Caractérisation Structurale Et Biochimique D'enzymes Impliquées

Total Page:16

File Type:pdf, Size:1020Kb

Caractérisation Structurale Et Biochimique D'enzymes Impliquées Caractérisation structurale et biochimique d’enzymes impliquées dans la biosynthèse des acides chlorogéniques Laura Amandine Lallemand To cite this version: Laura Amandine Lallemand. Caractérisation structurale et biochimique d’enzymes impliquées dans la biosynthèse des acides chlorogéniques. Biologie structurale [q-bio.BM]. Université de Grenoble, 2011. Français. NNT : 2011GRENV008. tel-00812489 HAL Id: tel-00812489 https://tel.archives-ouvertes.fr/tel-00812489 Submitted on 12 Apr 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Thesis Submitted to obtain the PhD DEGREE OF GRENOBLE UNIVERSITY Speciality : Structural Biology and Nanobiology Ministerialdecree: 7th August 2006 Presented by Laura Amandine LALLEMAND Thesis directed by Sean Mc SWEENEY and co-directed by Andrew Mc CARTHY prepared in the Structural Biology Group of ESRF (European Synchrotron Radiation Facility) in the Doctoral School of Chemistry and Life Sciences Structural and biochemical characterisation of enzymes involved in chlorogenic acid biosynthesis Nicotiana tabacum 4-coumarate CoA ligase (4CL) Coffea canephora hydroxycinnamoyl-CoA quinate/ shikimate hydroxycinnamoyltranferases (HCT, HQT) Dissertation defended on March, 21st 2011, in front of a jury composed of : Dr. Nushin AGHAJARI Reviewer Dr. Anne IMBERTY President Pr. Catherine LAPIERRE Reviewer Dr. Andrew Mc CARTHY Thesis director Dr. James Mc CARTHY Member Dr. Sean Mc SWEENEY Thesis director THÈSE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE Spécialité : Biologie structurale et nanobiologie Arrêté ministériel : 7 août 2006 Présentée par Laura Amandine LALLEMAND Thèse dirigée par Sean McSWEENEY et co-dirigée par Andrew McCARTHY préparée au sein du Groupe de Biologie Structurale de l'ESRF (Installation Européenne de Rayonnement Synchrotron) dans l'École Doctorale Chimie et Sciences du Vivant Caractérisation structurale et biochimique d'enzymes impliquées dans la biosynthèse des acides chlorogéniques Nicotiana tabacum 4-coumarate CoA ligase (4CL) Coffea canephora hydroxycinnamoyl-CoA quinate/shikimate hydroxycinnamoyltranférases (HCT, HQT) Thèse soutenue publiquement le 21 Mars 2011, devant le jury composé de : Mme, Nushin, AGHAJARI Rapporteur Mme, Anne, IMBERTY Président du Jury Mme, Catherine, LAPIERRE Rapporteur M., Andrew, McCARTHY Directeur de thèse M., James, McCARTHY Membre M., Sean, McSWEENEY Directeur de thèse ABCDE This project was supported by a doctoral fellowship co-financed by Nestlé Research and the European Synchrotron Research Facility (ESRF). Most of the work was carried out in the Partnership for Structural Biology building and at the synchrotron facility in Grenoble. I am grateful to my supervisors Sean McSweeney, for accepting me as a PhD student in his group, and Andrew McCarthy, for his scientific support and guidance throughout this project. I express all my gratitude to Gordon Leonard for his valuable comments on this manuscript. I thank all the members of the ESRF Structural Biology Group and especially Virginie Carbonell, who contributed to the structural studies as a Master student. I also thank the European Molecular Biology Laboratory (EMBL)/ ESRF Joint Structural Biology Group for access and support at the synchrotron beamlines. I thank the High Throughput Crystallisation Laboratory (HTX) of the EMBL-Grenoble Outstation and the Quality Control platform of the Institut de Biologie Structurale for their technical assistance. I thank the EMBL-Heidelberg Protein Production and Purification core facility for their help concerning the pET-28M-SUMO3 vector. I gratefully acknowledge James McCarthy for his collaboration and Emilie Devienne, who contributed to the biochemical studies as an undergraduate student. I thank all the Gene Discovery and the Plant Chemistry and Functionality groups of Nestlé R&D centre in Tours, and especially Maud Lepelley, Victoria Caillet and Stéphane Michaux for their help and kindness during my visits. Finally I thank Karin Kraehenbuehl for carrying out the MS analysis and for providing the 5-FQA sample. FDDE ABSTRACT ....................................................................................................................................... I RESUME ..................................................................................................................................... III ABBREVIATIONS ............................................................................................................................... V CHAPTER 1.INTRODUCTION .............................................................................................................. 7 1.1. Structure and function of plant secondary metabolites ........................................... 7 1.1.1. Generalities..................................................................................................... 7 1.1.2. Terpenes ......................................................................................................... 8 1.1.3. Alkaloids ........................................................................................................ 8 1.1.4. Phenolics ........................................................................................................ 8 1.2. Structural diversity of the phenolic compounds ...................................................... 9 1.2.1. Classification .................................................................................................. 