Global Genome Analysis of the Shikimic Acid Pathway Reveals
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Metabolomics Reveals the Molecular Mechanisms of Copper Induced
Article Cite This: Environ. Sci. Technol. 2018, 52, 7092−7100 pubs.acs.org/est Metabolomics Reveals the Molecular Mechanisms of Copper Induced Cucumber Leaf (Cucumis sativus) Senescence † ‡ § ∥ ∥ ∥ Lijuan Zhao, Yuxiong Huang, , Kelly Paglia, Arpana Vaniya, Benjamin Wancewicz, ‡ § and Arturo A. Keller*, , † Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, China ‡ Bren School of Environmental Science & Management, University of California, Santa Barbara, California 93106-5131, United States § University of California, Center for Environmental Implications of Nanotechnology, Santa Barbara, California 93106, United States ∥ UC Davis Genome Center-Metabolomics, University of California Davis, 451 Health Sciences Drive, Davis, California 95616, United States *S Supporting Information ABSTRACT: Excess copper may disturb plant photosynthesis and induce leaf senescence. The underlying toxicity mechanism is not well understood. Here, 3-week-old cucumber plants were foliar exposed to different copper concentrations (10, 100, and 500 mg/L) for a final dose of 0.21, 2.1, and 10 mg/plant, using CuSO4 as the Cu ion source for 7 days, three times per day. Metabolomics quantified 149 primary and 79 secondary metabolites. A number of intermediates of the tricarboxylic acid (TCA) cycle were significantly down-regulated 1.4−2.4 fold, indicating a perturbed carbohy- drate metabolism. Ascorbate and aldarate metabolism and shikimate- phenylpropanoid biosynthesis (antioxidant and defense related pathways) were perturbed by excess copper. These metabolic responses occur even at the lowest copper dose considered although no phenotype changes were observed at this dose. High copper dose resulted in a 2-fold increase in phytol, a degradation product of chlorophyll. -
I (Theoretical Organic Chemistry-I)
M.Sc. Organic Chemistry Semester – III Course Code: PSCHO301 Paper - I (Theoretical organic chemistry-I) Unit 1 Organic reaction mechanisms [15L] 1.1 Organic reactive intermediates, methods of generation, structure, stability [5L] and important reactions involving carbocations, nitrenes, carbenes, arynes and ketenes. 1.2 Neighbouring group participation: Mechanism and effects of anchimeric [3L] assistance, NGP by unshared/ lone pair electrons, π-electrons, aromatic rings, σ-bonds with special reference to norbornyl and bicyclo[2.2.2]octyl cation systems (formation of non-classical carbocation) 1.3 Role of FMOs in organic reactivity: Reactions involving hard and soft [2L] electrophiles and nucleophiles, ambident nucleophiles, ambident electrophiles, the α effect. 1.4 Pericyclic reactions: Classification of pericyclic reactions; thermal and [5L] photochemical reactions. Three approaches: Evidence for the concertedness of bond making and breaking Symmetry-Allowed and Symmetry-Forbidden Reactions – The Woodward-Hoffmann Rules-Class by Class The generalised Woodward-Hoffmann Rule Explanations for Woodward-Hoffmann Rules The Aromatic Transition structures [Huckel and Mobius] Frontier Orbitals Correlation Diagrams, FMO and PMO approach Molecular orbital symmetry, Frontier orbital of ethylene, 1,3 butadiene, 1,3,5 hexatriene and allyl system. Unit 2 Pericyclic reactions [15L] 2.1 Cycloaddition reactions: Supra and antra facial additions, 4n and 4n+2 [7L] systems, 2+2 additions of ketenes. Diels-Alder reactions, 1, 3-Dipolar cycloaddition and cheletropic reactions, ene reaction, retro-Diels-Alder reaction, regioselectivity, periselectivity, torquoselectivity, site selectivity and effect of substituents in Diels-Alder reactions. Other Cycloaddition Reactions- [4+6] Cycloadditions, Ketene Cycloaddition, Allene Cycloadditions, Carbene Cycloaddition, Epoxidation and Related Cycloadditions. Other Pericyclic reactions: Sigmatropic Rearrangements, Electrocyclic Reactions, Alder ‘Ene’ Reactions. -
On Glyphosate
