Regulation of the Escherichia Coli Tryptophan Operon by Early Reactions in the Aromatic Pathway William A

Total Page:16

File Type:pdf, Size:1020Kb

Regulation of the Escherichia Coli Tryptophan Operon by Early Reactions in the Aromatic Pathway William A Marquette University e-Publications@Marquette Biological Sciences Faculty Research and Biological Sciences, Department of Publications 1-1-1970 Regulation of the Escherichia coli Tryptophan Operon by Early Reactions in the Aromatic Pathway William A. Held Marquette University Oliver H. Smith Marquette University Published version. Journal of Bacteriology, Vol. 101, No. 1 (January 1970): 202-208. Permalink. © 1970 American Society for Microbiology. Used with permission. JOURNAL OF BACTERIOLOGY, Jan. 1970, p. 202-208 Vol. 101, No. I Copyright © 1970 American Society for Microbiology Printed In U.S.A. Regulation of the Escherichia coli Tryptophan Operon by Early Reactions in the Aromatic Pathway1 WILLIAM A. HELD AND OLIVER H. SMITH Department of Biology, Marquette University, Milwaukee, Wisconsin 53233 Received for publication 11 October 1969 7-Methyltryptophan (7MT) or compounds which can be metabolized to 7MT, 3-methylanthranilic acid (3MA) and 7-methylindole, cause derepression of the trp operon through feedback inhibition of anthranilate synthetase. Tyrosine re- verses 3MA or 7-methylindole derepression, apparently by increasing the amount of chorismic acid available to the tryptophan pathway. A mutant isolated on the basis of 3MA resistance (MAR 13) was found to excrete small amounts of chorismic acid and to have a feedback-resistant phenylalanine 3-deoxy-D-arabinoheptulosonic acid-7-phosphate (DAHP) synthetase. Genetic evidence indicates that the muta- tion conferring 3MA resistance and feedback resistance is very closely linked to aroG, the structural gene for the DAHP synthetase (phe). Since feedback inhibition of anthranilate synthetase by L-tryptophan (or 7MT) is competitive with chorismic acid, alterations in growth conditions (added tyrosine) or in a mutant (MAR 13) which increase the amount of chorismic acid available to the tryptophan pathway result in resistance to 7MT derepression. Owing to this competitive nature of tryp- tophan feedback inhibition of anthranilate synthetase by chorismic acid, the early pathway apparently serves to exert a regulatory influence on tryptophan biosynthesis. In Escherichia coli, the level of intermediates of anthranilate synthetase. Unlike other methyl- in aromatic biosynthesis is regulated by several tryptophan analogues, 7MT does not appear to different allosteric interactions. The end products function as an active corepressor. of the pathway (principally phenylalanine, tyro- In this report, we present evidence that ana- sine, and tryptophan) inhibit three isoenzymatic logue-induced derepression is antagonized by the forms of the first enzyme of the pathway, 3-deoxy- inclusion of tyrosine in the growth medium of D-arabinoheptulosonic acid-7-phosphate (DAHP) wild-type cells, and that mutants with a feedback- synthetase, and further interact at the branch resistant DAHP synthetase (phe) are also re- point with the enzymes metabolizing chorismic factory to this derepression. The most likely acid along the various specific biosynthetic routes explanation for these observations is that both (1, 5, 6, 9, 15, 19, 20). Thus, alterations in the alterations increase the amount of chorismic acid levels of the allosteric effectors and the activities available to the tryptophan pathway, thereby of the allosteric enzymes would be expected to reversing the inhibitory effect of 7MT on anthran- demonstrate the complex regulatory inter-rela- ilate synthetase. Thus, the early pathway involv- tionships in the aromatic pathway. ing the production of chorismic acid apparently In the preceding paper (11), evidence was pre- serves to exert a regulatory influence on trypto- sented showing that compounds capable of being phan biosynthesis. metabolized to 7-methyltryptophan (7MT), i.e., 3-methylanthranilic acid (3MA) and 7-methylin- MATERIALS AND METHODS dole, inhibit growth and cause derepression of Organisms. All mutants described were derived the trp operon in wild-type strains of E. coli. Pre- from W1485 tna (a mutant lacking tryptophanase sumably, both phenomena are manifestations ofa isolated in this laboratory) except aroG (a mutant lacking the phenylalanine-inhibitable DAHP synthe- tryptophan limitation caused by 7MT inhibition tase), obtained from K. D. Brown. The parent strain I Taken in part from a thesis submitted to Marquette University of aroG is W1485. The mutants were obtained by by W.A.H. in partial fulfillment of the requirements for the Ph.D. ultraviolet or nitrosoquanidine treatment and plating degree. on appropriate selective media. 