The Linkedin Hack: Understanding Why It Was So Easy to Crack the Passwords
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Argon and Argon2
Argon and Argon2 Designers: Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich University of Luxembourg, Luxembourg [email protected], [email protected], [email protected] https://www.cryptolux.org/index.php/Password https://github.com/khovratovich/Argon https://github.com/khovratovich/Argon2 Version 1.1 of Argon Version 1.0 of Argon2 31th January, 2015 Contents 1 Introduction 3 2 Argon 5 2.1 Specification . 5 2.1.1 Input . 5 2.1.2 SubGroups . 6 2.1.3 ShuffleSlices . 7 2.2 Recommended parameters . 8 2.3 Security claims . 8 2.4 Features . 9 2.4.1 Main features . 9 2.4.2 Server relief . 10 2.4.3 Client-independent update . 10 2.4.4 Possible future extensions . 10 2.5 Security analysis . 10 2.5.1 Avalanche properties . 10 2.5.2 Invariants . 11 2.5.3 Collision and preimage attacks . 11 2.5.4 Tradeoff attacks . 11 2.6 Design rationale . 14 2.6.1 SubGroups . 14 2.6.2 ShuffleSlices . 16 2.6.3 Permutation ...................................... 16 2.6.4 No weakness,F no patents . 16 2.7 Tweaks . 17 2.8 Efficiency analysis . 17 2.8.1 Modern x86/x64 architecture . 17 2.8.2 Older CPU . 17 2.8.3 Other architectures . 17 3 Argon2 19 3.1 Specification . 19 3.1.1 Inputs . 19 3.1.2 Operation . 20 3.1.3 Indexing . 20 3.1.4 Compression function G ................................. 21 3.2 Features . 22 3.2.1 Available features . 22 3.2.2 Server relief . 23 3.2.3 Client-independent update . -
CASH: a Cost Asymmetric Secure Hash Algorithm for Optimal Password Protection
CASH: A Cost Asymmetric Secure Hash Algorithm for Optimal Password Protection Jeremiah Blocki Anupam Datta Microsoft Research Carnegie Mellon University August 23, 2018 Abstract An adversary who has obtained the cryptographic hash of a user's password can mount an offline attack to crack the password by comparing this hash value with the cryptographic hashes of likely password guesses. This offline attacker is limited only by the resources he is willing to invest to crack the password. Key-stretching techniques like hash iteration and memory hard functions have been proposed to mitigate the threat of offline attacks by making each password guess more expensive for the adversary to verify. However, these techniques also increase costs for a legitimate authentication server. We introduce a novel Stackelberg game model which captures the essential elements of this interaction between a defender and an offline attacker. In the game the defender first commits to a key-stretching mechanism, and the offline attacker responds in a manner that optimizes his utility (expected reward minus expected guessing costs). We then introduce Cost Asymmetric Secure Hash (CASH), a randomized key-stretching mechanism that minimizes the fraction of passwords that would be cracked by a rational offline attacker without increasing amortized authentication costs for the legitimate authentication server. CASH is motivated by the observation that the legitimate authentication server will typically run the authentication procedure to verify a correct password, while an offline adversary will typically use incorrect password guesses. By using randomization we can ensure that the amortized cost of running CASH to verify a correct password guess is significantly smaller than the cost of rejecting an incorrect password. -
Intro to Cryptography 1 Introduction 2 Secure Password Manager
Programming Assignment 1 Winter 2021 CS 255: Intro to Cryptography Prof. Dan Boneh Due Monday, Feb. 8, 11:59pm 1 Introduction In many software systems today, the primary weakness often lies in the user’s password. This is especially apparent in light of recent security breaches that have highlighted some of the weak passwords people commonly use (e.g., 123456 or password). It is very important, then, that users choose strong passwords (or “passphrases”) to secure their accounts, but strong passwords can be long and unwieldy. Even more problematic, the user generally has many different services that use password authentication, and as a result, the user has to recall many different passwords. One way for users to address this problem is to use a password manager, such as LastPass and KeePass. Password managers make it very convenient for users to use a unique, strong password for each service that requires password authentication. However, given the sensitivity of the data contained in the password manager, it takes considerable care to store the information securely. In this assignment, you will be writing a secure and efficient password manager. In your implemen- tation, you will make use of various cryptographic primitives we have discussed in class—notably, authenticated encryption and collision-resistant hash functions. Because it is ill-advised to imple- ment your own primitives in cryptography, you should use an established library: in this case, the Stanford Javascript Crypto Library (SJCL). We will provide starter code that contains a basic tem- plate, which you will be able to fill in to satisfy the functionality and security properties described below. -
