Química (2016) 27, 240---248
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geoffrey Wilkinson
THE LONG SEARCH FOR STABLE TRANSITION METAL ALKYLS Nobel Lecture, December 11, 1973 by G EOFFREY W ILKINSON Imperial College of Science & Technology, London, England Chemical compounds in which there is a single bond between a saturated car- bon atom and a transition metal atom are of unusual importance. Quite aside from the significance and role in Nature of the cobalt to carbon bonds in the vitamin B 12 system and possible metal to carbon bonds in other biological systems, we need only consider that during the time taken to deliver this lec- ture, many thousands, if not tens of thousands of tons of chemical compounds are being transformed or synthesised industrially in processes which at some stage involve a transition metal to carbon bond. The nonchemist will pro- bably be most familiar with polyethylene or polypropylene in the form of do- mestic utensils, packaging materials, children’s toys and so on. These materials are made by Ziegler-Natta* or Philipps’ catalysis using titanium and chro- mium respectively. However, transition metal compounds are used as catalysts in the synthesis of synthetic rubbers and other polymers, and of a variety of simple compounds used as industrial solvents or intermediates. For example alcohols are made from olefins, carbon monoxide and hydrogen by use of cobalt or rhodium catalysts, acetic acid is made by carbonylation of methanol using rhodium catalysts and acrylonitrile is dimerised to adiponitrile (for nylon) by nickel catalysts. We should also not forget that the huge quantities of petroleum hydrocarbons processed by the oil and petrochemical industry are re-formed over platinum, platinum-rhenium or platinum-germanium sup- ported on alumina. -
Oct. 14, 1958 J. M. CARTER ET AL 2,856,263 PROCESS for the RECOVERY and PURIFICATION of URANIUM DEPOSITS Original Filed April 21, 1944 ‘7 Sheets-Sheet 1
Oct. 14, 1958 J. M. CARTER ET AL 2,856,263 PROCESS FOR THE RECOVERY AND PURIFICATION OF URANIUM DEPOSITS Original Filed April 21, 1944 ‘7 Sheets-Sheet 1 IN VEN TORS James M Car/‘er Mar?n D. ?ame/7 BY ATTORNEY Oct. 14, 1958 J. M. CARTER ET AL 2,856,263 PROCESS FOR THE RECOVERY AND PURIFICATION OF URANIUM DEPOSITS Original Filed April 21, 1944 7 Sheets-Sheet 55 QQOUMM,vRMmG w.9386mmE IN VEN TORS James M. Car fer By Marfin 0 Home/7 W4 W ATTORNEY Oct. 14,1958 J. M. CARTER ET AL 2,856,263 PROCESS FOR THE RECOVERY AND PURIFICATION _ OF URANIUM DEPOSITS Origlnal Filed April 21, 1944 7 Sheets-Sheet 4 SCRUBBYING. AND WASHING PARTS OF CALUTRON ' WITH HOT WATER Lf- WASH WATER :FCONDENSATE ' \WATERANDMAKE UP snevmc SOL/D IMPUR/ TIES — WASH WA TER -—p>- CONDENSING To DISCARD I OXIDIZING ORSALVAGE SOLUTION U02” Cu?! Few’! Cr!!! Ni“ FILTERING‘ - '3 PREC/P/TATE 0* |——‘———/ F/LTRA TE _ U024!- TO DISCARD __ EVAPORATING gel”,++ OR SALVAGE PRECIPITATING Z/VH OH AND F'LTER'NG gFlLTRA TE TO FURTHER T REATMENT Fig. 4 I INVENTORS ‘James M Cor fer, BY Mar/7'0 D. Kama/7 ' @ M A TTORNEY Oct. 14,1958 J. M. CARTER ET AL . 2,356,263 PROCESS FOR THE RECOVERY AND PURIFICATION 0F URANIUM DEPOSITS Original Filed April 21, 1944 7 Sheets-Sheet s DISSOLVING URANIUM METAL DEPOSITED ON COPPER COLLECTOR IN COLD HNo3 (8N) CONDENSATE I AND MAKE UP SOLUTION HNO3 U02" ' Cu ** 7—>— CONDENSING ' HN03 . EVAPORATI NG CONCENTRA TED \ soburj'o/v _ F/LTRA TE C35 cu {NHJLF H PRECIPITATING ‘ -[—-~’—NH4OH A ND F ILTERING ' f/RECIP/ TA TES *Cu/‘OHZH4 :0 01 ORTO SALVAGEDISCARD *Trace T__>_ DISSOLVING HN 0 3 ' - SOLUTION U02 +4 *cuvf *Tme F/LTRA TE PRECIPITATING _l—_'_NH OH AND FILTERING 4 { PREClP/TATE NH U 0 TO DISCARD ( ‘)2 2 ’ OR SALVAGE , r---‘“—? TO FURTHER TREATMENT 5 I N V EN TORS' James M Car/‘er ' Mar/"in D. -
ORGANOMETAT,T,TC CHEMISTRY of URANIUM a Thesis Submitted By