3MA-resistant 202 VOL. 101,p 19701REGULATION OF E. COLI TRYPTOPHAN OPERON 203 mutants were obtained by plating mutagen-treated TABLE 1. Cation activation of DAHP synthetase cells on minimal agar plates containing 6.7 X 10-4 M 3MA. Cationa DAHPrelativesynthetaseactivityb Transduction procedures. Plkc transducing lysates of the mutants were prepared by the confluent lysis None....100 technique (13). Control lysates from wild-type strains Co+2.... 182 and controls for sterility were done routinely. Mg+2 ..... 104 Growth media. All strains and mutants were grown Mn+2 .... 158 in the minimal medium of Vogel and Bonner (18) Zn+2..... 65 containing 0.5% glucose and other supplements as Fe+2... 69 desired. The cultures were agitated on a rotary shaker Fe+3... 41 at 37C. Growth curves were obtained by growing EDTA... 16 50-ml cultures in a 500-ml side-arm flask and esti- mating growth at various times by turbidity at 660 nm. a Cations were added to DAHP synthetase Chemicals. D-Erythrose-4-phosphate dimethylacetal reaction mixture at a concentration of 1I- M. dicyclohexylammonium salt was obtained from Calbio- b A crude extract of W1485 tna dialyzed over- chem, Los Angeles, Calif., and converted to free night in buffer containing 10- M EDTA was used erythrose-4-phosphate by the method of Ballou, as a source of enzyme. Fischer, and MacDonald (2) before use. Chorismic acid was prepared as the free acid according to the 10-3 M EDTA. It is apparent that Co+2 and Mn+2 procedure of Gibson (10). All other chemicals were significantly stimulate DAHP synthetase activity and obtained commercially. that EDTA almost completely inhibits the reaction. Preparation of extracts. Cells were harvested by Maximal activation of DAHP synthetase occurs at centrifugation, washed once in saline, and resuspended 10-' M Co+2, and this concentration was used in all in 0.1 M K2HPO4, pH 7.0, containing 10-3 M 2-mer- subsequent experiments. captoethanol and 10-3 M ethylenediaminetetraacetate Diethylaminoethyl (DEAE)-Sephadex chromatog- (EDTA). The cells were broken by sonic oscillation, raphy. DEAE-Sephadex chromatography was carried and cell debris was removed by centrifugation at out on a column of 2.5 X 32 cm by use of a linear 30,000 X g for 30 min. For assay of DAHP synthe- gradient elution starting with 350 ml of 10-2 M K2- tase, extracts were prepared in 5 X 10-2 M K2HPO4, HPO4, pH 7.0, plus 0.1 M KCI in the mixing bottle pH 7.0, containing 10-3 M 2-mercaptoethanol. and 350 ml of 10-2 M K2HPO4, pH 7.0, plus 0.6 M Enzyme assays. The a subunit of tryptophan KCL in the inlet bottle. Eluting buffers contained synthetase (A protein) was assayed according to 10-' M 2-mercaptoethanol. Nucleic acids were not Smith and Yanofsky (16), and anthranilate synthetase removed before crude extracts were placed on the was assayed as described in the preceding paper (11). column. At the end of the fractionation, a small DAHP synthetase was assayed according to the amount of 10-2 M K2HPO4, pH 7.0, containing 1.0 M procedure of Doy and Brown (7), except that the KCl was washed through the column to insure that reaction mixture contained 10-3 M Co2+ (see below). all DAHP synthetase activity had been eluted. Re- After heating with thiobarbituric acid, the reaction covery of DAHP synthetase varied between 32 and tubes were cooled briefly and extracted with 4.0 ml 58%. of cyclohexanone to avoid the turbidity usually en- countered in the assay. The concentration of DAHP RESULTS in the cyclohexanone was determined spectrophoto- metrically at 549 nm by use of a molar extinction Since the analogue-induced trp operon dere- coefficient of 6.0 X 104. pression results from tryptophan limitation, it A unit of enzyme activity is equivalent to 1 ,umole should be reversed by added tryptophan or pre- of substrate consumed or product formed per minute cursors such as anthranilic acid and indole. Table at 37 C. Specific activity is given as units per milligram 2 shows that these compounds did repress cul- of protein. The protein was determined by the method tures to the and that an of Lowry et al. (14). In some cases (relative activity), exposed analogues early the specific activity relative to that found in W1485 intermediate, shikimic acid, had only a slight tna grown in minimal medium was used. A relative effect in decreasing the enzyme levels. Shikimate activity of 1.0 corresponds to 0.0027 units of anthranil- is