Ecocycles 2(2): 1-8 (2016) ISSN 2416-2140 DOI: 10.19040/ecocycles.v2i2.60 EDITORIAL On glyphosate Tamas Komives1 * and Peter Schröder2 1Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Otto 15, 1022 Budapest, Hungary and Department of Environmental Science, Esterhazy Karoly University, 3200 Gyongyos, Hungary 2Helmholtz Zentrum München, German Research Centre for Environmental Health, GmbH, Research Unit Environmental Genomics, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany *E-mail: [email protected] Abstract – This Editorial briefly discusses the current issues surrounding glyphosate - the most controversial pesticide active ingredient of our time. The paper pays special attention to the effects of glyphosate on plant-pathogen interactions. Keywords – glyphosate, plant-pathogen interactions, environment, human health, ecocycles, sustainability Received: October 14, 2016 Accepted: November 10, 2016 ———————————————————————————————————————————————— - In nature nothing exists alone. researchers of the company missed to identify the Rachel Carson in “Silent Spring” (Carson, 1962) molecule as a potential herbicide because of the short duration of the company's standardized biological - Alle Dinge sind Gift, und nichts ist ohne Gift; allein assays (only five days, while the first, glyphosate- die Dosis machts, daß ein Ding kein Gift sei. (All induced phytotoxic symptoms usually appear after things are poison, and nothing is without poison: the about one week) (F. M. Pallos, -
Molecular Models for Shikimate Pathway Enzymes of Xylella Fastidiosa
BBRC Biochemical and Biophysical Research Communications 320 (2004) 979–991 www.elsevier.com/locate/ybbrc Molecular models for shikimate pathway enzymes of Xylella fastidiosa Helen Andrade Arcuri,a,1 Fernanda Canduri,a,d,1 Jose Henrique Pereira,a Nelson Jose Freitas da Silveira,a Joao~ Carlos Camera Jr.,a Jaim Simoes~ de Oliveira,b Luiz Augusto Basso,b Mario Sergio Palma,c,d Diogenes Santiago Santos,e,* and Walter Filgueira de Azevedo Jr.a,d,* a Department of Physics IBILCE/UNESP, S~ao Jose do Rio Preto, SP 15054-000, Brazil b Rede Brasileira de Pesquisas em Tuberculose, Department of Molecular Biology and Biotecnology, UFRGS, Porto Alegre, RS 91501-970, Brazil c Laboratory of Structural Biology and Zoochemistry, Department of Biology, Institute of Biosciences, UNESP, Rio Claro, SP 13506-900, Brazil d Center for Applied Toxicology, Institute Butantan, S~ao Paulo, SP 05503-900, Brazil e Center for Research and Development in Molecular, Structural and Functional Molecular Biology, PUCRS 90619-900, Porto Alegre, RS, Brazil Received 25 May 2004 Available online 25 June 2004 Abstract The Xylella fastidiosa is a bacterium that is the cause of citrus variegated chlorosis (CVC). The shikimate pathway is of pivotal importance for production of a plethora of aromatic compounds in plants, bacteria, and fungi. Putative structural differences in the enzymes from the shikimate pathway, between the proteins of bacterial origin and those of plants, could be used for the development of a drug for the control of CVC. However, inhibitors for shikimate pathway enzymes should have high specificity for X. fastidiosa enzymes, since they are also present in plants. -
Effects of A-Aminooxy-ß-Phenylpropionic Acid on Phenylalanine Metabolism in /R-Fluorophenylalanine Sensitive and Resistant Toba
Effects of a-Aminooxy-ß-phenylpropionic Acid on Phenylalanine Metabolism in /r-Fluorophenylalanine Sensitive and Resistant Tobacco Cells Jochen Berhn and Brigitte Vollmer Lehrstuhl fur Biochemie der Pflanzen, Westfälische Wilhelms-Universität Münster, West Germany Z. Naturforsch. 34 c, 770 — 775 (1979); received May 18, 1979 Nicotiana tabacum, Suspension Cultures, a-Aminooxy-ß-phenylpropionic Acid, Chorismate Mu- tase, Phenylalanine, Pool Sizes A ^-fluorophenylalanine (PFP) resistant cell line with high phenylalanine ammonia lyase (PAL) activity and wild type cells with low PAL activity were compared in their responses to PAL inhibition by a-aminooxy-/?