ORGANOMETAT,T,TC CHEMISTRY OF URANIUM A thesis submitted by R1TN R. SIGURDSON, B.Sc. for the DEGREE of DOCTOR of PHILOSOPHY of the UNIVERSITY of LONDON Royal College of Science Imperial College of Science and Technology London, SW7 ?AY August 1976 TO MY PARENTS 3 ACKNOWLEDGEMENTS I would like to express my gratitude to Professor Geoffrey Wilkinson, F.R.S. for his guidance and enthusiastic support throughout the course of this work. Many thanks are also extended to Drs. Dick Andersen, Ernesto Carmona-Guzman and David Cole-Hamilton for their suggestionS, encouragement and advice, and to Dr. Kostas Mertis for his patient help during the first months. I am indebted to the Canadian Research Council of Canada for financial support during the past three years. 4 CONTENTS ABSTRACT 6 INTRODUCTION I. The Chemistry of Uranium(IV) 8 .II. The Chemistry of Uranium(V) 15 III. The Chemistry of Uranium(VI) 16 CHAPTER I. DILITHIUMHEXAALKYLURANATE(IV) COMPLEXES I. Introduction 19 II. Results and Discussion 27 III. Experimental 35 CHAPTER II. TRILITHIUMOCTAALKYLURANATE(V) COMPLEXES I. Introduction 54 II. Results and Discussion 55 III. Experimental 60 CHAPTER III. ADDITION COMPOUNDS OF URANIUM(VI) HEXAISO-PROPDXIDE WITH LITHIUM, MAGNESIUM AND ALUMINIUM ALKYLS I. Introduction 70 II. Results and Discussion 71 III. Experimental 77 CHAPTER IV. ORGANOMETALLIC CHEMISTRY OF ADAMANTANE I. Introduction 84 II. Results and Discussion 85 III. Experimental 87 REFERENCES 92 5 ABBREVIATIONS Me - methyl Et - ethyl Prn- normal-propyl Pri- iso-propyl Bun- normal-butyl But- iso-butyl But- tertiary-butyl Ph - phenyl CP cyclopentadienyl DME - dimethoxyethane tmed - N,N,NI,N'-tetramethylethylenediamine pmdt - N,N,Nt,N",N"-pentamethyldiethylenetriamine g.l.c. -
Streamlining Alloy Design and Thermo-Mechanical Processing Parameters for High Strength Line Pipe Steels and Hot Rolled Microall
University of Texas at El Paso DigitalCommons@UTEP Open Access Theses & Dissertations 2018-01-01 Streamlining Alloy Design And Thermo- Mechanical Processing Parameters For High Strength Line Pipe Steels And Hot Rolled Microalloyed Steels: Process - Structure - Property Paradigm Venkata Vignesh Natarajan University of Texas at El Paso, [email protected] Follow this and additional works at: https://digitalcommons.utep.edu/open_etd Part of the Materials Science and Engineering Commons, and the Mechanics of Materials Commons Recommended Citation Natarajan, Venkata Vignesh, "Streamlining Alloy Design And Thermo-Mechanical Processing Parameters For High Strength Line Pipe Steels And Hot Rolled Microalloyed Steels: Process - Structure - Property Paradigm" (2018). Open Access Theses & Dissertations. 129. https://digitalcommons.utep.edu/open_etd/129 This is brought to you for free and open access by DigitalCommons@UTEP. It has been accepted for inclusion in Open Access Theses & Dissertations by an authorized administrator of DigitalCommons@UTEP. For more information, please contact [email protected]. STREAMLINING ALLOY DESIGN AND THERMO-MECHANICAL PROCESSING PARAMETERS FOR HIGH STRENGTH LINE PIPE STEELS AND HOT ROLLED MICROALLOYED STEELS: PROCESS – STRUCTURE – PROPERTY PARADIGM VENKATA VIGNESH NATARAJAN Doctoral Program in Materials Science and Engineering APPROVED: Devesh Misra, Ph.D., Chair Srinivasa Rao Singamaneni, Ph.D. Guikuan Yue, Ph.D. Charles Ambler, Ph.D. Dean of the Graduate School Copyright © by Venkata Vignesh Natarajan 2018 DEDICATION -
1214 Final Report SF 10 03 06-CS
AN ASSESSMENT OF SOURCES, PATHWAYS, MECHANISMS AND RISKS OF CURRENT AND POTENTIAL FUTURE POLLUTION OF WATER AND SEDIMENTS IN GOLD-MINING AREAS OF THE WONDERFONTEINSPRUIT CATCHMENT Report to the WATER RESEARCH COMMISSION Compiled by Henk Coetzee Council for Geosience Reference to the whole of the publication should read: Coetzee, H. (compiler) 2004: An assessment of sources, pathways, mechanisms and risks of current and potential future pollution of water and sediments in gold-mining areas of the Wonderfonteinspruit catchment WRC Report No 1214/1/06, Pretoria, 266 pp. Reference to chapters/sections within