a precursor of chorismic acid and, in light of ate synthetase per mg of protein and 0.0152 units of the arguments presented below, we have no tryptophan synthetase A protein per mg of protein. ready explanation for its relative ineffectiveness. Co+2 activation of DAHP synthetase. A recent Table 2 further shows that tyrosine, but not report indicated that the DAHP synthetase (trp) is phenylalanine or a mixture of the two, effectively stimulated by Co+2 (15). We have found that Co+2 reversed the derepression. We felt that, as inhibi- appears to activate DAHP synthetase in crude extracts tion of anthranilate synthetase by tryptophan or partially purified preparations of W1485 tna which (or 7-methyltryptophan) is competitive with contain predominantly the DAHP synthetase (phe). acid reversal of 3MA Table 1 shows the effect of various cations on the total chorismic (1, 11), tyrosine DAHP synthetase activity in crude extracts of W1485 and 7-methylindole derepression might be due to tna which was dialyzed overnight in buffer containing tyrosine causing increased chorismic acid avail- 204 HELD AND SMITH J.
Recommended publications
  • On Glyphosate
    Ecocycles 2(2): 1-8 (2016) ISSN 2416-2140 DOI: 10.19040/ecocycles.v2i2.60 EDITORIAL On glyphosate Tamas Komives1 * and Peter Schröder2 1Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Otto 15, 1022 Budapest, Hungary and Department of Environmental Science, Esterhazy Karoly University, 3200 Gyongyos, Hungary 2Helmholtz Zentrum München, German Research Centre for Environmental Health, GmbH, Research Unit Environmental Genomics, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany *E-mail: [email protected] Abstract – This Editorial briefly discusses the current issues surrounding glyphosate - the most controversial pesticide active ingredient of our time. The paper pays special attention to the effects of glyphosate on plant-pathogen interactions. Keywords – glyphosate, plant-pathogen interactions, environment, human health, ecocycles, sustainability Received: October 14, 2016 Accepted: November 10, 2016 ———————————————————————————————————————————————— - In nature nothing exists alone. researchers of the company missed to identify the Rachel Carson in “Silent Spring” (Carson, 1962) molecule as a potential herbicide because of the short duration of the company's standardized biological - Alle Dinge sind Gift, und nichts ist ohne Gift; allein assays (only five days, while the first, glyphosate- die Dosis machts, daß ein Ding kein Gift sei. (All induced phytotoxic symptoms usually appear after things are poison, and nothing is without poison: the about one week) (F. M. Pallos,
    [Show full text]
  • Modulating Wine Aromatic Amino Acid Catabolites by Using Torulaspora Delbrueckii in Sequentially Inoculated Fermentations Or Saccharomyces Cerevisiae Alone
    microorganisms Article Modulating Wine Aromatic Amino Acid Catabolites by Using Torulaspora delbrueckii in Sequentially Inoculated Fermentations or Saccharomyces cerevisiae Alone M. Antonia Álvarez-Fernández 1 , Ilaria Carafa 2, Urska Vrhovsek 2 and Panagiotis Arapitsas 2,* 1 Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; [email protected] 2 Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; [email protected] (I.C.); [email protected] (U.V.) * Correspondence: [email protected] or [email protected]; Tel.: +39-0461615656 Received: 25 August 2020; Accepted: 2 September 2020; Published: 4 September 2020 Abstract: Yeasts are the key microorganisms that transform grape juice into wine, and nitrogen is an essential nutrient able to affect yeast cell growth, fermentation kinetics and wine quality. In this work, we focused on the intra- and extracellular metabolomic changes of three aromatic amino acids (tryptophan, tyrosine, and phenylalanine) during alcoholic fermentation of two grape musts by two Saccharomyces cerevisiae strains and the sequential inoculation of Torulaspora delbrueckii with Saccharomyces cerevisiae. An UPLC-MS/MS method was used to monitor 33 metabolites, and 26 of them were detected in the extracellular samples and 8 were detected in the intracellular ones. The results indicate that the most intensive metabolomic changes occurred during the logarithm cellular growth phase and that pure S. cerevisiae fermentations produced higher amounts of N-acetyl derivatives of tryptophan and tyrosine and the off-odour molecule 2-aminoacetophenone. The sequentially inoculated fermentations showed a slower evolution and a higher production of metabolites linked to the well-known plant hormone indole acetic acid (auxin).