9 1.2.2. Structure of the hydroxycinnamic acids (HCAs) ......................................... 10 1.2.3. Central role of HCAs and their corresponding CoA thioesters .................... 11 1.2.4. Structure of the chlorogenic acids (CGAs) .................................................. 11 1.2.5. Distribution of CGAs in the plant kingdom ................................................. 14 1.2.6. Related esters................................................................................................ 16 1.3. The biological role of CGAs in plants ................................................................... 16 1.3.1. Intermediates in lignin biosynthesis ............................................................. 16 1.3.2. Defence compounds ..................................................................................... 17 1.4. The impact of CGAs in humans ............................................................................ 18 1.4.1. On the food properties .................................................................................. 18 1.4.2. On health ...................................................................................................... 19 1.5. Provider pathways of CGA precursors .................................................................. 21 1.5.1. The shikimic acid pathway ........................................................................... 21 1.5.2. The general phenylpropanoid pathway ........................................................ 22 1.5.3. 4-Coumarate CoA ligase (4CL) ................................................................... 24 1.6. Genes/ enzymes of the core pathway for CGA biosynthesis ................................. 30 1.6.1. Coumaroyl ester 3-hydroxylase (C3H) ........................................................ 30 1.6.2. Hydroxycinnamoyltransferases (HCT, HQT) .............................................. 31 CHAPTER 2.MATERIALS AND METHODS ......................................................................................... 43 2.1. Cloning, over-expression and purification ............................................................ 43 2.1.1. Preliminary data ........................................................................................... 43 2.1.2. Production of recombinant 4CL2 ................................................................. 44 2.1.3. Production of recombinant HCT and HQT .................................................. 47 2.2. Biophysical characterisation .................................................................................. 60 2.2.1. Thermofluor assays ...................................................................................... 60 2.2.2. Isothermal calorimetry ................................................................................. 64 2.3. Biochemical characterisation ................................................................................. 65 2.3.1. Introduction .................................................................................................. 65 2.3.2. The high-performance liquid chromatography system ................................ 65 2.3.3. Enzymatic synthesis and purification of the CoA thioesters........................ 73 2.3.4. Comparison of the HCT and HQT-catalysed forward reactions .................. 74 2.3.5. Comparison of the HCT and HQT-catalysed reverse reactions ................... 75 2.3.6. Comparison of the activity of native and mutant HCTs............................... 76 2.4. Structural characterisation ....................................................................................
Recommended publications
  • On Glyphosate
    Ecocycles 2(2): 1-8 (2016) ISSN 2416-2140 DOI: 10.19040/ecocycles.v2i2.60 EDITORIAL On glyphosate Tamas Komives1 * and Peter Schröder2 1Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Otto 15, 1022 Budapest, Hungary and Department of Environmental Science, Esterhazy Karoly University, 3200 Gyongyos, Hungary 2Helmholtz Zentrum München, German Research Centre for Environmental Health, GmbH, Research Unit Environmental Genomics, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany *E-mail: [email protected] Abstract – This Editorial briefly discusses the current issues surrounding glyphosate - the most controversial pesticide active ingredient of our time. The paper pays special attention to the effects of glyphosate on plant-pathogen interactions. Keywords – glyphosate, plant-pathogen interactions, environment, human health, ecocycles, sustainability Received: October 14, 2016 Accepted: November 10, 2016 ———————————————————————————————————————————————— - In nature nothing exists alone. researchers of the company missed to identify the Rachel Carson in “Silent Spring” (Carson, 1962) molecule as a potential herbicide because of the short duration of the company's standardized biological - Alle Dinge sind Gift, und nichts ist ohne Gift; allein assays (only five days, while the first, glyphosate- die Dosis machts, daß ein Ding kein Gift sei. (All induced phytotoxic symptoms usually appear after things are poison, and nothing is without poison: the about one week) (F. M. Pallos,
    [Show full text]
  • AVALUACIÓ DE COMPOSTOS FENÒLICS EN ALIMENTS MITJANÇANT TÈCNIQUES HPLC-DAD I UHPLC-DAD-Msn
    AVALUACIÓ DE COMPOSTOS FENÒLICS EN ALIMENTS MITJANÇANT TÈCNIQUES HPLC-DAD I UHPLC-DAD-MSn Albert RIBAS AGUSTÍ Dipòsit legal: Gi. 955-2013 http://hdl.handle.net/10803/116771 ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora.