User Authentication and Cryptographic Primitives
User Authentication and Cryptographic Primitives Brad Karp UCL Computer Science CS GZ03 / M030 16th November 2016 Outline • Authenticating users – Local users: hashed passwords – Remote users: s/key – Unexpected covert channel: the Tenex password- guessing attack • Symmetric-key-cryptography • Public-key cryptography usage model • RSA algorithm for public-key cryptography – Number theory background – Algorithm definition 2 Dictionary Attack on Hashed Password Databases • Suppose hacker obtains copy of password file (until recently, world-readable on UNIX) • Compute H(x) for 50K common words • String compare resulting hashed words against passwords in file • Learn all users’ passwords that are common English words after only 50K computations of H(x)! • Same hashed dictionary works on all password files in world! 3 Salted Password Hashes • Generate a random string of bytes, r • For user password x, store [H(r,x), r] in password file • Result: same password produces different result on every machine – So must see password file before can hash dictionary – …and single hashed dictionary won’t work for multiple hosts • Modern UNIX: password hashes salted; hashed password database readable only by root 4 Salted Password Hashes • Generate a random string of bytes, r Dictionary• For user password attack still x, store possible [H(r,x after), r] in attacker seespassword password file file! Users• Result: should same pick password passwords produces that different aren’t result close to ondictionary every machine words. – So must see password file -
To Change Your Ud Password(S)
TO CHANGE YOUR UD PASSWORD(S) The MyCampus portal allows the user a single-signon for campus applications. IMPORTANT NOTICE AT BOTTOM OF THESE INSTRUCTIONS !! INITIAL PROCEDURE TO ALLOW YOU TO CHANGE YOUR PASSWORD ON THE UD NETWORK : 1. In your web browser, enter http://mycampus.dbq.edu . If you are logging in for the first time, you will be directed to answer (3) security questions. Also, be sure to answer one of the recovery methods. 2. Once the questions are answered, you will click on SUBMIT and then CONTINUE and then YES. 3. In one location, you will now find MyUD, Campus Portal, Email and UDOnline (Moodle). 4. You can now click on any of these apps and you will be logged in already. The email link will prompt you for the password a second time until we get all accounts set up properly. YOU MUST BE SURE TO LOGOUT OF EACH APPLICATION AFTER YOU’RE DONE USING IT !! TO CHANGE YOUR PASSWORD: 1. After you have logged into the MyCampus.dbq.edu website, you will see your username in the upper- right corner of the screen. 2. Click on your name and then go into My Account. 3. At the bottom, you will click on Change Password and then proceed as directed. 4. You can now logout. You will need to use your new password on your next login. Password must be a minimum of 6 characters and contain 3 of the following 4 categories: - Uppercase character - Lowercase character - Number - Special character You cannot use the previous password You’ll be required to change your password every 180 days. -
Reset Forgotten Password with Office365
RESET FORGOTTEN PASSWORD 1. Go to https://login.microsoftonline.com 2. Click the link “Can’t access your account?” 3. Select Work or School account 4. Enter in your User ID with the @uamont.edu at the end and then enter the characters as seen in the picture. You can click the refresh button for a different set of letters. 5. You will have 3 options to verify your account and reset your password. This information was set up when you registered with self-service password reset. If you have not registered, please go to https://aka.ms/ssprsetup and enter in your information. A step by step guide on how to do this can be found here. a. Text your mobile phone b. Call your mobile phone c. Answer Security Questions 6. Choose one option and enter the information requested 7. Click Text for text my mobile phone, Call for call my mobile phone, or click Next when you’ve answered all security questions. a. If you have selected Text my mobile phone you will be required to enter in a verification code and click Next b. If you have select Call my mobile phone you will receive a call and will need to enter # to verify. 8. Enter in your new password and click Finish a. Note: If you receive the message, “Unfortunately, your password contains a word, phrase, or pattern that makes it easily guessable. Please try again with a different password.” Please try to create a password that does not use any dictionary words. b. Passwords must meet 3 of the 4 following requirements i. -
Optimizing a Password Hashing Function with Hardware-Accelerated Symmetric Encryption