    [Show full text]
  • 8.2 Shikimic Acid Pathway
    CHAPTER 8 © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FORAromatic SALE OR DISTRIBUTION and NOT FOR SALE OR DISTRIBUTION Phenolic Compounds © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION CHAPTER OUTLINE Overview Synthesis and Properties of Polyketides 8.1 8.5 Synthesis of Chalcones © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC 8.2 Shikimic Acid Pathway Synthesis of Flavanones and Derivatives NOT FOR SALE ORPhenylalanine DISTRIBUTION and Tyrosine Synthesis NOT FOR SALESynthesis OR DISTRIBUTION and Properties of Flavones Tryptophan Synthesis Synthesis and Properties of Anthocyanidins Synthesis and Properties of Isofl avonoids Phenylpropanoid Pathway 8.3 Examples of Other Plant Polyketide Synthases Synthesis of Trans-Cinnamic Acid Synthesis and Activity of Coumarins Lignin Synthesis Polymerization© Jonesof Monolignols & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC Genetic EngineeringNOT FOR of Lignin SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Natural Products Derived from the 8.4 Phenylpropanoid Pathway Natural Products from Monolignols © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION 119 © Jones & Bartlett Learning, LLC.
    [Show full text]
  • Bactrev00065-0077.Pdf
    BACnEIUOLOGICAL REVIEWS, Dec. 1968, p. 465-492 Vol. 32, No. 4, Pt. 2 Copyright © 1968 American Society for Microbiology Printed in U.S.A. Pathways of Biosynthesis of Aromatic Amino Acids and Vitamins and Their Control in Microorganisms FRANK GIBSON AND JAMES PITTARD John Curtin School of Medical Research, Australian National University, Canberra, Australia, and School of Microbiology, University of Melbourne, Australia INTRODUCTION................................................................ 465 INTERMEDIATES IN AROMATIC BIOsYNTHESIS ...................................... 466 Common Pathway ........................................................... 466 Tryptophan Pathway ........................................................ 468 Pathways to Phenylalanine and Tyrosine ........................................ 469 Pathway to 4-Aminobenzoic Acid.............................................. 469 Intermediates in Ubiquinone Biosynthesis ....................................... 470 Intermediates in Vitamin K Biosynthesis ........................................ 471 Pathways Involving 2,3-Dihydroxybenzoate ..................................... 472 Other Phenolic Growth Factors ............................................... 473 ISOENZYMES AND PROTEIN AGGREGATES CONCERNED IN AROMATIC BiosYNTHESIS ........ 474 Common Pathway ........................................................... 474 Tryptophan Pathway ......................................................... 474 Phenylalanine and Tyrosine Pathways .........................................
    [Show full text]
  • The Degradation Op Phenylalanine, Tyrosine, And
    / THE DEGRADATION OP PHENYLALANINE, TYROSINE, AND RELATED AROMATIC COMPOUNDS BY A MARINE DIATOM AND A HAPTOPHYCEAN ALGA by ARTHUR FREDERICK LANDYMORE B.Sc., University of British Columbia, 1968 M.Sc., University of British Columbia, 1972 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of Botany We accept this thesis as conforming to the required standard THE UNTOHSITY OF BRITISH COLUMBIA March, 1976" In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and Study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. iii. ABSTRACT,, The degradation of phenylalanine and tyrosine was ex• amined in axenic cultures of Isochrysls galbana Parke and Navlcula lncerta Hustedt. Both species were able to metabolize L-phenylalanine and L-tyrosine as the sole nitrogen source, but severe growth Inhibition was observed for _I. galbana. No growth of I_. galbana was obtained on the D-isomers of these two amino acids, but N. lncerta was able to utilize both D- amino acids after an extended lag period. Analysis of the growth medium and the algal cells from non-radioactive and radioactive experiments never revealed cinnamic or p-coumaric acids. This suggested that phenyl• alanine and tyrosine ammonia-lyases (PAL and TAL) were not involved in the initial degradative step of either these amino acids.