    [Show full text]
  • Modulating Wine Aromatic Amino Acid Catabolites by Using Torulaspora Delbrueckii in Sequentially Inoculated Fermentations Or Saccharomyces Cerevisiae Alone
    microorganisms Article Modulating Wine Aromatic Amino Acid Catabolites by Using Torulaspora delbrueckii in Sequentially Inoculated Fermentations or Saccharomyces cerevisiae Alone M. Antonia Álvarez-Fernández 1 , Ilaria Carafa 2, Urska Vrhovsek 2 and Panagiotis Arapitsas 2,* 1 Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; [email protected] 2 Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; [email protected] (I.C.); [email protected] (U.V.) * Correspondence: [email protected] or [email protected]; Tel.: +39-0461615656 Received: 25 August 2020; Accepted: 2 September 2020; Published: 4 September 2020 Abstract: Yeasts are the key microorganisms that transform grape juice into wine, and nitrogen is an essential nutrient able to affect yeast cell growth, fermentation kinetics and wine quality. In this work, we focused on the intra- and extracellular metabolomic changes of three aromatic amino acids (tryptophan, tyrosine, and phenylalanine) during alcoholic fermentation of two grape musts by two Saccharomyces cerevisiae strains and the sequential inoculation of Torulaspora delbrueckii with Saccharomyces cerevisiae. An UPLC-MS/MS method was used to monitor 33 metabolites, and 26 of them were detected in the extracellular samples and 8 were detected in the intracellular ones. The results indicate that the most intensive metabolomic changes occurred during the logarithm cellular growth phase and that pure S. cerevisiae fermentations produced higher amounts of N-acetyl derivatives of tryptophan and tyrosine and the off-odour molecule 2-aminoacetophenone. The sequentially inoculated fermentations showed a slower evolution and a higher production of metabolites linked to the well-known plant hormone indole acetic acid (auxin).
    [Show full text]
  • 8.2 Shikimic Acid Pathway
    CHAPTER 8 © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FORAromatic SALE OR DISTRIBUTION and NOT FOR SALE OR DISTRIBUTION Phenolic Compounds © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION CHAPTER OUTLINE Overview Synthesis and Properties of Polyketides 8.1 8.5 Synthesis of Chalcones © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC 8.2 Shikimic Acid Pathway Synthesis of Flavanones and Derivatives NOT FOR SALE ORPhenylalanine DISTRIBUTION and Tyrosine Synthesis NOT FOR SALESynthesis OR DISTRIBUTION and Properties of Flavones Tryptophan Synthesis Synthesis and Properties of Anthocyanidins Synthesis and Properties of Isofl avonoids Phenylpropanoid Pathway 8.3 Examples of Other Plant Polyketide Synthases Synthesis of Trans-Cinnamic Acid Synthesis and Activity of Coumarins Lignin Synthesis Polymerization© Jonesof Monolignols & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC Genetic EngineeringNOT FOR of Lignin SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Natural Products Derived from the 8.4 Phenylpropanoid Pathway Natural Products from Monolignols © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION 119 © Jones & Bartlett Learning, LLC.
