FPGA Implementation of a High Speed Multistage Pipelined Adder Based CORDIC Structure for Large Operand Word Lengths ISSN 2047-3338

Total Page:16

File Type:pdf, Size:1020Kb

FPGA Implementation of a High Speed Multistage Pipelined Adder Based CORDIC Structure for Large Operand Word Lengths ISSN 2047-3338 International Journal of Computer Science and Telecommunications [Volume 3, Issue 5, May 2012] 105 FPGA Implementation of a High Speed Multistage Pipelined Adder Based CORDIC Structure for Large Operand Word Lengths ISSN 2047-3338 Burhan Khurshid 1, Ghulam Mohd Rather 1 and Najeeb-ud-din Hakim 1 1Department of ECE, National Institute of Technology, Srinagar, J & K, India Abstract — CORDIC is an acronym for COordinate Rotation time consuming as it was too slow to converge to a desired Digital Computer. It is a hardware-efficient, shift and add precision. algorithm that is used in various digital signal processing With digital signal processing switching back to hardware applications for computing trigonometric, logarithmic, hyperbolic efficient solutions [2], CORDIC came to picture. The and other linear and transcendental functions. Traditionally the CORDIC method of computation basically represents a algorithm is implemented in hardware in two different styles: folded and unfolded. Unfolded structures are pipelined to compromise between the look-up table method and the power increase the throughput of the structure. This paper implements series method, wherein the precision of the result is preserved the algorithm in normal unfolded style, but using multistage without having to use any considerable amount of on chip pipelined adders. The resulting structure is compared against the memory. With the advancement in VLSI technology, the traditional unfolded and pipelined approaches and is shown to design of high speed VLSI architectures for modern digital have an improved throughput. The structure has been coded in signal processing systems became a reality. This provided VHDL and implemented using Xilinx FPGA synthesis tool. The designers with significant impetus to map CORDIC algorithm algorithm has been simulated for sine and cosine function into hardware structures. However, the frequent use of these evaluation. The simulations are carried out using Xilinx ISim tool. architectures in modern DSP systems requires a rapid increase in performance accompanied by a reduction in cost and shorter Index Terms —FPGA, Rotation Mode, Pipelined Adders and Unfolded Architecture time to market [1]. This is achieved by optimizing these structures for various performance parameters such as speed, power and area. One way of optimizing these structures is to I. INTRODUCTION incorporate such architectural modifications that enable them to be clocked at higher operating frequencies. The optimized ANY of the algorithms used today in DSP require structures are then implemented using suitable hardware Melementary functions such as trigonometric, inverse platforms. trigonometric, logarithmic, exponential, multiplication and IC technology provides a variety of implementation formats division functions [1]. The traditional approach for for system designers. The implementation format defines the implementing these functions was to look for some software technology to be used, how the switching elements are solutions. These included the use of look-up tables, power organized and how the system functionality will be series and polynomial expansion methods. These software materialized. Perhaps the most advanced implementation based approaches, however, suffered from many drawbacks. platform used today is the reconfigurable platform. FPGAs are Look-up table methods, although fast, required large reconfigurable systems that are often used as co-processors to memory for high precision results. The use of power series was implement CORDIC architectures. Historically, FPGAs have been slower, less energy efficient and generally achieved less functionality than their fixed ASIC counterparts. This has provided enough scope for designers to optimize FPGA based This work has been carried out in SMDP-II VLSI laboratory of the structures for parameters like throughput, power, area etc. Electronics and Communication Engineering Department, of National The rest of the paper is organized in the following manner. Institute of Technology Srinagar, India. This SMDP – II VLSI project is Section II discusses the CORDIC algorithm and its operating funded by Ministry of Communication and Information Technology, Government of India. Authors are grateful to the Ministry for the facilities mode for sine and cosine function evaluation. Section III provided under this project. discusses the folded and unfolded CORDIC architectures. B. Khurshid is with the Electronics and Communication Department Section IV discusses the pipelined addition. Section V National Institute of Technology, Srinagar, J & K, India (phone: 