    [Show full text]
  • PBS3 Is the Missing Link in Plant-Specific Isochorismate
    bioRxiv preprint doi: https://doi.org/10.1101/600692; this version posted April 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. PBS3 is the missing link in plant-specific isochorismate-derived salicylic acid biosynthesis Dmitrij Rekhter1, Daniel Lüdke2, Yuli Ding3, Kirstin Feussner1,4, Krzysztof Zienkiewicz1, 5 Volker Lipka5,6, Marcel Wiermer2,*, Yuelin Zhang3,*, Ivo Feussner1,7,* 1 University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Justus-von-Liebig Weg11, D-37077 Goettingen, Germany. 2 University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, RG Molecular Biology of Plant-Microbe Interactions, Julia-Lermontowa-Weg 3, D-37077 Goettingen, 10 Germany. 3 University of British Columbia, Department of Botany, Vancouver, BC V6T 1Z4, Canada. 4 University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Metabolomics and Lipidomics, Justus-von-Liebig Weg11, D-37077 Goettingen, Germany. 15 5 University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Cell Biology, Julia-Lermontowa-Weg 3, D-37077 Goettingen, Germany. 6 University of Goettingen, Central Microscopy Facility of the Faculty of Biology & Psychology, Julia-Lermontowa-Weg 3, D-37077 Goettingen, Germany. 7 University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), 20 Department of Plant Biochemistry, Justus-von-Liebig Weg11, D-37077 Goettingen, Germany. *Corresponding author. Email: [email protected] (I.F.); [email protected] (M.W.); [email protected] (Y.Z.). 25 Abstract: The phytohormone salicylic acid (SA) is a central regulator of plant immunity.
    [Show full text]
  • 351 Section 2 General Information Concerning
    SECTION 2 GENERAL INFORMATION CONCERNING THE GENES AND THEIR ENZYMES THAT CONFER TOLERANCE TO GLYPHOSATE HERBICIDE Summary Note This document summarises the information available on the source of the genes that have been used to construct glyphosate-tolerant transgenic plants, the nature of the enzymes they encode, and the effects of the enzymes on the plant’s metabolism. Scope of this document: OECD Member countries agreed to limit this document to a discussion of the introduced genes and resulting enzymes that confer glyphosate tolerance to plants. The document is not intended to be an encyclopaedic review of all scientific experimentation with glyphosate-tolerant plants. In addition, this document does not discuss the wealth of information available on the herbicide glyphosate itself or the uses of the herbicide in agricultural and other applications. Food safety aspects of the use of glyphosate on glyphosate-tolerant transgenic plants are not discussed. Such information is available from other sources, including the respective governmental organisations which regulate the use of the herbicide. While the focus of this document is on the genes and enzymes involved in encoding glyphosate tolerance, reference is not made to specific plant species into which glyphosate tolerance might be introduced. Any issues relating to the cultivation of glyphosate-tolerant plants or to the potential for, or potential effects of, gene transfer from a glyphosate-tolerant plant to another crop plant or to a wild relative are outside the agreed scope of this document. It is intended, however, that this document should be used in conjunction with specific plant species biology Consensus Documents (see list of publications at the front of the document) when a biosafety assessment is made of plants with novel glyphosate herbicide resistance.
