocli- matic conditions which affect them. Our aim is to update the phytosociological knowledge of the South American temperate forests and to assess their suitability as climatic bioindicators by analysing the behaviour of those species belonging to their most represen- tative genus. Keywords: Argentina, boreal forests, Chile, mediterranean forests, temperate forests. Introduction tually give rise to a temperate territory with rainfall rates as high as those of regions with a Tropical pluvial bio- The South American subcontinent is usually associa- climate; iii. finally, towards the apex of the American ted with a tropical environment because this is in fact the Southern Cone, this temperate territory progressively dominant bioclimatic profile from Panamá to the north of gives way to a strip of land with a Boreal bioclimate. -
Eastern Takaka Hills and High Terraces Plant Lists
EASTERN TAKAKA HILLS & HIGH TERRACES ECOSYSTEM NATIVE PLANT RESTORATION LIST Hills, valleys and high terraces regularly scattered from Tarakohe southwards to East Takaka and extending westward to Motupipi Hill and Black Birch Hill north-west of Locality: Takaka township. Backed in the east by the steep marble and granite of slopes the Pikikiruna Range. Scattered outliers also on west side of Takaka River from Hamama to Upper Takaka. Discrete areas of low relief, rolling to moderately steep hill country up to 130m high near the coast and 200m high furthest inland at Upper Takaka. Topography: Hill slopes often capped with high terraces, especially at East Takaka. Terraces trending and gently dipping to the north-west. Hills drained by incised, low-volume, low to moderate-gradient streams. Hill country and terrace side-slopes comprising mudstones and calcareous siltstones, or quartz sandstones and conglomerates with thin coal seams. Underlying moderately to strongly leached sandy, silty and clayey loams of low to medium fertility. Soils often Soils and eroded. Usually adjoining areas of limestone. Terraces comprise soils of moderately Geology: strongly leached, low fertility sandy loams and loess overlying weathered, coarse outwash gravels especially of gabbro, marble. A thin iron pan has resulted in impeded drainage and soil gleying. High sunshine hours; frosts mild to moderate; mild annual temperatures and warm Climate: summers. Rainfall 1500mm at the coast to 2400mm inland. Droughts infrequent. Coastal Mostly confined to Motupipi Hill, but also hills between Tarakohe and Clifton up to ½ km influence: inland. Hill slopes dominated by rimu, hard beech, black beech, tītoki and northern rātā on drier ridges and slopes, with kāhikatea, pukatea, nikau and mixed broadleaved species in Original gullies. -
Vegetation Responses to Past Volcanic Disturbances at the Araucaria
Vegetation responses to past volcanic disturbances at the Araucaria araucana forest-steppe ecotone in northern Patagonia Ricardo Moreno-Gonzalez1 1University of G¨ottingen July 22, 2021 Abstract Aims Volcanic eruptions play an important role in vegetation dynamics and its historical range of variability. However, large events are infrequent and eruptions with significant imprint in today vegetation occurred far in the past, limiting our un- derstanding of ecological process. Volcanoes in southern Andes have been active during the last 10 ka, and support unique ecosystems such as the Araucaria-Nothofagus forest as part of the Valdivian Temperate Rainforest Hotspot. Araucaria is an endangered species, strongly fragmented and well adapted to disturbances. Yet it was suggested that volcanism might have increased the fragmentation of its populations. To provide an insight into the vegetation responses to past volcanic disturbances, a paleoecological study was conducted to assess the role of volcanic disturbance on the vegetation dynamics and if the current fragmentation has been caused by volcanism. Location Araucaria forest-steppe ecotone in northern Patagonia. Methods Pollen and tephra analysis from a sedimentary record. Results During the last 9 kyr, 39 tephrafall buried the vegetation around Lake Relem, more frequently between 4-2 ka. The vegetation was sensitive to small tephrafall but seldom caused significant changes. However, the large eruption of Sollipulli-Alpehue (~3 ka) might change the environmental conditions affecting severely the forest and grassland, as suggested by the pollen record. Ephedra dominated early successional stage, perhaps facilitating Nothofagus regeneration recovering original condition after ~500 years. Slight increase of pollen percentage from Araucaria and Nothofagus obliqua-type could be indicative of sparse biological legacies distributed in the landscape. -
Hybrid Identification in Nothofagus Subgenus Using High Resolution Melting with ITS and Trnl Approach
Hybrid identification in Nothofagus subgenus using high resolution melting with ITS and trnL approach Jaime Solano1, Leonardo Anabalón2, Francisco Encina3, Carlos Esse4 and Diego Penneckamp5 1 Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Chile, Universidad Católica de Temuco, Temuco, Chile 2 Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Chile, Universidad Católica de Temuco, Temuco, Chile 3 Departamento de Ciencias Ambientales, Facultad de Recursos Naturales, Universidad Católica de Temuco, Chile, Universidad Católica de Temuco, Temuco, Chile 4 Instituto de Estudios del Hábitat (IEH), Universidad Autónoma de Chile, Centro de Investigación Multidisciplinario de la Araucanía (CIMA), Universidad Autónoma de Chile, Universidad Autónoma de Chile, Temuco, Chile 5 Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Universidad Austral de Chile, Valdivia, Chile ABSTRACT The genus Nothofagus is the main component of southern South American temperate forests. The 40 Nothofagus species, evergreen and deciduous, and some natural hybrids are spread among Central and Southern Chile, Argentina, New Zealand, Australia, New Guinea and New Caledonia. Nothofagus nervosa, Nothofagus obliqua and Nothofagus dombeyi are potentially very important timber producers due to their high wood quality and relative fast growth; however, indiscriminate logging has degraded vast areas the Chilean forest causing a serious state of deterioration of their genetic resource. The South of Chile has a large area covered by secondary forests of Nothofagus dombeyi. These forests have a high diversity of species, large amount of biomass and high silvicultural potential. This work shows a case of hybrid identification in Nothofagus subgenus in different secondary forests of Chile, using high resolution Nothofagus Submitted 10 September 2018 melting. -
Interactions Among Introduced Ungulates, Plants, and Pollinators: a Field Study in the Temperate Forest of the Southern Andes
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2002 Interactions among Introduced Ungulates, Plants, and Pollinators: A Field Study in the Temperate Forest of the Southern Andes Diego P. Vazquez University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Ecology and Evolutionary Biology Commons Recommended Citation Vazquez, Diego P., "Interactions among Introduced Ungulates, Plants, and Pollinators: A Field Study in the Temperate Forest of the Southern Andes. " PhD diss., University of Tennessee, 2002. https://trace.tennessee.edu/utk_graddiss/2169 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Diego P. Vazquez entitled "Interactions among Introduced Ungulates, Plants, and Pollinators: A Field Study in the Temperate Forest of the Southern Andes." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Ecology and Evolutionary Biology. Daniel Simberloff, Major Professor We have read this dissertation and recommend its acceptance: David Buehler, Louis Gross, Jake Welzin Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a dissertation written by Diego P.