    [Show full text]
  • Antioxidant Molecules from Plant Waste: Extraction Techniques and Biological Properties
    Antioxidant Molecules from Plant Waste: Extraction Techniques and Biological Properties Authors: Cynthia E. Lizárraga-Velázquez, Nayely Leyva-López, Crisantema Hernández, Erick Paul Gutiérrez-Grijalva, Jesús A. Salazar-Leyva, Idalia Osuna-Ruíz, Emmanuel Martínez-Montaño, Javier Arrizon, Abraham Guerrero, Asahel Benitez-Hernández, Anaguiven Ávalos-Soriano Date Submitted: 2021-06-21 Keywords: residues, green technologies, fruit, vegetable, valorization, Extraction, bioactive peptides, terpenes, phenolic compounds, phytosterols Abstract: The fruit, vegetable, legume, and cereal industries generate many wastes, representing an environmental pollution problem. However, these wastes are a rich source of antioxidant molecules such as terpenes, phenolic compounds, phytosterols, and bioactive peptides with potential applications mainly in the food and pharmaceutical industries, and they exhibit multiple biological properties including antidiabetic, anti-obesity, antihypertensive, anticancer, and antibacterial properties. The aforementioned has increased studies on the recovery of antioxidant compounds using green technologies to value plant waste, since they represent more efficient and sustainable processes. In this review, the main antioxidant molecules from plants are briefly described and the advantages and disadvantages of the use of conventional and green extraction technologies used for the recovery and optimization of the yield of antioxidant naturals are detailed; finally, recent studies on biological properties of antioxidant molecules
    [Show full text]
  • Bactrev00065-0077.Pdf
    BACnEIUOLOGICAL REVIEWS, Dec. 1968, p. 465-492 Vol. 32, No. 4, Pt. 2 Copyright © 1968 American Society for Microbiology Printed in U.S.A. Pathways of Biosynthesis of Aromatic Amino Acids and Vitamins and Their Control in Microorganisms FRANK GIBSON AND JAMES PITTARD John Curtin School of Medical Research, Australian National University, Canberra, Australia, and School of Microbiology, University of Melbourne, Australia INTRODUCTION................................................................ 465 INTERMEDIATES IN AROMATIC BIOsYNTHESIS ...................................... 466 Common Pathway ........................................................... 466 Tryptophan Pathway ........................................................ 468 Pathways to Phenylalanine and Tyrosine ........................................ 469 Pathway to 4-Aminobenzoic Acid.............................................. 469 Intermediates in Ubiquinone Biosynthesis ....................................... 470 Intermediates in Vitamin K Biosynthesis ........................................ 471 Pathways Involving 2,3-Dihydroxybenzoate ..................................... 472 Other Phenolic Growth Factors ............................................... 473 ISOENZYMES AND PROTEIN AGGREGATES CONCERNED IN AROMATIC BiosYNTHESIS ........ 474 Common Pathway ........................................................... 474 Tryptophan Pathway ......................................................... 474 Phenylalanine and Tyrosine Pathways .........................................
    [Show full text]
  • The Degradation Op Phenylalanine, Tyrosine, And
    / THE DEGRADATION OP PHENYLALANINE, TYROSINE, AND RELATED AROMATIC COMPOUNDS BY A MARINE DIATOM AND A HAPTOPHYCEAN ALGA by ARTHUR FREDERICK LANDYMORE B.Sc., University of British Columbia, 1968 M.Sc., University of British Columbia, 1972 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of Botany We accept this thesis as conforming to the required standard THE UNTOHSITY OF BRITISH COLUMBIA March, 1976" In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and Study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. iii. ABSTRACT,, The degradation of phenylalanine and tyrosine was ex• amined in axenic cultures of Isochrysls galbana Parke and Navlcula lncerta Hustedt. Both species were able to metabolize L-phenylalanine and L-tyrosine as the sole nitrogen source, but severe growth Inhibition was observed for _I. galbana. No growth of I_. galbana was obtained on the D-isomers of these two amino acids, but N. lncerta was able to utilize both D- amino acids after an extended lag period. Analysis of the growth medium and the algal cells from non-radioactive and radioactive experiments never revealed cinnamic or p-coumaric acids. This suggested that phenyl• alanine and tyrosine ammonia-lyases (PAL and TAL) were not involved in the initial degradative step of either these amino acids.