    [Show full text]
  • The Synthesis of Anthranilic Acid, Tryptophan, and Sulfenyl Chloride Analogues, and Enzymatic Studies
    THE SYNTHESIS OF ANTHRANILIC ACID, TRYPTOPHAN, AND SULFENYL CHLORIDE ANALOGUES, AND ENZYMATIC STUDIES By Phanneth Som (Under the Direction of ROBERT S. PHILLIPS) Abstract This dissertation includes four chapters. Chapter 1 includes the introduction and literature review. Chapter 2 covers the enzymatic synthesis of tryptophan via anthranilic acid analogues. Chapter 3 covers the nitration and resolution of tryptophan and synthesis of tryptophan derivatives. Chapter 4 covers the synthesis of sulfenyl chloride derivatives. Tryptophan is important in many aspects in the studies of proteins and also serves as precursors for important compounds. The enzymatic synthesis of tryptophan analogues from anthranilic acid analogues is important and could provide a more efficient route for incorporation of non-canonical amino acids onto proteins. Nitration of tryptophan is also important because it provides a synthetic route for synthesizing other derivatives of tryptophan. Sulfenyl chloride derivatives can be used for labeling proteins and the tryptophan analogues can be determined by mass spectrometry analysis with proteins with a limited number of tryptophan residues makes this application useful. INDEX WORDS: Tryptophan, Anthranilic acid, Enzymatic synthesis, Non-canonical amino acid, Nitration, Sulfenyl chloride, Incorporation THE SYNTHESIS OF ANTHRANILIC ACID, TRYPTOPHAN, AND SULFENYL CHLORIDE ANALOGUES, AND ENZYMATIC STUDIES by Phanneth Som B.S., Georgia State University, 2003 A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY ATHENS, GEORGIA 2009 © 2009 Phanneth Som All Rights Reserved THE SYNTHESIS OF ANTHRANILIC ACID, TRYPTOPHAN, AND SULFENYL CHLORIDE ANALOGUES, AND ENZYMATIC STUDIES By Phanneth Som Major Professor: Robert S.
    [Show full text]
  • Secondary Metabolites Derived from Shikimic Acid (Phenyl Propanoids and Lignans)
    Secondary metabolites derived from Shikimic acid (Phenyl propanoids and Lignans) CO2H HO OH OH Shikimic acid SCH 511 Dr. Solomon Derese 1 Learning Objectives • Recognize the role of shikimic acid, chorismic acid and prephenic acid in biosynthesis. • Recognize that cinnamic acid derivatives are precursors to other natural products like lignans and coumarines. SCH 511 Dr. Solomon Derese 2 The Shikimic Acid Pathway This pathway (unique to plants) leads to the formation of the aromatic amino acids phenylalanine and tyrosine and to the formation of many other phenyl-C3 compounds (phenylpropanoids). C C C Phenyl-C3 Phenylpropanoids SCH 511 Dr. Solomon Derese 3 Cleavage of the C3 side chain leads to many phenyl-C1 compounds. C C C C b -Oxidation Phenyl-C1 SCH 511 Dr. Solomon Derese 4 Biosynthesis of Shikimic Acid The shikimate pathway begins with the condensation of PhosphoEnolPyruvate (PEP) and D-erythrose 4-phosphate giving 3-Deoxy-D-Arabino- Heptulosonate-7-Phosphate (DAHP) in a reaction catalysed by the enzyme phospho-2-dehydro-3-deoxyheptonate aldolase (DAHP synthase). SCH 511 Dr. Solomon Derese 5 DAHP SCH 511 Dr. Solomon Derese 6 SCH 511 Dr. Solomon Derese 7 Chorismate is a key Intermediate in the Synthesis of Tryptophan, Phenylalanine, and Tyrosine. Aromatic rings are not readily available in the environment, even though the benzene ring is very stable. The branched pathway to tryptophan, phenylalanine, and tyrosine, occurring in bacteria, fungi, and plants, is the main biological route of aromatic ring formation. SCH 511 Dr. Solomon Derese 8 CO2H O HO 4-Hydroxyphenylpyruvic acid NAD+ - CO2 - CO2 - H O Chorismic acid 2 SCH 511 Dr.