-phenylpropionic acid (AOP). Inhibition of PAL reduced the levels of the main phenolic compounds to 30% of the controls. Free phenylalanine pools increased 17 fold in the resistant line and 6 fold in the sensitive line, respectively. The accumulation of phenylalani ne did not reduce the flow of labeled shikimic acid into the aromatic amino acids tyrosine and phenylalanine. The results are discussed with respect to the feedback inhibition of chorismate mu- tase activity by phenylalanine and tyrosine in both cell lines. Amino acid analog resistant cell lines normally Therefore the cells were grown in the presence of a have an increased pool size of the corresponding na specific inhibitor of PAL, a-aminooxy-yß-phenyl- tural amino acid due to a lessened feedback control propionic acid (AOP) [ 6 ], Inhibition of PAL should in the biosynthetic pathway [1]. A tobacco cell line result in distinct changes of phenylalanine pools in resistant to / 7-fluorophenylalanine (PFP), however, sensitive and resistant cells and/or should reduce the did not fit into this frame [2-5], The main reason for flow of carbon through the shikimate pathway. -
Microbial Production of Methyl Anthranilate, a Grape Flavor Compound
Microbial production of methyl anthranilate, a grape flavor compound Zi Wei Luoa,b,1, Jae Sung Choa,b,1, and Sang Yup Leea,b,c,d,2 aMetabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology, 34141 Daejeon, Republic of Korea; bSystems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Korea Advanced Institute of Science and Technology, 34141 Daejeon, Republic of Korea; cBioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology, 34141 Daejeon, Republic of Korea; and dBioInformatics Research Center, Korea Advanced Institute of Science and Technology, 34141 Daejeon, Republic of Korea Contributed by Sang Yup Lee, April 5, 2019 (sent for review March 6, 2019; reviewed by Jay D. Keasling and Blaine A. Pfeifer) Methyl anthranilate (MANT) is a widely used compound to give While these biotransformation procedures are considered more grape scent and flavor, but is currently produced by petroleum-based natural and ecofriendly compared with chemical synthesis, their processes. Here, we report the direct fermentative production of actual use is limited due to low yields, long reaction times, and MANT from glucose by metabolically engineered Escherichia coli and formation of byproducts (5). In addition, the chemical and bio- Corynebacterium glutamicum strains harboring a synthetic plant- transformation processes mentioned -
Davidge JBC Supplementary.Pdf
promoting access to White Rose research papers Universities of Leeds, Sheffield and York http://eprints.whiterose.ac.uk/ White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/7923/ (includes links to Main Article, Supplementary Material and Figures) Published paper Davidge, K.S., Sanguinetti, G., Yee, C.H., Cox, A.G., McLeod, C.W., Monk, C.E., Mann, B.E., Motterlini, R. and Poole, R.K. (2009) Carbon monoxide-releasing antibacterial molecules target respiration and global transcriptional regulators. Journal of Biological Chemistry, 284 (7). pp. 4516-4524. http://dx.doi.org/10.1074/jbc.M808210200 Supplementary Material White Rose Research Online [email protected] Supplementary Material Carbon monoxide-releasing antibacterial molecules target respiration and global transcriptional regulators Kelly S Davidge, Guido Sanguinetti, Chu Hoi Yee, Alan G Cox, Cameron W McLeod, Claire E Monk, Brian E Mann, Roberto Motterlini and Robert K Poole Contents Page Number Supplementary Figure S1 3 Inhibition by CORM-3 of E. coli cultures grown in defined medium anaerobically and aerobically Supplementary Figure S2 4 Viability assays showing survival of anaerobically and aerobically E. coli in defined growth medium Supplementary Figure S3 5 Reaction of terminal oxidases in vivo on addition of RuCl2(DMSO)4 to intact cells in a dual-wavelength spectrophotometer Supplementary Figure S4 6 CORM-3 generates carbonmonoxycytochrome bd in vivo and depresses synthesis of cytochrome bo' Supplementary Figure S5 7 Expression of spy-lacZ activity -
Insensitive 3-Deoxy-D-Arabino-Heptulosonate 7-Phosphate Synthaset LISA M