9797875163; provides the implementation and simulation results and based e-mail: [email protected]). G. M. Rather is with the Electronics and Communication Department on the comparison metrics, performance evaluation of folded, National Institute of Technology, Srinagar, J & K, India. unfolded, pipelined and proposed CORDIC architectures is N. Hakim is with the Electronics and Communication Department carried out. National Institute of Technology, Srinagar, J & K, India. Journal Homepage: www.ijcst.org Burhan Khurshid et al. 106 -2i 1/2 II. CORDIC ALGORITHM Ki = 1/(1+2 ) ; known as scale constant. The CORDIC algorithm provides an iterative method of di = ±1 ; known as decision function. performing vector rotations by arbitrary angles using only shift and add operations [3]. The algorithm, credited to Volder [4], Removing the scale constant from the iterative equations is derived from the general (Givens) rotation transform: yields a shift-add algorithm for vector rotation. The product of the Ki’s can be applied elsewhere in the system or treated as x'= x cos ø – y sin ø (1) part of a system processing gain. That product approaches 0.6073 as the number of iterations goes to infinity. Therefore, y'= x sin ø + y cos ø (2) the rotation algorithm has a gain, An , of approximately 1.647. The exact gain depends on the number of iterations, and obeys This rotates a vector in a Cartesian plane by the angle ø. These the relation: can be rearranged so that: -2i 1/2 An = Π [1+2 ] x'= cos ø [ x - y tan ø ] (3) The angle accumulator adds a third difference equation to the y'= cos ø [ y + x tan ø ] (4) CORDIC algorithm: -i The rotation angles are restricted so that, tan ø = ±2 . This z i+1 = z i – αi reduces the multiplication operation by the tangent term to -1 -i -i simple shift operation. Any given target angle ø can be z i+1 = z i – di tan ( 2 ) { tan αi = ±2 } decomposed into a sequence of smaller micro rotations. Thus ø is decomposed as a sequence of elementary rotations: For a single CORDIC micro-rotation the resulting equations are: ø =Σ α i (5) -I x i+1 = x i – yi .d i. 2 (10) Using these basic ideas we have the basic iterative rotations -I as: y i+1 = y i + xi .d i. 2 (11) -1 -i x i+1 = cos αi [ x i – yi tan αi ] (6) z i+1 = z i – di tan ( 2 ) (12) y i+1 = cos αi [y i + x i tan αi ] (7) The CORDIC rotator is normally operated in one of two modes. In rotation mode, the angle accumulator is initialized The rotation angles are restricted so that: with the desired rotation angle. The rotation decision at each iteration is made to diminish the magnitude of the residual -i tan αi = ±2 angle in the angle accumulator. The decision at each iteration is therefore based on the sign of the residual angle after each This assures that the multiplication by the tangent term is step. The CORDIC equations are: reduced to simple shifting operation. -i x i+1 = x i – yi .d i. 2 2 1/2 x i+1 = [ x i – yi tan αi ] / ( 1 + tan αi ) -i y i+1 = y i + x i .d i. 2 2 1/2 y i+1 = [ y i + x i tan αi ] / ( 1 + tan αi ) -1 -i z i+1 = z i – di tan ( 2 ), Rearranging: Where, -i -2i 1/2 x i+1 = [ x i – yi (±2 ) ] / ( 1 + 2 ) di = -1 if z i < 0 -i -2i 1/2 y i+1 = [ y i + x i (±2 ) ] / ( 1 + 2 ) +1, otherwise Or After n iterations we are provided with following results: -i x i+1 = K i. [ x i – yi .d i. 2 ] (8) xn = A n [ x 0 cosz 0 – y0 sinz 0 ] (13) -i y i+1 = K i. [ y i + x i .d i. 2 ] (9) yn = A n [ y 0 cosz 0 + x 0 sinz 0 ] (14) Where, zn = 0 (15) International Journal of Computer Science and Telecommunications [Volume 3, Issue 5, May 2012] 107 Setting the y component of the input vector to zero reduces the the shifters in each path are shared on time basis this rotation mode result to: conventional approach of implementing the CORDIC algorithm is not suitable for high speed applications [7]. xn = A n . x 0 cosz 0 (16) Another disadvantage is with respect to the shift operations. When implemented in hardware the shifters have to change the yn = A n . x 0 sinz 0 (17) shift distance with the number of iteration. For large number of iterations these require a high fan in and reduce the maximum By setting x0 equal to 1/A n, the rotation produces the unscaled speed for the application [7, 9].These shifters do not map well sine and cosine of the angle argument z0. into FPGA architectures and if implemented require several layers of logic. The result is a slow design that uses large number of logic cells. In addition the output rate is also limited III. CORDIC ARCHITECTURES by the fact that the operation is performed iteratively and therefore the maximum output rate equals 1/n times the clock In general, CORDIC architectures can be broadly classified rate, where n is the number of iterations. as folded and unfolded, based upon the hardware realization of the three iterative equations [5]. A direct duplication of B. Unfolded parallel design equations 10, 11 and 12 into hardware results in folded architecture.