    [Show full text]
  • PBS3 Is the Missing Link in Plant-Specific Isochorismate
    bioRxiv preprint doi: https://doi.org/10.1101/600692; this version posted April 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. PBS3 is the missing link in plant-specific isochorismate-derived salicylic acid biosynthesis Dmitrij Rekhter1, Daniel Lüdke2, Yuli Ding3, Kirstin Feussner1,4, Krzysztof Zienkiewicz1, 5 Volker Lipka5,6, Marcel Wiermer2,*, Yuelin Zhang3,*, Ivo Feussner1,7,* 1 University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Justus-von-Liebig Weg11, D-37077 Goettingen, Germany. 2 University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, RG Molecular Biology of Plant-Microbe Interactions, Julia-Lermontowa-Weg 3, D-37077 Goettingen, 10 Germany. 3 University of British Columbia, Department of Botany, Vancouver, BC V6T 1Z4, Canada. 4 University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Metabolomics and Lipidomics, Justus-von-Liebig Weg11, D-37077 Goettingen, Germany. 15 5 University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Cell Biology, Julia-Lermontowa-Weg 3, D-37077 Goettingen, Germany. 6 University of Goettingen, Central Microscopy Facility of the Faculty of Biology & Psychology, Julia-Lermontowa-Weg 3, D-37077 Goettingen, Germany. 7 University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), 20 Department of Plant Biochemistry, Justus-von-Liebig Weg11, D-37077 Goettingen, Germany. *Corresponding author. Email: [email protected] (I.F.); [email protected] (M.W.); [email protected] (Y.Z.). 25 Abstract: The phytohormone salicylic acid (SA) is a central regulator of plant immunity.
    [Show full text]
  • 351 Section 2 General Information Concerning
    SECTION 2 GENERAL INFORMATION CONCERNING THE GENES AND THEIR ENZYMES THAT CONFER TOLERANCE TO GLYPHOSATE HERBICIDE Summary Note This document summarises the information available on the source of the genes that have been used to construct glyphosate-tolerant transgenic plants, the nature of the enzymes they encode, and the effects of the enzymes on the plant’s metabolism. Scope of this document: OECD Member countries agreed to limit this document to a discussion of the introduced genes and resulting enzymes that confer glyphosate tolerance to plants. The document is not intended to be an encyclopaedic review of all scientific experimentation with glyphosate-tolerant plants. In addition, this document does not discuss the wealth of information available on the herbicide glyphosate itself or the uses of the herbicide in agricultural and other applications. Food safety aspects of the use of glyphosate on glyphosate-tolerant transgenic plants are not discussed. Such information is available from other sources, including the respective governmental organisations which regulate the use of the herbicide. While the focus of this document is on the genes and enzymes involved in encoding glyphosate tolerance, reference is not made to specific plant species into which glyphosate tolerance might be introduced. Any issues relating to the cultivation of glyphosate-tolerant plants or to the potential for, or potential effects of, gene transfer from a glyphosate-tolerant plant to another crop plant or to a wild relative are outside the agreed scope of this document. It is intended, however, that this document should be used in conjunction with specific plant species biology Consensus Documents (see list of publications at the front of the document) when a biosafety assessment is made of plants with novel glyphosate herbicide resistance.
    [Show full text]
  • The Synthesis of Anthranilic Acid, Tryptophan, and Sulfenyl Chloride Analogues, and Enzymatic Studies
    THE SYNTHESIS OF ANTHRANILIC ACID, TRYPTOPHAN, AND SULFENYL CHLORIDE ANALOGUES, AND ENZYMATIC STUDIES By Phanneth Som (Under the Direction of ROBERT S. PHILLIPS) Abstract This dissertation includes four chapters. Chapter 1 includes the introduction and literature review. Chapter 2 covers the enzymatic synthesis of tryptophan via anthranilic acid analogues. Chapter 3 covers the nitration and resolution of tryptophan and synthesis of tryptophan derivatives. Chapter 4 covers the synthesis of sulfenyl chloride derivatives. Tryptophan is important in many aspects in the studies of proteins and also serves as precursors for important compounds. The enzymatic synthesis of tryptophan analogues from anthranilic acid analogues is important and could provide a more efficient route for incorporation of non-canonical amino acids onto proteins. Nitration of tryptophan is also important because it provides a synthetic route for synthesizing other derivatives of tryptophan. Sulfenyl chloride derivatives can be used for labeling proteins and the tryptophan analogues can be determined by mass spectrometry analysis with proteins with a limited number of tryptophan residues makes this application useful. INDEX WORDS: Tryptophan, Anthranilic acid, Enzymatic synthesis, Non-canonical amino acid, Nitration, Sulfenyl chloride, Incorporation THE SYNTHESIS OF ANTHRANILIC ACID, TRYPTOPHAN, AND SULFENYL CHLORIDE ANALOGUES, AND ENZYMATIC STUDIES by Phanneth Som B.S., Georgia State University, 2003 A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY ATHENS, GEORGIA 2009 © 2009 Phanneth Som All Rights Reserved THE SYNTHESIS OF ANTHRANILIC ACID, TRYPTOPHAN, AND SULFENYL CHLORIDE ANALOGUES, AND ENZYMATIC STUDIES By Phanneth Som Major Professor: Robert S.
