Characterization of Phenolic Compounds in Highly-Consumed Vegetable Matrices by Using Advanced Analytical Techniques

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Phenolic Compounds in Highly-Consumed Vegetable Matrices by Using Advanced Analytical Techniques UNIVERSITY OF GRANADA FACULTY OF SCIENCES Department of Analytical Chemistry Research Group FQM-297 “Environmental, Biochemical and Foodstuff Analytical Control” Functional Food Research and Development Center (CIDAF) DOCTORAL THESIS CHARACTERIZATION OF PHENOLIC COMPOUNDS IN HIGHLY-CONSUMED VEGETABLE MATRICES BY USING ADVANCED ANALYTICAL TECHNIQUES CARACTERIZACIÓN DE COMPUESTOS FENÓLICOS EN MATRICES VEGETALES MEDIANTE TÉCNICAS ANALTICALAS AVANZADAS Presented by IBRAHIM M. ABU REIDAH Submitted for a Doctoral degree in Chemistry GRANADA, 2013 Editor: Editorial de la Universidad de Granada Autor: Ibrahim M. Abu Reidah D.L.: GR 1899-2013 ISBN: 978-84-9028-591-6 This doctoral thesis has been conducted through financing from the Ministry of Foregin Affairs of Spain & The Spanish Agency Of International Cooperation for Development (MAEC-AECID) scholarship and funds from the Research Group FQM-297 “Environmental, Biochemical and Foodstuff Analytical Control” (Department of Analytical Chemistry, University of Granada) and Functional Food Research and Development Center (CIDAF) from different projects, contracts and grants from the central and autonomic administrations and research plan of the University of Granada. CHARACTERIZATION OF PHENOLIC COMPOUNDS IN HIGHLY-CONSUMED VEGETABLE MATRICES BY USING ADVANCED ANALYTICAL TECHNIQUES By IBRAHIM M. ABU REIDAH Granada, 2013 Signed by Dr. Alberto Fernández-Gutiérrez Full Professor of the Department of Analytical Chemistry Faculty of Sciences, University of Granada Signed by Dr. Antonio Segura Carretero Full Professor of the Department of Analytical Chemistry Faculty of Sciences, University of Granada Signed by Dr. David Arráez-Román Assistant Professor of the Department of Analytical Chemistry Faculty of Sciences, University of Granada Submitted for a Doctoral Degree in Chemistry Signed by Ibrahim M. Abu Reidah ALBERTO FERNÁNDEZ GUTIÉRREZ, Full Professor of University of Granada, Department of Analytical Chemistry, Head of Research Group FQM-297 “Environmental, Biochemical, and Foodstuff Analytical Control” and Director of CIDAF, Certifies: That the work presented in this doctoral thesis entitled “CHARACTERIZATION OF PHENOLIC COMPOUNDS IN HIGHLY- CONSUMED VEGETABLE MATRICES BY USING ADVANCED ANALYTICAL TECHNIQUES” has been carried out under my direction and also under the supervision of both Dr. Antonio Segura Carretero and Dr. David Arráez-Román in the laboratories of the Department of Analytical Chemistry and Functional Food Research and Development Center (CIDAF). He demonstrates all requirements of eligibility to obtain the Doctoral Degree in Chemistry from the University of Granada. Granada, March 2013 Acknowledgments Acknowledgments In the name of Allah, Praise be to him & Peace be upon his Prophet Mohammad First, I would like to give a heartfelt, special thanks to my thesis directors: to Dr. Alberto Fernández Gutiérrez, Dr. Antonio Segura Carretero for having given me the opportunity to work within the FQM 297 and at CIDAF Groups, and to earning my Ph.D. In fact, you have been always motivating, encouraging, and enlightening. Also, I’d thank Dr. David Arráez Román for his continuous assistance and perspective remarks. Dr. Antonio, thanks for everything, fatherly correcting me, advising, and also your hospitality in your house in summer vacation time with all CIDAF family members, is also unforgettable. Thank you for everything. I am very grateful to the members of my dissertation committee. Their academic support and input, correcting and advising are greatly appreciated. Thank you. The friendly and supportive atmosphere inherent to the whole FQM 297 Group contributed essentially to the final outcome of my studies. In this context I would like to alphabetically thank: Arantzazu, Ana, Ana Cobo, Cecilia, Celia, Cristina, Hakim, Ihsan, Isa, Javier, Jesús, Maria del Mar, Maria Luz, Nassima, Patricia, Rosa, and Salva, for their friendship, collaboration and the enjoyable and nice times we have passed together. Without their support the completion of this dissertation would not have been possible. And particularly, I’d thank Ihsan, partnership and friendship. Isa, unforgettable moments with Dr. Leopoldo, registration, master classes, I won’t forget your help in everything, many thanks. Jesús, you have