Recommended publications
  • Comparison of Parallel and Pipelined CORDIC Algorithm Using RCA and CSA
    Comparison of Parallel and Pipelined CORDIC algorithm using RCA and CSA Diego Barragan´ Guerrero Lu´ıs Geraldo P. Meloni FEEC - UNICAMP FEEC - UNICAMP Campinas, Sao˜ Paulo, Brazil, 13083-852 Campinas, Sao˜ Paulo, Brazil, 13083-852 +5519 9308-9952 +5519 9778-1523 [email protected] [email protected] Abstract— This paper presents an implementation of the algorithm has two modes of operation: the rotational mode CORDIC algorithm in digital hardware using two types of (RM) where the vector (xi; yi) is rotated by an angle θ to algebraic adders: Ripple-Carry Adder (RCA) and Carry-Select obtain a new vector (x ; y ), and the vectoring mode (VM) Adder (CSA), both in parallel and pipelined architectures. Anal- N N ysis of time performance and resources utilization was carried in which the algorithm computes the modulus R and phase α out by changing the algorithm number of iterations. These results from the x-axis of the vector (x0; y0). The basic principle of demonstrate the efficiency in operating frequency of the pipelined the algorithm is shown in Figure 1. architecture with respect to the parallel architecture. Also it is shown that the use of CSA reduce the timing processing without significantly increasing the slice use. The code was synthesized us- ing FPGA development tools for the Xilinx Spartan-3E xc3s500e ' ' E N y family. N E N Index Terms— CORDIC, pipelined, parallel, RCA, CSA, y N trigonometrics functions. Rotação Pseudo-rotação R N I. INTRODUCTION E i In Digital Signal Processing with FPGA, trigonometric y i R i functions are used in many signal algorithms, for instance N synchronization and equalization [12].
    [Show full text]
  • Basics of Logic Design Arithmetic Logic Unit (ALU) Today's Lecture
    Basics of Logic Design Arithmetic Logic Unit (ALU) CPS 104 Lecture 9 Today’s Lecture • Homework #3 Assigned Due March 3 • Project Groups assigned & posted to blackboard. • Project Specification is on Web Due April 19 • Building the building blocks… Outline • Review • Digital building blocks • An Arithmetic Logic Unit (ALU) Reading Appendix B, Chapter 3 © Alvin R. Lebeck CPS 104 2 Review: Digital Design • Logic Design, Switching Circuits, Digital Logic Recall: Everything is built from transistors • A transistor is a switch • It is either on or off • On or off can represent True or False Given a bunch of bits (0 or 1)… • Is this instruction a lw or a beq? • What register do I read? • How do I add two numbers? • Need a method to reason about complex expressions © Alvin R. Lebeck CPS 104 3 Review: Boolean Functions • Boolean functions have arguments that take two values ({T,F} or {0,1}) and they return a single or a set of ({T,F} or {0,1}) value(s). • Boolean functions can always be represented by a table called a “Truth Table” • Example: F: {0,1}3 -> {0,1}2 a b c f1f2 0 0 0 0 1 0 0 1 1 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 1 © Alvin R. Lebeck CPS 104 4 Review: Boolean Functions and Expressions F(A, B, C) = (A * B) + (~A * C) ABCF 0000 0011 0100 0111 1000 1010 1101 1111 © Alvin R. Lebeck CPS 104 5 Review: Boolean Gates • Gates are electronics devices that implement simple Boolean functions Examples a a AND(a,b) OR(a,b) a NOT(a) b b a XOR(a,b) a NAND(a,b) b b a NOR(a,b) a XNOR(a,b) b b © Alvin R.