JOURNAL OF BACTERIOLOGY, Nov. 1990, p. 6581-6584 Vol. 172, No. 11 0021-9193/90/116581-04$02.00/0 Copyright X 1990, American Society for Microbiology Cloning of an aroF Allele Encoding a Tyrosine- Insensitive 3-Deoxy-D-arabino-Heptulosonate 7-Phosphate Synthaset LISA M. WEAVER AND KLAUS M. HERRMANN* Department ofBiochemistry, Purdue University, West Lafayette, Indiana 47907 Received 9 May 1990/Accepted 10 August 1990 In Escherichia coli, genes aroF+, aroG+, and aroH+ encode isoenzymes of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthases that are feedback inhibited by tyrosine, phenylalanine, and tryptophan, respectively. A single base pair change in aroF causes a Pro-148-to-Leu-148 substitution and results in a tyrosine-insensitive enzyme. In bacteria and plants, the aromatic amino acids phenyl- plasmid, designated pLW22, contained an 8-kb insert that alanine, tyrosine, and tryptophan are synthesized via the hybridized to the 714-bp DdeI (Fig. 1) aroF probe (6, 11). shikimate pathway (7, 13). The first enzyme of this pathway Digestion of pLW22 with HindIII-BglII gave a 950-bp frag- is 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) ment that hybridized to the probe. This result was unex- synthase (EC 4.1.2.15). In Escherichia coli, the three un- pected, since the corresponding wild-type fragment is 1.8 kb linked genes aroF+, aroG+, and aroH+ (1) encode three in size. Subsequent detailed restriction analysis and hybrid- isoenzymes of DAHP synthase that are sensitive to tyrosine, ization of pLW22 with the 796-bp DdeI (Fig. 1) aroF probe phenylalanine, and tryptophan, respectively (2). -
Letters to Nature
letters to nature Received 7 July; accepted 21 September 1998. 26. Tronrud, D. E. Conjugate-direction minimization: an improved method for the re®nement of macromolecules. Acta Crystallogr. A 48, 912±916 (1992). 1. Dalbey, R. E., Lively, M. O., Bron, S. & van Dijl, J. M. The chemistry and enzymology of the type 1 27. Wolfe, P. B., Wickner, W. & Goodman, J. M. Sequence of the leader peptidase gene of Escherichia coli signal peptidases. Protein Sci. 6, 1129±1138 (1997). and the orientation of leader peptidase in the bacterial envelope. J. Biol. Chem. 258, 12073±12080 2. Kuo, D. W. et al. Escherichia coli leader peptidase: production of an active form lacking a requirement (1983). for detergent and development of peptide substrates. Arch. Biochem. Biophys. 303, 274±280 (1993). 28. Kraulis, P.G. Molscript: a program to produce both detailed and schematic plots of protein structures. 3. Tschantz, W. R. et al. Characterization of a soluble, catalytically active form of Escherichia coli leader J. Appl. Crystallogr. 24, 946±950 (1991). peptidase: requirement of detergent or phospholipid for optimal activity. Biochemistry 34, 3935±3941 29. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and (1995). the thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281±296 (1991). 4. Allsop, A. E. et al.inAnti-Infectives, Recent Advances in Chemistry and Structure-Activity Relationships 30. Meritt, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505± (eds Bently, P. H. & O'Hanlon, P. J.) 61±72 (R. Soc. Chem., Cambridge, 1997). -
United States Patent (19) (11 Patent Number: 4,971,908 Kishore Et Al
United States Patent (19) (11 Patent Number: 4,971,908 Kishore et al. 45 Date of Patent: Nov. 20, 1990 54 GLYPHOSATE-TOLERANT 56 References Cited 5-ENOLPYRUVYL-3-PHOSPHOSHKMATE U.S. PATENT DOCUMENTS SYNTHASE 4,769,061 9/1988 Comai ..................................... 71/86 (75. Inventors: Ganesh M. Kishore, Chesterfield; Primary Examiner-Robin Teskin Dilip M. Shah, Creve Coeur, both of Assistant Examiner-S. L. Nolan Mo. Attorney, Agent, or Firm-Dennis R. Hoerner, Jr.; 73 Assignee: Monsanto Company, St. Louis, Mo. Howard C. Stanley; Thomas P. McBride (21) Appl. No.: 179,245 57 ABSTRACT Glyphosate-tolerant 5-enolpyruvyl-3-phosphosikimate 22 Filed: Apr. 22, 1988 (EPSP) synthases, DNA encoding glyhphosate-tolerant EPSP synthases, plant genes encoding the glyphosate Related U.S. Application Data tolerant enzymes, plant transformation vectors contain ing the genes, transformed plant cells and differentiated 63 Continuation-in-part of Ser. No. 54,337, May 26, 1987, transformed plants containing the plant genes are dis abandoned. closed. The glyphosate-tolerant EPSP synthases are 51) Int. Cl. ....................... C12N 15/00; C12N 9/10; prepared by substituting an alanine residue for a glycine CO7H 21/04 residue in a conserved sequence found between posi 52 U.S. C. .............................. 