correctly got my style of colors, thanks for your compliments. Maria Luz thanks for your humor giving to everybody. Maria del Mar, thanks for everything, collaboration, discussions, and for sweets offering. Salva, thanks for the collaboration, guiding us to the Paris’s congress. Javier; the manager, thank you. Patricia, I’d thank you for everything, cooperation, helping in samples’ preparations, experiments. Also form other members of FQM 297: I’d thank Alegria, Angel, Antonio-Luis Elena, Paco, Paulina, Maria, Marta, and Santi for their encouragement throughout. Santi, Patchi and Marta thank you a lot for your technical help in installing the computer programs and the softwares, intersting discussions. Alegria, you look like your name, I hope you every success. I’d thank in fact collectively, all people and (friends, teachers, relatives, professors) that have helped, encouraged, supported me during all my study periods. Before and after all the thankfulness should be raised to Allah creator of everything the most merciful and Grateful, then to my parents, the factor of my success in this life, thanks for your continues support morally was or financially along all my life stations. Saeeda, thanks for your infinite support throughout everything, in fact, I cannot thank you sufficiently. Kawthar and Mohammad; my lovely kids, your birth were paralleled with my academic progress and advancement. Last but not least, I’d like to thank my family, relatives and friends who always ask, help, encourage also for their support to pursue this study. Finally, I’d like to thank everybody who was part of my success during my entire study career at all levels, apologizing for not being able to mention all since they are lots. Table of Contents TABLE OF CONTENTS SUMMARY --------------------------------------------------------------------------------- 21 RESUMEN ---------------------------------------------------------------------------------- 27 OBJECTIVE -------------------------------------------------------------------------------- 33 OBJETIVO --------------------------------------------------------------------------------- 37 INTRODUCTION -------------------------------------------------------------------------- 43 1. The Mediterranean Diet: An Overview -------------------------------------------- 45 2. Fruits and Vegetables as a Vital Part of The Mediterranean Diet ------------ 50 2.1. Green Beans (Phaseolus vulgaris L.) --------------------------------------- 51 2.2. Cucumber (Cucumis sativus L.) --------------------------------------------- 52 2.3. Watermelon (Citrullus lanatus) --------------------------------------------- 53 2.4. Artichoke (Cynara scolymus) ------------------------------------------------ 54 2.5. Lettuce (Lactuca sativa) ----------------------------------------------------- 56 3. Fruits And Vegetables as Natural Sources of Bioactive Compounds----------- 57 4. Phenolic Compounds: Structure and Classification ----------------------------- 59 5. Phenolic Compound Bioactivity----------------------------------------------------- 67 6. Polyphenols in Highly Consumed Fruits and Vegetables in Relation to 68 Health------------------------------------------------------------------------------------- 7. Analytical Techniques Used For Separating Phenolic Compounds------------- 73 7.1. Liquid Chromatography (LC) ------------------------------------------------ 74 7.2. Detectors Coupled to LC------------------------------------------------------ 77 7.2.1. UV-Visible Absorbance------------------------------------------------- 78 7.2.2. Mass Spectrometry (MS) ---------------------------------------------- 80 7.2.2.1. Ion Source------------------------------------------------------ 82 7.2.2.2. Mass Analyzer------------------------------------------------- 85 Time-Of-Flight (TOF) ---------------------------------------------- 86 Quadrupole-Time-Of-Flight (QTOF) ------------------------------ 88 7.2.2.3. MS Detector --------------------------------------------------- 89 Experimental Section ------------------------------------------------------------------ 91 Chapter 1 Phytochemical Characterization of Green Beans (Phaseolus 93 vulgaris L.) By Using High-Performance Liquid Chromatography Coupled with Time-of-Flight Mass Spectrometry ------------------ Chapter 2 HPLC-ESI-Q-TOF-MS for a Comprehensive Characterization Of 123 Bioactive Phenolic Compounds in Cucumber Whole Fruit Extract Chapter 3 Profiling Of Phenolic And Other Polar Constituents From Hydro- 155 Methanolic Extract Of Watermelon (Citrullus lanatus) By