S S symmetry Article Optimizing a Password Hashing Function with Hardware-Accelerated Symmetric Encryption Rafael Álvarez 1,* , Alicia Andrade 2 and Antonio Zamora 3 1 Departamento de Ciencia de la Computación e Inteligencia Artificial (DCCIA), Universidad de Alicante, 03690 Alicante, Spain 2 Fac. Ingeniería, Ciencias Físicas y Matemática, Universidad Central, Quito 170129, Ecuador; [email protected] 3 Departamento de Ciencia de la Computación e Inteligencia Artificial (DCCIA), Universidad de Alicante, 03690 Alicante, Spain; [email protected] * Correspondence: [email protected] Received: 2 November 2018; Accepted: 22 November 2018; Published: 3 December 2018 Abstract: Password-based key derivation functions (PBKDFs) are commonly used to transform user passwords into keys for symmetric encryption, as well as for user authentication, password hashing, and preventing attacks based on custom hardware. We propose two optimized alternatives that enhance the performance of a previously published PBKDF. This design is based on (1) employing a symmetric cipher, the Advanced Encryption Standard (AES), as a pseudo-random generator and (2) taking advantage of the support for the hardware acceleration for AES that is available on many common platforms in order to mitigate common attacks to password-based user authentication systems. We also analyze their security characteristics, establishing that they are equivalent to the security of the core primitive (AES), and we compare their performance with well-known PBKDF algorithms, such as Scrypt and Argon2, with favorable results. Keywords: symmetric; encryption; password; hash; cryptography; PBKDF 1. Introduction Key derivation functions are employed to obtain one or more keys from a master secret. This is especially useful in the case of user passwords, which can be of arbitrary length and are unsuitable to be used directly as fixed-size cipher keys, so, there must be a process for converting passwords into secret keys. -
Rifflescrambler – a Memory-Hard Password Storing Function ⋆
RiffleScrambler – a memory-hard password storing function ? Karol Gotfryd1, Paweł Lorek2, and Filip Zagórski1;3 1 Wrocław University of Science and Technology Faculty of Fundamental Problems of Technology Department of Computer Science 2 Wrocław University Faculty of Mathematics and Computer Science Mathematical Institute 3 Oktawave Abstract. We introduce RiffleScrambler: a new family of directed acyclic graphs and a corresponding data-independent memory hard function with password independent memory access. We prove its memory hard- ness in the random oracle model. RiffleScrambler is similar to Catena – updates of hashes are determined by a graph (bit-reversal or double-butterfly graph in Catena). The ad- vantage of the RiffleScrambler over Catena is that the underlying graphs are not predefined but are generated per salt, as in Balloon Hashing. Such an approach leads to higher immunity against practical parallel at- tacks. RiffleScrambler offers better efficiency than Balloon Hashing since the in-degree of the underlying graph is equal to 3 (and is much smaller than in Ballon Hashing). At the same time, because the underlying graph is an instance of a Superconcentrator, our construction achieves the same time-memory trade-offs. Keywords: Memory hardness, password storing, Markov chains, mixing time. 1 Introduction In early days of computers’ era passwords were stored in plaintext in the form of pairs (user; password). Back in 1960s it was observed, that it is not secure. It took around a decade to incorporate a more secure way of storing users’ passwords – via a DES-based function crypt, as (user; fk(password)) for a se- cret key k or as (user; f(password)) for a one-way function. -
Strong Password-Based Authentication in TLS Using the Three-Party Group Diffie–Hellman Protocol
284 Int. J. Security and Networks, Vol. 2, Nos. 3/4, 2007 Strong password-based authentication in TLS using the three-party group Diffie–Hellman protocol Michel Abdalla* École normale supérieure – CNRS, LIENS, Paris, France E-mail: [email protected] *Corresponding author Emmanuel Bresson Department of Cryptology, CELAR Technology Center, Bruz, France E-mail: [email protected] Olivier Chevassut Lawrence Berkeley National Laboratory, Berkeley, CA, USA E-mail: [email protected] Bodo Möller Horst Görtz Institute for IT Security, Ruhr-Universität Bochum, Bochum, Germany E-mail: [email protected] David Pointcheval École normale supérieure – CNRS, LIENS, Paris, France E-mail: [email protected] Abstract: The internet has evolved into a very hostile ecosystem where ‘phishing’ attacks are common practice. This paper shows that the three-party group Diffie-Hellman key exchange can help protect against these attacks. We have developed password-based ciphersuites for the Transport Layer Security (TLS) protocol that are not only provably secure but also believed to be free from patent and licensing restrictions based on an analysis of relevant patents in the area. Keywords: password authentication; group Diffie–Hellman key exchange; transport layer security; TLS. Reference to this paper should be made as follows: Abdalla, M., Bresson, E., Chevassut, O., Möller, B. and Pointcheval, D. (2007) ‘Strong password-based authentication in TLS using the three-party group Diffie-Hellman protocol’, Int. J. Security and Networks, Vol. 2, Nos. 3/4, pp.284–296. Biographical notes: Michel Abdalla is currently a Researcher with the Centre National de la Recherche Scientifique (CNRS), France and a Member of the Cryptography Team at the Ecole Normale Supérieure (ENS), France. -