    [Show full text]
  • Implementation of Carry Tree Adders and Compare with RCA and CSLA
    International Journal of Emerging Engineering Research and Technology Volume 4, Issue 1, January 2016, PP 1-11 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Implementation of Carry Tree Adders and Compare with RCA and CSLA 1 2 G. Venkatanaga Kumar , C.H Pushpalatha Department of ECE, GONNA INSTITUTE OF TECHNOLOGY, Vishakhapatnam, India (PG Scholar) Department of ECE, GONNA INSTITUTE OF TECHNOLOGY, Vishakhapatnam, India (Associate Professor) ABSTRACT The binary adder is the critical element in most digital circuit designs including digital signal processors (DSP) and microprocessor data path units. As such, extensive research continues to be focused on improving the power delay performance of the adder. In VLSI implementations, parallel-prefix adders are known to have the best performance. Binary adders are one of the most essential logic elements within a digital system. In addition, binary adders are also helpful in units other than Arithmetic Logic Units (ALU), such as multipliers, dividers and memory addressing. Therefore, binary addition is essential that any improvement in binary addition can result in a performance boost for any computing system and, hence, help improve the performance of the entire system. Parallel-prefix adders (also known as carry-tree adders) are known to have the best performance in VLSI designs. This paper investigates three types of carry-tree adders (the Kogge- Stone, sparse Kogge-Stone, Ladner-Fischer and spanning tree adder) and compares them to the simple Ripple Carry Adder (RCA) and Carry Skip Adder (CSA). In this project Xilinx-ISE tool is used for simulation, logical verification, and further synthesizing. This algorithm is implemented in Xilinx 13.2 version and verified using Spartan 3e kit.
    [Show full text]
  • CS/EE 260 – Homework 5 Solutions Spring 2000
    CS/EE 260 – Homework 5 Solutions Spring 2000 1. (MK 3-23) Construct a 10-to-1 line multiplexer with three 4-to-1 line multiplexers. The multiplexers should be interconnected and inputs labeled so that the selection codes 0000 through 1001 can be directly applied to the multiplexer selections inputs without added logic. 10:1 mux d0 0 1 d1 1 X d9 9 S3S2S1S0 Implementation using 4:1 muxes. d0 0 d2 1 d4 2 d6 3 0 S 1 S2 1 d8 2 X d9 3 d 0 1 S S d3 1 3 0 d5 2 d7 3 S2 S1 1 2. (MK 3-27) Implement a binary full adder with a dual 4-to-1 line multiplexer and a single inverter. AB Ci S Co 00 0 0 0 C 0 00 1 1 i 0 01 0 1 0 C ´ C 01 1 0 i 1 i 10 0 1 0 10 1 0Ci´ 1 Ci 11 0 0 1 C 1 11 1 1 i 1 0 C 1 i 4:1 2 S 3 mux S1 S0 A B 0 0 1 4:1 Co 2 mux 1 3 S1S0 2 3. (MK 3-34) Design a combinational circuit that forms the 2-bit binary sum S1S0 of two 2-bit numbers A1A0 and B1B0 and has both input C0 and a carry output C2. Do not use half adders or full adders, but instead use a two-level circuit plus inverters for the input variables, as needed. Design the circuit by starting with the following equations for each of the two bits of the adder.