Means of Accurate-Mass Spectrometry (HPLC–ESI–QTOF–MS) -------------- Chapter 4 Extensive Characterization of Bioactive Phenolic Constituents 181 From Globe Artichoke (Cynara scolymus L.) By HPLC-DAD-ESI- QTOF-MS ------------------------------------------------------------------ Chapter 5 Reversed-Phase Ultra-Performance Liquid Chromatography 205 Coupled To Electrospray Ionization–Quadrupole–Time-Of-Flight Mass Spectrometry as a Powerful Tool for Metabolic Profiling Of Vegetables: Lactuca Sativa as an Example of its Application----- CONCLUSIONS ---------------------------------------------------------------------------- 249 CONCLUSIONS ----------------------------------------------------------------------------
Recommended publications
  • Antibiotic Additive and Synergistic Action of Rutin, Morin and Quercetin Against Methicillin Resistant Staphylococcus Aureus
    Amin et al. BMC Complementary and Alternative Medicine (2015) 15:59 DOI 10.1186/s12906-015-0580-0 RESEARCH ARTICLE Open Access Antibiotic additive and synergistic action of rutin, morin and quercetin against methicillin resistant Staphylococcus aureus Muhammad Usman Amin1†, Muhammad Khurram2*†, Baharullah Khattak1† and Jafar Khan1† Abstract Background: To determine the effect of flavonoids in conjunction with antibiotics in methicillin resistant Staphylococcus aureus (MRSA) a study was designed. The flavonoids included Rutin, Morin, Qurecetin while antibiotics included ampicillin, amoxicillin, cefixime, ceftriaxone, vancomycin, methicillin, cephradine, erythromycin, imipenem, sulphamethoxazole/trimethoprim, ciprofloxacin and levolfloxacin. Test antibiotics were mostly found resistant with only Imipenem and Erythromycin found to be sensitive against 100 MRSA clinical isolates and S. aureus (ATCC 43300). The flavonoids were tested alone and also in different combinations with selected antibiotics. Methods: Antibiotics and flavonoids sensitivity assays were carried using disk diffusion method. The combinations found to be effective were sifted through MIC assays by broth macro dilution method. Exact MICs were determined using an incremental increase approach. Fractional inhibitory concentration indices (FICI) were determined to evaluate relationship between antibiotics and flavonoids is synergistic or additive. Potassium release was measured to determine the effect of antibiotic-flavonoids combinations on the cytoplasmic membrane of test bacteria. Results: Antibiotic and flavonoids screening assays indicated activity of flavanoids against test bacteria. The inhibitory zones increased when test flavonoids were combined with antibiotics facing resistance. MICs of test antibiotics and flavonoids reduced when they were combined. Quercetin was the most effective flavonoid (MIC 260 μg/ml) while morin + rutin + quercetin combination proved most efficient with MIC of 280 + 280 + 140 μg/ml.
    [Show full text]
  • (Hordeum Vulgare L.) Seedlings Via Their
    Ra et al. Appl Biol Chem (2020) 63:38 https://doi.org/10.1186/s13765-020-00519-9 NOTE Open Access Evaluation of antihypertensive polyphenols of barley (Hordeum vulgare L.) seedlings via their efects on angiotensin-converting enzyme (ACE) inhibition Ji‑Eun Ra1, So‑Yeun Woo2, Hui Jin3, Mi Ja Lee2, Hyun Young Kim2, Hyeonmi Ham2, Ill‑Min Chung1 and Woo Duck Seo2* Abstract Angiotensin‑converting enzyme (ACE) is an important therapeutic target in the regulation of high blood pressure. This study was conducted to investigate the alterations in blood pressure associated with ACE inhibition activity of the polyphenols (1–10), including 3‑O‑feruloylquinic acid (1), lutonarin (2), saponarin (3), isoorientin (4), orientin (5), isovitexin (6), isoorientin‑7‑O‑[6‑sinapoyl]‑glucoside (7), isoorientin‑7‑O‑[6‑feruloyl]‑glucoside (8), isovitexin‑7‑O‑ [6‑sinapoyl]‑glucoside (9), and isovitexin‑7‑O‑[6‑feruloyl]‑glucoside (10), isolated from barley seedlings (BS). All the isolated polyphenols exhibited comparable IC50 values of ACE inhibition activity (7.3–43.8 µM) with quercetin (25.2 0.2 µM) as a positive control, and their inhibition kinetic models were identifed as noncompetitive inhibition. ± Especially, compound 4 was revealed to be an outstanding ACE inhibitor (IC50 7.3 0.1 µM, Ki 6.6 0.1 µM). Based on the compound structure–activity relationships, the free hydroxyl groups of =favone± ‑moieties =and glucose± connec‑ tions at the A ring of the favone moieties were important factors for inhibition of ACE. The alcohol extract of BS also 1 demonstrated potent ACE inhibition activity (66.5% 2.2% at 5000 µg mL− ).