    [Show full text]
  • Production of Native Plants for Seed, Biomass, and Natural Products A
    Production of native plants for seed, biomass, and natural products A Dissertation SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY Katrina Franziska Freund Saxhaug IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Craig C. Sheaffer, advisor March 2020 © Katrina Franziska Freund Saxhaug 2019 Acknowledgements The research presented in this document would not have been possible without the love and support of countless mentors, colleague, friends and family. Foremost, I am forever grateful to my advisor, Dr. Craig Sheaffer, whose direction, support, understanding, and unending generosity made it possible for me to complete my doctorate. I am also eternally thankful for my unofficial co-advisor, Dr. Adrian Hegeman, for his kindness, intellectual brilliance, and support throughout my degree program. I am also incredibly grateful to Dr. Susan Galatowitsch and Dr. Clay Carter for their guidance, wisdom, and constructive and insightful commentaries. Though not on my committee, Dr. Jacob Jungers was incredibly generous with his time, advice, and support in all aspects of this research. While a doctoral student, I was supported by grants from the Minnesota Department of Agriculture through the AGRI Crop Research Grant Program and the Specialty Crop Block Grant Program. Additional support came through the Minnesota Institute for Sustainable Agriculture gift fund, graciously provided by Leanna Forcier. Further support was provided by the University of Minnesota, including the Hueg-Harrison Graduate Fellowship, the Mark and Jean Schroepfer Fellowship, the Nancy Jo Ehlke Fellowship, and Annie’s Sustainable Agriculture Scholarship. The Sustainable Cropping Systems Lab, under the direction of Dr Craig Sheaffer, and the Plant Metabolomics Lab, under the direction of Dr.
    [Show full text]
  • Characterization of Phenolic Compounds in Highly-Consumed Vegetable Matrices by Using Advanced Analytical Techniques
    UNIVERSITY OF GRANADA FACULTY OF SCIENCES Department of Analytical Chemistry Research Group FQM-297 “Environmental, Biochemical and Foodstuff Analytical Control” Functional Food Research and Development Center (CIDAF) DOCTORAL THESIS CHARACTERIZATION OF PHENOLIC COMPOUNDS IN HIGHLY-CONSUMED VEGETABLE MATRICES BY USING ADVANCED ANALYTICAL TECHNIQUES CARACTERIZACIÓN DE COMPUESTOS FENÓLICOS EN MATRICES VEGETALES MEDIANTE TÉCNICAS ANALTICALAS AVANZADAS Presented by IBRAHIM M. ABU REIDAH Submitted for a Doctoral degree in Chemistry GRANADA, 2013 Editor: Editorial de la Universidad de Granada Autor: Ibrahim M. Abu Reidah D.L.: GR 1899-2013 ISBN: 978-84-9028-591-6 This doctoral thesis has been conducted through financing from the Ministry of Foregin Affairs of Spain & The Spanish Agency Of International Cooperation for Development (MAEC-AECID) scholarship and funds from the Research Group FQM-297 “Environmental, Biochemical and Foodstuff Analytical Control” (Department of Analytical Chemistry, University of Granada) and Functional Food Research and Development Center (CIDAF) from different projects, contracts and grants from the central and autonomic administrations and research plan of the University of Granada. CHARACTERIZATION OF PHENOLIC COMPOUNDS IN HIGHLY-CONSUMED VEGETABLE MATRICES BY USING ADVANCED ANALYTICAL TECHNIQUES By IBRAHIM M. ABU REIDAH Granada, 2013 Signed by Dr. Alberto Fernández-Gutiérrez Full Professor of the Department of Analytical Chemistry Faculty of Sciences, University of Granada Signed by Dr. Antonio Segura Carretero Full Professor of the Department of Analytical Chemistry Faculty of Sciences, University of Granada Signed by Dr. David Arráez-Román Assistant Professor of the Department of Analytical Chemistry Faculty of Sciences, University of Granada Submitted for a Doctoral Degree in Chemistry Signed by Ibrahim M.
    [Show full text]