    [Show full text]
  • UNIT 8B a Full Adder
    UNIT 8B Computer Organization: Levels of Abstraction 15110 Principles of Computing, 1 Carnegie Mellon University - CORTINA A Full Adder C ABCin Cout S in 0 0 0 A 0 0 1 0 1 0 B 0 1 1 1 0 0 1 0 1 C S out 1 1 0 1 1 1 15110 Principles of Computing, 2 Carnegie Mellon University - CORTINA 1 A Full Adder C ABCin Cout S in 0 0 0 0 0 A 0 0 1 0 1 0 1 0 0 1 B 0 1 1 1 0 1 0 0 0 1 1 0 1 1 0 C S out 1 1 0 1 0 1 1 1 1 1 ⊕ ⊕ S = A B Cin ⊕ ∧ ∨ ∧ Cout = ((A B) C) (A B) 15110 Principles of Computing, 3 Carnegie Mellon University - CORTINA Full Adder (FA) AB 1-bit Cout Full Cin Adder S 15110 Principles of Computing, 4 Carnegie Mellon University - CORTINA 2 Another Full Adder (FA) http://students.cs.tamu.edu/wanglei/csce350/handout/lab6.html AB 1-bit Cout Full Cin Adder S 15110 Principles of Computing, 5 Carnegie Mellon University - CORTINA 8-bit Full Adder A7 B7 A2 B2 A1 B1 A0 B0 1-bit 1-bit 1-bit 1-bit ... Cout Full Full Full Full Cin Adder Adder Adder Adder S7 S2 S1 S0 AB 8 ⁄ ⁄ 8 C 8-bit C out FA in ⁄ 8 S 15110 Principles of Computing, 6 Carnegie Mellon University - CORTINA 3 Multiplexer (MUX) • A multiplexer chooses between a set of inputs. D1 D 2 MUX F D3 D ABF 4 0 0 D1 AB 0 1 D2 1 0 D3 1 1 D4 http://www.cise.ufl.edu/~mssz/CompOrg/CDAintro.html 15110 Principles of Computing, 7 Carnegie Mellon University - CORTINA Arithmetic Logic Unit (ALU) OP 1OP 0 Carry In & OP OP 0 OP 1 F 0 0 A ∧ B 0 1 A ∨ B 1 0 A 1 1 A + B http://cs-alb-pc3.massey.ac.nz/notes/59304/l4.html 15110 Principles of Computing, 8 Carnegie Mellon University - CORTINA 4 Flip Flop • A flip flop is a sequential circuit that is able to maintain (save) a state.
    [Show full text]
  • Design of High Speed and Low Power Six Transistor Full Adder Using Two Transistor Xor Gate
    International Journal of Electronics, Communication & Instrumentation Engineering Research and Development (IJECIERD) ISSN 2249-684X Vol. 3, Issue 1, Mar 2013, 87-96 © TJPRC Pvt. Ltd. DESIGN OF HIGH SPEED AND LOW POWER SIX TRANSISTOR FULL ADDER USING TWO TRANSISTOR XOR GATE B. DILLI KUMAR, K. CHARAN KUMAR & T. NAVEEN KUMAR M. Tech (VLSI), Department of ECE, Sree Vidyanikethan Engineering College (Autonomous), Tirupati, India ABSTRACT Full adder is one of the major components in the design of many sophisticated hardware circuits. In this paper the full adder has been designed by using a new efficient design with less number of transistors. A 2 transistor XOR gate has been proposed with the help of two PMOS (Positive Metal Oxide Semiconductor) transistors. By using this 2T XOR gate the size of the full adder has been decreased to a large extent which can be implemented with only 6 transistors. The proposed full adder has a significant improvement in silicon area and power delay product when compared to the previous 8T full adder circuits. Further the proposed adder requires less area to perform a required logic function. Further, the proposed full adder has less power dissipation which makes it suitable for many of the low power applications and because of less area requirement the proposed design can be used in many of the portable applications also . KEYWORDS: Full Adder, XOR, Less Area, Speed, Low Power, Delay, Less Transistor Count, Low Power VLSI INTRODUCTION Full adder is one of the basic building blocks of many of the digital VLSI circuits. Several refinements has been made regarding its structure since its invention.
    [Show full text]
  • Half Adder, Which Finds the Sum of Two Bits
    CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 21, SPRING 2013 TOPICS TODAY • Circuits for Addition • Standard Logic Components • Logisim Demo CIRCUITS FOR ADDITION 3.5 Combinational Circuits • Combinational logic circuits give us many useful devices. • One of the simplest is the half adder, which finds the sum of two bits. • We can gain some insight as to the construction of a half adder by looking at its truth table, shown at the right. 30 Half Adder • Inputs: A and B • Outputs: S = lower bit of A + B, cout = carry bit A B S cout 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 • Using Sum-of-Products: S = AB + AB, cout = AB. • Alternatively, we could use XOR: S = A ⊕ B. ! ! ! ! 1 3.5 Combinational Circuits • As we see, the sum can be found using the XOR operation and the carry using the AND operation. 31 3.5 Combinational Circuits • We can change our half adder into to a full adder by including gates for processing the carry bit. • The truth table for a full adder is shown at the right. 32 Full Adder • Inputs: A, B and cin • Outputs: S = lower bit of A + B, cout = carry bit A B cin S cout 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 1 1 1 • S = A BC + ABC + AB C + ABC = A ⊕ B ⊕ C.