    [Show full text]
  • Characterization of C-Glycosidic Flavonoids from Brazilian Passiflora Species Using Lc/Ms Exact Mass Measurement
    CHARACTERIZATION OF C-GLYCOSIDIC FLAVONOIDS FROM BRAZILIAN PASSIFLORA SPECIES USING LC/MS EXACT MASS MEASUREMENT 1 2 2 NOTE M. McCullagh , C.A.M. Pereira , J.H. Yariwake 1Waters Corporation, Floats Road, Wythenshawe, Manchester, M23 9LZ, UK 2Universidade de São Paulo, Instituto de Química de São Carlos, São Carlos, SP, Brazil OVERVIEW This application note describes the analysis of extracts Recently issues have arisen with Kava Kava, a natural from Passiflora species using real time centroid exact health product, which is used for its anti-depressant and mass measurement. The system used comprised of an anti-anxiety properties. Investigations into the safety of LCT™ orthogonal acceleration (oa-TOF) time of flight Kava have taken place within several European mass spectrometer with LockSpray™ source, Waters® countries, including Germany, U.K., Switzerland, 2996 PDA and Waters Alliance® HT 2795 France, Spain and parts of Scandinavia. In Switzerland Separations Module. and Germany cases of liver damage were reported. In Application the US the FDA has investigated Kava's safety, where INTRODUCTION as in Canada the public were advised not to take the EU Directive 2001/83/EC will regulate and produce a supplement until product safety could be assured. The set of harmonized assessment criteria for the efficacy Kava market in Germany alone is $25m. Proving the and safety "Herbal Medicinal Products for traditional efficacy of such a product is economically viable. use". The current and future E.U. member states will Such issues illustrate how regulation currently affects produce and abide by this directive, making 28 states the natural health product market and also why new in total.
    [Show full text]
  • AVALUACIÓ DE COMPOSTOS FENÒLICS EN ALIMENTS MITJANÇANT TÈCNIQUES HPLC-DAD I UHPLC-DAD-Msn
    AVALUACIÓ DE COMPOSTOS FENÒLICS EN ALIMENTS MITJANÇANT TÈCNIQUES HPLC-DAD I UHPLC-DAD-MSn Albert RIBAS AGUSTÍ Dipòsit legal: Gi. 955-2013 http://hdl.handle.net/10803/116771 ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora.
    [Show full text]
  • Important Flavonoids and Their Role As a Therapeutic Agent
    molecules Review Important Flavonoids and Their Role as a Therapeutic Agent Asad Ullah 1 , Sidra Munir 1 , Syed Lal Badshah 1,* , Noreen Khan 1, Lubna Ghani 2, Benjamin Gabriel Poulson 3 , Abdul-Hamid Emwas 4 and Mariusz Jaremko 3,* 1 Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; [email protected] (A.U.); [email protected] (S.M.); [email protected] (N.K.) 2 Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir 13230, Pakistan; [email protected] 3 Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; [email protected] 4 Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; [email protected] * Correspondence: [email protected] (S.L.B.); [email protected] (M.J.) Received: 20 September 2020; Accepted: 1 November 2020; Published: 11 November 2020 Abstract: Flavonoids are phytochemical compounds present in many plants, fruits, vegetables, and leaves, with potential applications in medicinal chemistry. Flavonoids possess a number of medicinal benefits, including anticancer, antioxidant, anti-inflammatory, and antiviral properties. They also have neuroprotective and cardio-protective effects. These biological activities depend upon the type of flavonoid, its (possible) mode of action, and its bioavailability. These cost-effective medicinal components have significant biological activities, and their effectiveness has been proved for a variety of diseases. The most recent work is focused on their isolation, synthesis of their analogs, and their effects on human health using a variety of techniques and animal models.