435/172.1; 435/172.3; tions 80 and 120 in the mature wild-type EPSP syn 435/193; 536/27; 935/14 thase. 58) Field of Search............... 435/172.3, 193; 935/14, 935/67, 64 15 Claims, 14 Drawing Sheets U.S. Patent Nov. 20, 1990 Sheet 3 of 14 4,971,908 1. 50 Yeast . .TVYPFK DIPADQQKVV IPPGSKSSN RALITAATGE GQCKIKNLLH Aspergillus . -
Lllllllllllllllllillllllllllllllilllllllllillllillllllllllll
lllllllllllllllllIllllllllllllllIlllllllllIllllIllllllllllllllllllIllllllll U USOO53 10667A Umted States Patent [19] [11] Patent Number: 5,310,667 Eichholtz et a1. [45] Date of Patent: May 10, 1994 [54] GLYPHOSATE-TOLERANT 5-ENOLPYRUVYL-3-PHOSPHOSHIKIMATE OTHER PUBLICATIONS SYNTHASES Botterman et a1. (Aug. 1988) Trends in Genetics 4:219-222. [75] Inventors: David A_ Eichholtz, St Louis; Dassarma et al. (1986) Science 232:1242-1244. Charles S_ Gasser; Ganesh M_ Oxtoby et al. (1989) Euphytiza 40:173-180. Kishore, both of Chesterfield, an of Sezel, Enzyme Kineties, Behavior and Analysis of Rapid Mo_ Equilibrium and Steady State Enzyme System, John Wiley and Sons, New York, 1975, p. 15. [73] Assignee: Monsanto Company, St. Louis, Mo. Primary Examiner—Che S. Chereskiin Attorney, Agent, or Firm-Dennis R. Hoemer, Jr.; [21] Appl. No.: 380,963 RiChard H- Shear [57] ABSTRACT [22] Filed: Jul- 17’ 1989 Glyphosate-tolerant 5-enolpyruvy1-3-phosphoshikimate (EPSP) synthases, DNA encoding glyphosate-tolerant [51] Int. Cl.5 .................... .. C12N 15/01; C12N 15/29; EPSP synthases, plant genes encoding the glyphosate C12N 15/32 tolerant enzymes, plant transformation vectors contain [52] US. Cl. .............................. .. 435/ 172.3; 435/691; ing the genes, transformed plant cells and differentiated 800/205; 935/30; 935/35; 935/64; 536/236; transformed plants containing the plant genes are dis 536/23.7 closed. The glyphosate-tolerant EPSP synthases are [58] Field of Search ................... .. 435/68, 172.3, 69.1; prepared by substituting an alanine residue for a glycine 935/30, 35, 64, 67; 71/86, 113, 121; 530/370, residue in a ?rst conserved sequence found between 350; 800/205; 536/236, 23.7 positions 80 and 120, and either an aspartic acid residue ‘ or asparagine residue for a glycine residue in a second [56] References Cited conserved sequence found between positions 120 and 160 in the mature wild type EPSP synthase. -
Advancing a Systems Cell-Free Metabolic Engineering Approach to Natural Product Synthesis and Discovery
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2020 Advancing a systems cell-free metabolic engineering approach to natural product synthesis and discovery Benjamin Mohr University of Tennessee Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation Mohr, Benjamin, "Advancing a systems cell-free metabolic engineering approach to natural product synthesis and discovery. " PhD diss., University of Tennessee, 2020. https://trace.tennessee.edu/utk_graddiss/6837 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Benjamin Mohr entitled "Advancing a systems cell-free metabolic engineering approach to natural product synthesis and discovery." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Energy Science and Engineering. Mitchel Doktycz, Major Professor We have read this dissertation and recommend its acceptance: Jennifer Morrell-Falvey, Dale Pelletier, Michael Simpson, Robert Hettich Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Advancing a systems cell-free metabolic engineering approach to natural product synthesis and discovery A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Benjamin Pintz Mohr December 2019 c by Benjamin Pintz Mohr, 2019 All Rights Reserved.