Hash Functions
11 Hash Functions Suppose you share a huge le with a friend, but you are not sure whether you both have the same version of the le. You could send your version of the le to your friend and they could compare to their version. Is there any way to check that involves less communication than this? Let’s call your version of the le x (a string) and your friend’s version y. The goal is to determine whether x = y. A natural approach is to agree on some deterministic function H, compute H¹xº, and send it to your friend. Your friend can compute H¹yº and, since H is deterministic, compare the result to your H¹xº. In order for this method to be fool-proof, we need H to have the property that dierent inputs always map to dierent outputs — in other words, H must be injective (1-to-1). Unfortunately, if H is injective and H : f0; 1gin ! f0; 1gout is injective, then out > in. This means that sending H¹xº is no better/shorter than sending x itself! Let us call a pair ¹x;yº a collision in H if x , y and H¹xº = H¹yº. An injective function has no collisions. One common theme in cryptography is that you don’t always need something to be impossible; it’s often enough for that thing to be just highly unlikely. Instead of saying that H should have no collisions, what if we just say that collisions should be hard (for polynomial-time algorithms) to nd? An H with this property will probably be good enough for anything we care about. -
Cs 255 (Introduction to Cryptography)
CS 255 (INTRODUCTION TO CRYPTOGRAPHY) DAVID WU Abstract. Notes taken in Professor Boneh’s Introduction to Cryptography course (CS 255) in Winter, 2012. There may be errors! Be warned! Contents 1. 1/11: Introduction and Stream Ciphers 2 1.1. Introduction 2 1.2. History of Cryptography 3 1.3. Stream Ciphers 4 1.4. Pseudorandom Generators (PRGs) 5 1.5. Attacks on Stream Ciphers and OTP 6 1.6. Stream Ciphers in Practice 6 2. 1/18: PRGs and Semantic Security 7 2.1. Secure PRGs 7 2.2. Semantic Security 8 2.3. Generating Random Bits in Practice 9 2.4. Block Ciphers 9 3. 1/23: Block Ciphers 9 3.1. Pseudorandom Functions (PRF) 9 3.2. Data Encryption Standard (DES) 10 3.3. Advanced Encryption Standard (AES) 12 3.4. Exhaustive Search Attacks 12 3.5. More Attacks on Block Ciphers 13 3.6. Block Cipher Modes of Operation 13 4. 1/25: Message Integrity 15 4.1. Message Integrity 15 5. 1/27: Proofs in Cryptography 17 5.1. Time/Space Tradeoff 17 5.2. Proofs in Cryptography 17 6. 1/30: MAC Functions 18 6.1. Message Integrity 18 6.2. MAC Padding 18 6.3. Parallel MAC (PMAC) 19 6.4. One-time MAC 20 6.5. Collision Resistance 21 7. 2/1: Collision Resistance 21 7.1. Collision Resistant Hash Functions 21 7.2. Construction of Collision Resistant Hash Functions 22 7.3. Provably Secure Compression Functions 23 8. 2/6: HMAC And Timing Attacks 23 8.1. HMAC 23 8.2. -
Password Cracking
Password Cracking Sam Martin and Mark Tokutomi 1 Introduction Passwords are a system designed to provide authentication. There are many different ways to authenticate users of a system: a user can present a physical object like a key card, prove identity using a personal characteristic like a fingerprint, or use something that only the user knows. In contrast to the other approaches listed, a primary benefit of using authentication through a pass- word is that in the event that your password becomes compromised it can be easily changed. This paper will discuss what password cracking is, techniques for password cracking when an attacker has the ability to attempt to log in to the system using a user name and password pair, techniques for when an attacker has access to however passwords are stored on the system, attacks involve observing password entry in some way and finally how graphical passwords and graphical password cracks work. Figure 1: The flow of password attacking possibilities. Figure 1 shows some scenarios attempts at password cracking can occur. The attacker can gain access to a machine through physical or remote access. The user could attempt to try each possible password or likely password (a form of dictionary attack). If the attack can gain access to hashes of the passwords it is possible to use software like OphCrack which utilizes Rainbow Tables to crack passwords[1]. A spammer may use dictionary attacks to gain access to bank accounts or other 1 web services as well. Wireless protocols are vulnerable to some password cracking techniques when packet sniffers are able to gain initialization packets.