    [Show full text]
  • Original Contributions to Flavonoid Biochemistry
    433 REVIEW / SYNTHÈSE A forty-year journey in plant research: original contributions to flavonoid biochemistry Ragai K. Ibrahim Abstract: This review highlights original contributions by the author to the field of flavonoid biochemistry during his research career of more than four decades. These include elucidation of novel aspects of some of the common enzy- matic reactions involved in the later steps of flavonoid biosynthesis, with emphasis on methyltransferases, glucosyltransferases, sulfotransferases, and an oxoglutarate-dependent dioxygenase, as well as cloning, and inferences about phylogenetic relationships, of the genes encoding some of these enzymes. The three-dimensional structure of a flavonol O-methyltransferase was studied through homology-based modeling, using a caffeic acid O-methyltransferase as a template, to explain their strict substrate preferences. In addition, the biological significance of enzymatic prenylation of isoflavones, as well as their role as phytoanticipins and inducers of nodulation genes, are emphasized. Finally, the potential application of knowledge about the genes encoding these enzyme reactions is discussed in terms of improving plant productivity and survival, modification of flavonoid profiles, and the search for new compounds with pharmaceutical and (or) nutraceutical value. Key words: flavonoid enzymology, metabolite localization, gene cloning, 3-D structure, phylogeny. Résumé : Dans cette revue, l’auteur fait état de ses contributions originales à la recherche sur la biochimie des flavo- noïdes, au cours des 40 années de sa carrière de recherche. Celles-ci incluent la mise à jour de nouveaux aspects de certaines des réactions enzymatiques impliquées dans les dernières étapes de la biosynthèse des flavonoïdes, avec un accent sur les méthyltransférases, glycotransférases, sulfotransférases et une dioxygénase dépendante de l’oxoglutarate, ainsi que sur le clonage, incluant leurs relations phylogénétiques, des gènes codant pour certaines de ces enzymes.
    [Show full text]
  • Antioxidant Molecules from Plant Waste: Extraction Techniques and Biological Properties
    Antioxidant Molecules from Plant Waste: Extraction Techniques and Biological Properties Authors: Cynthia E. Lizárraga-Velázquez, Nayely Leyva-López, Crisantema Hernández, Erick Paul Gutiérrez-Grijalva, Jesús A. Salazar-Leyva, Idalia Osuna-Ruíz, Emmanuel Martínez-Montaño, Javier Arrizon, Abraham Guerrero, Asahel Benitez-Hernández, Anaguiven Ávalos-Soriano Date Submitted: 2021-06-21 Keywords: residues, green technologies, fruit, vegetable, valorization, Extraction, bioactive peptides, terpenes, phenolic compounds, phytosterols Abstract: The fruit, vegetable, legume, and cereal industries generate many wastes, representing an environmental pollution problem. However, these wastes are a rich source of antioxidant molecules such as terpenes, phenolic compounds, phytosterols, and bioactive peptides with potential applications mainly in the food and pharmaceutical industries, and they exhibit multiple biological properties including antidiabetic, anti-obesity, antihypertensive, anticancer, and antibacterial properties. The aforementioned has increased studies on the recovery of antioxidant compounds using green technologies to value plant waste, since they represent more efficient and sustainable processes. In this review, the main antioxidant molecules from plants are briefly described and the advantages and disadvantages of the use of conventional and green extraction technologies used for the recovery and optimization of the yield of antioxidant naturals are detailed; finally, recent studies on biological properties of antioxidant molecules
    [Show full text]
  • Multitargeted Effects of Vitexin and Isovitexin on Diabetes Mellitus and Its Complications
    Hindawi e Scientific World Journal Volume 2021, Article ID 6641128, 20 pages https://doi.org/10.1155/2021/6641128 Review Article Multitargeted Effects of Vitexin and Isovitexin on Diabetes Mellitus and Its Complications Ibrahim Luru Abdulai,1 Samuel Kojo Kwofie ,1,2 Winfred Seth Gbewonyo ,3 Daniel Boison ,4 Joshua Buer Puplampu ,4 and Michael Buenor Adinortey 4 1West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, P.O. Box LG 54, Legon, Accra, Ghana 2Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, P.O. Box LG77, Legon, Accra, Ghana 3Department of Biochemistry, Cell and Molecular Biology, School of Biological Sciences, University of Ghana, Legon, Accra, Ghana 4Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana Correspondence should be addressed to Michael Buenor Adinortey; [email protected] Received 14 October 2020; Accepted 19 March 2021; Published 12 April 2021 Academic Editor: Ahmad Mansour Copyright © 2021 Ibrahim Luru Abdulai et al. 'is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background. Till date, there is no known antidote to cure diabetes mellitus despite the discovery and development of diverse pharmacotherapeutic agents many years ago. Technological advancement in natural product chemistry has led to the isolation of analogs of vitexin and isovitexin found in diverse bioresources. 'ese compounds have been extensively studied to explore their pharmacological relevance in diabetes mellitus.