    [Show full text]
  • Lecture 4 Adders
    Lecture 4 Adders Computer Systems Laboratory Stanford University [email protected] Copyright © 2006 Mark Horowitz Some figures from High-Performance Microprocessor Design © IEEE M Horowitz EE 371 Lecture 4 1 Overview • Readings • Today’s topics – Fast adders generally use a tree structure for parallelism – We will cover basic tree terminology and structures – Look at a few example adder architectures – Examples will spill into next lecture as well M Horowitz EE 371 Lecture 4 2 Adders • Task of an adder is conceptually simple – Sum[n:0]=A[n:0]+B[n:0]+C0 – Subtractors also very simple: -B = ~B+1, so invert B and set C0=1 • Per bit formulas –Sumi = Ai XOR Bi XOR Ci – Couti = Ci+1 = majority(Ai,Bi,Ci) • Fundamental problem is calculating the carry to the nth bit – All carry terms are dependent on all previous terms – So LSB input has a fanout of n • And an absolute minimum of log4n FO4 delays without any logic M Horowitz EE 371 Lecture 4 3 Single-Bit Adders • Adders are chock-full of XORs, which make them interesting – One of the few circuits where pass-gate logic is attractive – A complicated differential passgate logic (DPL) block from the text Lousy way to draw a pair of inverters M Horowitz EE 371 Lecture 4 4 G and P and K, Oh My! • Most fast adders “G”enerate, “P”ropagate, or “K”ill the carry – Usually only G and P are used; K only appears in some carry chains • When does a bit Generate a carry out? –Gi = Ai AND Bi – If Gi is true, then Couti = Ci+1 is forced to be true • When does a bit Propagate a carry in to the carry out? –Pi
    [Show full text]
  • On the Design and Analysis of Quaternary Serial and Parallel Adders
    On the Design and Analysis of Quaternary Serial and Parallel Adders Anindya Das1, Ifat Jahangir2 Masud Hasan Department of Electrical and Electronic Engineering Department of Computer Science and Engineering Bangladesh University of Engineering and Technology Bangladesh University of Engineering and Technology Dhaka, Bangladesh Dhaka, Bangladesh [email protected], [email protected] [email protected] Abstract— Optimization techniques for decreasing the time and the operators and the associated algebra to design different area of adder circuits have been extensively studied for years kinds of adders. We have presented the expressions for half mostly in binary logic system. In this paper, we provide the adder and full adder in quaternary logic system in section IV. necessary equations required to design a full adder in quaternary The expressions for propagate and generate values of each logic system. We develop the equations for single-stage parallel qudit are also presented and a complete design of single-stage adder which works as a carry look-ahead adder. We also provide carry look-ahead adder in quaternary logic is demonstrated. the design of a logarithmic stage parallel adder which can Then we have proposed a design of logarithmic stage carry- compute the carries within log2(n) time delay for n qudits. At last, tree adder which has time delay of log2(n) due to its tree we compare the designs and finally propose a hybrid adder which structure and optimal fan-in. In section V we have discussed combines the advantages of serial and parallel adder. the comparative performance of our proposed adders Keywords- Quaternary fast adder, Logarithmic time adder, thoroughly with respect to different significant criteria at the Sparse adder, Hybrid adder.