    [Show full text]
  • Saccharomyces Cerevisiae—An Interesting Producer of Bioactive Plant Polyphenolic Metabolites
    International Journal of Molecular Sciences Review Saccharomyces Cerevisiae—An Interesting Producer of Bioactive Plant Polyphenolic Metabolites Grzegorz Chrzanowski Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 35-310 Rzeszow, Poland; [email protected]; Tel.: +48-17-851-8753 Received: 26 August 2020; Accepted: 29 September 2020; Published: 5 October 2020 Abstract: Secondary phenolic metabolites are defined as valuable natural products synthesized by different organisms that are not essential for growth and development. These compounds play an essential role in plant defense mechanisms and an important role in the pharmaceutical, cosmetics, food, and agricultural industries. Despite the vast chemical diversity of natural compounds, their content in plants is very low, and, as a consequence, this eliminates the possibility of the production of these interesting secondary metabolites from plants. Therefore, microorganisms are widely used as cell factories by industrial biotechnology, in the production of different non-native compounds. Among microorganisms commonly used in biotechnological applications, yeast are a prominent host for the diverse secondary metabolite biosynthetic pathways. Saccharomyces cerevisiae is often regarded as a better host organism for the heterologous production of phenolic compounds, particularly if the expression of different plant genes is necessary. Keywords: heterologous production; shikimic acid pathway; phenolic acids; flavonoids; anthocyanins; stilbenes 1. Introduction Secondary metabolites are defined as valuable natural products synthesized by different organisms that are not essential for growth and development. Plants produce over 200,000 of these compounds, which mostly arise from specialized metabolite pathways. Phenolic compounds play essential roles in interspecific competition and plant defense mechanisms against biotic and abiotic stresses [1] and radiation, and might act as regulatory molecules, pigments, or fragrances [2].
    [Show full text]
  • Global Genome Analysis of the Shikimic Acid Pathway Reveals
    Zucko et al. BMC Genomics 2010, 11:628 http://www.biomedcentral.com/1471-2164/11/628 RESEARCH ARTICLE Open Access Global genome analysis of the shikimic acid pathway reveals greater gene loss in host- associated than in free-living bacteria Jurica Zucko1,2, Walter C Dunlap3, J Malcolm Shick4, John Cullum1, François Cercelet5,6, Bijal Amin5, Lena Hammen5,7, Timothy Lau5, Jamal Williams5, Daslav Hranueli2, Paul F Long5* Abstract Background: A central tenet in biochemistry for over 50 years has held that microorganisms, plants and, more recently, certain apicomplexan parasites synthesize essential aromatic compounds via elaboration of a complete shikimic acid pathway, whereas metazoans lacking this pathway require a dietary source of these compounds. The large number of sequenced bacterial and archaean genomes now available for comparative genomic analyses allows the fundamentals of this contention to be tested in prokaryotes. Using Hidden Markov Model profiles (HMM profiles) to identify all known enzymes of the pathway, we report the presence of genes encoding shikimate pathway enzymes in the hypothetical proteomes constructed from the genomes of 488 sequenced prokaryotes. Results: Amongst free-living prokaryotes most Bacteria possess, as expected, genes encoding a complete shikimic acid pathway, whereas of the culturable Archaea, only one was found to have a complete complement of recognisable enzymes in its predicted proteome. It may be that in the Archaea, the primary amino-acid sequences of enzymes of the pathway are highly divergent and so are not detected by HMM profiles. Alternatively, structurally unrelated (non-orthologous) proteins might be performing the same biochemical functions as those encoding recognized genes of the shikimate pathway.
    [Show full text]
  • Caractérisation Structurale Et Biochimique D'enzymes Impliquées
    Caractérisation structurale et biochimique d’enzymes impliquées dans la biosynthèse des acides chlorogéniques Laura Amandine Lallemand To cite this version: Laura Amandine Lallemand. Caractérisation structurale et biochimique d’enzymes impliquées dans la biosynthèse des acides chlorogéniques. Biologie structurale [q-bio.BM]. Université de Grenoble, 2011. Français. NNT : 2011GRENV008. tel-00812489 HAL Id: tel-00812489 https://tel.archives-ouvertes.fr/tel-00812489 Submitted on 12 Apr 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Thesis Submitted to obtain the PhD DEGREE OF GRENOBLE UNIVERSITY Speciality : Structural Biology and Nanobiology Ministerialdecree: 7th August 2006 Presented by Laura Amandine LALLEMAND Thesis directed by Sean Mc SWEENEY and co-directed by Andrew Mc CARTHY prepared in the Structural Biology Group of ESRF (European Synchrotron Radiation Facility) in the Doctoral School of Chemistry and Life Sciences Structural and biochemical characterisation of enzymes involved in chlorogenic acid biosynthesis Nicotiana tabacum 4-coumarate CoA ligase (4CL) Coffea canephora hydroxycinnamoyl-CoA quinate/ shikimate hydroxycinnamoyltranferases (HCT, HQT) Dissertation defended on March, 21st 2011, in front of a jury composed of : Dr. Nushin AGHAJARI Reviewer Dr. Anne IMBERTY President Pr. Catherine LAPIERRE Reviewer Dr.
    [Show full text]