    [Show full text]
  • Zeitschrift Für Naturforschung / C / 33 (1978)
    786 Notizen Stepwise Methylation of Quercetin by Cell-Free mitis) peel, (b) a callus tissue culture that was Extracts of Citrus Tissues initiated from calamondin seed, or (c) the root sys­ tem of 6-week old ‘Sunkist’ orange seedlings. All Gunter Brunet, Nabiel A. M. Saleh*, and Ragai K. procedures were conducted at 2 — 4 °C. Fresh or Ibrahim frozen tissues were mixed with sand and Polyclar Department of Biological Sciences, Concordia University, AT and homogenized with 0.1 M Tris-HCl buffer, Sir George Williams Campus, Montreal, Canada pH 7.8, containing 1 m M EDTA and 14 mM /?-mer- Z. Naturforschch. 33 e, 786 — 788 (1978) ; captoethanol. The supernatant obtained after cen­ received August 7, 1978 trifugation (20 min, 15000 xg) was fractionated O-Methylation, Quercetin, Citrus tissues with solid ammonium sulphate and the protein which precipitated between 30 — 70% saturation was The cell-free extracts of peel, root, or callus tissues of citrus catalyzed the stepwise O-methylation of quercetin to collected by centrifugation and dissolved in 50 mM rhamnetin, isorhamnetin and rhamnazin. Both rhamnetin of the same buffer. It was desalted on Sephadex and isorhamnetin were further methylated to rhamnazin and G-25 column and was directly used as the enzyme possibly to a trimethyl ether derivative of quercetin. The results seem to indicate the existence of both meta and source. para directing enzymes that are involved in the biosynthesis The standard assay mixture of O-methyltrans- of methylated flavonoids in citrus tissues. ferase consisted of 40 — 60 nmol of the phenolic substrate (dissolved in DMSO), 10 nmol S-[14CH3]- O-Methylated flavonoids are known for their wide adenosyl-L-methionine (New England Nuclear) con­ spread occurrence in the plant kingdom [1].
    [Show full text]
  • Asteraceae)§ Karin M.Valant-Vetscheraa and Eckhard Wollenweberb,*
    Chemodiversity of Exudate Flavonoids in Seven Tribes of Cichorioideae and Asteroideae (Asteraceae)§ Karin M.Valant-Vetscheraa and Eckhard Wollenweberb,* a Department of Plant Systematics and Evolution Ð Comparative and Ecological Phytochemistry, University of Vienna, Rennweg 14, A-1030 Wien, Austria b Institut für Botanik der TU Darmstadt, Schnittspahnstrasse 3, D-64287 Darmstadt, Germany. E-mail: [email protected] * Author for correspondence and reprint requests Z. Naturforsch. 62c, 155Ð163 (2007); received October 26/November 24, 2006 Members of several genera of Asteraceae, belonging to the tribes Mutisieae, Cardueae, Lactuceae (all subfamily Cichorioideae), and of Astereae, Senecioneae, Helenieae and Helian- theae (all subfamily Asteroideae) have been analyzed for chemodiversity of their exudate flavonoid profiles. The majority of structures found were flavones and flavonols, sometimes with 6- and/or 8-substitution, and with a varying degree of oxidation and methylation. Flava- nones were observed in exudates of some genera, and, in some cases, also flavonol- and flavone glycosides were detected. This was mostly the case when exudates were poor both in yield and chemical complexity. Structurally diverse profiles are found particularly within Astereae and Heliantheae. The tribes in the subfamily Cichorioideae exhibited less complex flavonoid profiles. Current results are compared to literature data, and botanical information is included on the studied taxa. Key words: Asteraceae, Exudates, Flavonoids Introduction comparison of accumulation trends in terms of The family of Asteraceae is distributed world- substitution patterns is more indicative for che- wide and comprises 17 tribes, of which Mutisieae, modiversity than single compounds. Cardueae, Lactuceae, Vernonieae, Liabeae, and Earlier, we have shown that some accumulation Arctoteae are grouped within subfamily Cichori- tendencies apparently exist in single tribes (Wol- oideae, whereas Inuleae, Plucheae, Gnaphalieae, lenweber and Valant-Vetschera, 1996).