    [Show full text]
  • Computer Arithmetic
    Computer Arithmetic MIPS Integer Representation Logical, Integer Addition & Subtraction 32-bit signed integers, e.g., for numeric operations Chapter 3.1-3.3 • 2’s complement: one representationrepresentation for zero, balanced, allows add/subtract to be treated uniformly EEC170 FQ 2005 32-bit unsigned integers, e.g., for address operations • Address considered 32-bit unsigned integer Provides distinct instructions for signed/unsigned: • ADD, ADDI: add signed register, add signed immediate à causes exception on overflow • ADDU, ADDIU: add unsigned register, add unsigned immediate à no exception on overflow OP Rs Rt Rd 0 ADD/U ADDI/U Rs Rt immediate data Layout of a full adder cell 1 2 Comparison Sign Extension Distinct instructions for comparison of Sign of immediate data extended to form 32-bit signed/unsigned integers representation: • Which is larger: 1111...1111 or 0000...0000 ? Depends of type, signed or unsigned 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 Two versions of slt for signed/unsigned: • slt, sltu: set less than signed, unsigned 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 OP Rs Rt Rd 0 SLT/U Thus, ALU always uses 32-bit operands Two versions of immediate comparison also provided: • slti, sltiu: set less than immediate signed, unsigned Extension occurs for signed and unsigned arithmetic SLTI/U Rs Rt immediate data 3 4 Overflow Computer System, Top Level View MIPS has no flag (status) register • complicates pipeline (see Chapter 6) Compiler Overflow (underflow): • Occurs if operands are same sign, result is different sign.
    [Show full text]
  • Adders: Efficient Multiple Input
    EFFICIENT MULTI-INPUT ADDITION (CARRY-SAVE) Building Efficient Multiple-input Adders 1. Figure out: algorithm, format conversion if needed, word alignment, sign extension, rounding, etc. 2. Draw “dot diagram” of inputs (one dot per bit) 3. Cover with carry-save adder blocks as appropriate 4. Repeat step #3 until there are two output terms 5. Calculate final result with CPA (carry-propagate adder) 6. Things to check (as a reminder) – Output width sufficient – Inputs sign extended if necessary – Only calculate necessary output bits © B. Baas 88 3:2 Adder Row • Compresses 3 words (4-bit a, b, c in this example) to two words a b c c s © B. Baas 89 3:2 Adder Row • No “sideways” carry signals to a neighboring 3:2 adder even though it would be correct logically (it would cause a slow ripple) • Having said that, it is ok if limited to a small number of ripples in special cases x c s © B. Baas 90 4:2 Adder Row • Compresses 4 words (4-bit a, b, c, d in this example) to two words a b co c d © B. Baas 91 4:2 Adder Row • Remember ci and co signals on the ends of the row of 4:2 adders co ci © B. Baas 92 Carry-save Adder Building Blocks • Notice that to eliminate or “compress” one dot requires approximately 1 “Full adder of hardware” – A 4:2 adder can be made with two full adders 4:2 (really 5:3) 3:2 or Full adder • 4 dots 2 dots • 3 dots 2 dots (actually 5 dots 3 dots) • Compresses 1 dot • Compresses 2 dots • “1 FA” hardware © B.
    [Show full text]
  • Comparative Study on Transistor Based Full Adder Designs
    Available online at www.worldscientificnews.com WSN 53(3) (2016) 404-416 EISSN 2392-2192 Comparative study on transistor based full adder designs R. Anitha School of Electronics Engineering, VIT University, Vellore, Tamil Nadu, India E-mail address: [email protected] ABSTRACT Recently in the generic systems the load on the processor is much heavy. The ability and the challenging process have ended with larger core operations are in the core processor. This paper is basically given special importance on different methodologies having been proposed for Adder, which is the basic operation of the Arithmetic unit. The wide research on the digital adders has been covered so many applications like designs of ALU, RISC, CISC processors, DSP used for data path arithmetic, low power CMOS, optical computing, Nanotechnology and so on. This paper gives greater knowledge and understanding about the various techniques that have amply used of Adder from the earlier years. In this paper we analyzed the implementation of different types of full Adders implemented using CMOS logic (Static CMOS and Dynamic CMOS), CMOS Transmission Gates, Pass Transistor Gates (CPL and DPL). Keywords: Full Adder; CPL; DPL; CMOS; Transmission gates; Arithmetic Unit 1. INTRODUCTION In the ALU, the most important arithmetic is the Full Adder block. Full adder is the basic unit in almost all computational circuits. Low power techniques applied on Full Adder block can reduce the computational power consumption. Several full adder circuits have been proposed targeting on design accents such as power, delay, speed and area [1]. World Scientific News 53(3) (2016) 404-416 Digital Logic Circuit implementation can be done by using so many various designs Techniques.
    [Show full text]