    [Show full text]
  • Production of Native Plants for Seed, Biomass, and Natural Products A
    Production of native plants for seed, biomass, and natural products A Dissertation SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY Katrina Franziska Freund Saxhaug IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Craig C. Sheaffer, advisor March 2020 © Katrina Franziska Freund Saxhaug 2019 Acknowledgements The research presented in this document would not have been possible without the love and support of countless mentors, colleague, friends and family. Foremost, I am forever grateful to my advisor, Dr. Craig Sheaffer, whose direction, support, understanding, and unending generosity made it possible for me to complete my doctorate. I am also eternally thankful for my unofficial co-advisor, Dr. Adrian Hegeman, for his kindness, intellectual brilliance, and support throughout my degree program. I am also incredibly grateful to Dr. Susan Galatowitsch and Dr. Clay Carter for their guidance, wisdom, and constructive and insightful commentaries. Though not on my committee, Dr. Jacob Jungers was incredibly generous with his time, advice, and support in all aspects of this research. While a doctoral student, I was supported by grants from the Minnesota Department of Agriculture through the AGRI Crop Research Grant Program and the Specialty Crop Block Grant Program. Additional support came through the Minnesota Institute for Sustainable Agriculture gift fund, graciously provided by Leanna Forcier. Further support was provided by the University of Minnesota, including the Hueg-Harrison Graduate Fellowship, the Mark and Jean Schroepfer Fellowship, the Nancy Jo Ehlke Fellowship, and Annie’s Sustainable Agriculture Scholarship. The Sustainable Cropping Systems Lab, under the direction of Dr Craig Sheaffer, and the Plant Metabolomics Lab, under the direction of Dr.
    [Show full text]
  • Tanacetum Vulgare L. – a Systematic Review Milica Aćimović 1,* and Nikola Puvača 2
    Journal of Agronomy, Technology and Engineering Management Review Tanacetum vulgare L. – A Systematic Review Milica Aćimović 1,* and Nikola Puvača 2 1 Department of Alternative Crops and Organic Production, Institute of Field and Vegetable Crops Novi Sad, Maksima Gorkog 30, 21000 Novi Sad, Serbia 2 University Business Academy, Faculty of Economics and Engineering Management, Department of Engineering Management in Biotechnology, Cvećarska 2, 21000 Novi Sad, Serbia * Correspondence: [email protected]; Tel.: +381-21-780-365 Received: 5 April 2020; Accepted: 1 June 2020 Abstract: Tanacetum vulgare L. (syn. Chrysanthemum vulgare L.) commonly known as tansy, is a perennial herb of the Asteraceae family, native to temperate Europe and Asia, where it grows along roadsides, hedgerows and waste places. It was introduced into North America for medicinal and horticultural purposes and now grows wild throughout many USA states. It has two varieties: var. vulgare (distributed in N Europe and N America, however in Corsica, Sardinia and Sicily ssp. siculum grows, in some cases reported as a separate species) and var. boreale (distributed in Russia, China, N Korea and Japan). Aerial plant parts contain essential oil divided into chemotypes, and the environmental adaptability of the plants can be assumed from essential oil contents. T. vulgare is also rich in phenolic acids, flavonoids and their derivatives which contribute to the pharmacological actions of the plant. Keywords: tansy; Asteraceae; essential oil. 1. Introduction Tanacetum vulgare L. (syn. Chrysanthemum vulgare L.) commonly known as tansy, comes from the Greek word “athanasia” which means “immortality”, probably originating from the fact that its flowers do not wilt when dry [1].
    [Show full text]