the publication should read (example): Wade, P., Winde, F., Coetzee, H. (2004): Risk assessment. In: Coetzee, H (compiler): An assessment of sources, pathways, mechanisms and risks of current and potential future pollution of water and sediments in gold-mining areas of the Wonderfonteinspruit catchment. WRC Report No 1214/1/06, pp 119-165 WRC Report No 1214/1/06 ISBN No 1-77005-419-7 MARCH 2006 Executive summary 1. Introduction and historical background The eastern catchment of the Mooi River, also known as the Wonderfonteinspruit, has been identified in a number of studies as the site of significant radioactive and other pollution, generally attributed to the mining and processing of uraniferous gold ores in the area. With the establishment of West Rand Consolidated in 1887 gold mining reached the Wonderfonteinspruit catchment only one year after the discovery of gold on the Witwatersrand. By 1895 five more gold mines had started operations in the (non-dolomitic) headwater region of the Wonderfonteinspruit as the westernmost part of the West Rand goldfield. -
Symposium Commemorating the 150Th Anniversary of the Gesellschaft Deutscher Chemiker
Symposium Commemorating the 150th Anniversary of the Gesellschaft Deutscher Chemiker 25 October 2017 London, UK Welcome Address It is our great pleasure to welcome you to this symposium When we celebrate the contribution of the GDCh and celebrating the 150th Anniversary of the Gesellschaft Deutscher RSC, we celebrate the contribution of chemistry and its Chemiker (GDCh, the German Chemical Society) and its transformative power in tackling many of the global challenges longstanding relationship with the Royal Society of Chemistry we face today. In the second part of our programme, it is our (RSC), which celebrated its 175th Anniversary in 2016. pleasure to have speakers from Germany and the UK discuss four of these vitally important challenges (food, water, energy The GDCh brings together people working in chemistry and and sustainability). We very much look forward to hearing the molecular sciences and supports their striving for positive, from our expert speakers on how chemistry can play its part sustainable scientific advance – for the good of humankind in helping deliver solutions to these issues. and the environment, and a future worth living for. With this goal in mind, it promotes chemistry in education, research This is followed by a very special presentation. The Alexander and application, and seeks to deepen the understanding and Todd - Hans Krebs Lectureship in Chemical Sciences is a knowledge of the general public about chemistry and its reciprocal lectureship awarded alternately by the Gesellschaft relevance to the world they live in. The many facets of the Deutscher Chemiker and the Royal Society of Chemistry, GDCh’s promotion of chemistry find expression in the initiation for advances in chemistry made by a scientist while working and support of a number of projects and in the publication of and residing in Germany or the UK, respectively. -
Portraits from Our Past
M1634 History & Heritage 2016.indd 1 15/07/2016 10:32 Medics, Mechanics and Manchester Charting the history of the University Joseph Jordan’s Pine Street Marsden Street Manchester Mechanics’ School of Anatomy Medical School Medical School Institution (1814) (1824) (1829) (1824) Royal School of Chatham Street Owens Medicine and Surgery Medical School College (1836) (1850) (1851) Victoria University (1880) Victoria University of Manchester Technical School Manchester (1883) (1903) Manchester Municipal College of Technology (1918) Manchester College of Science and Technology (1956) University of Manchester Institute of Science and Technology (1966) e University of Manchester (2004) M1634 History & Heritage 2016.indd 2 15/07/2016 10:32 Contents Roots of the University 2 The University of Manchester coat of arms 8 Historic buildings of the University 10 Manchester pioneers 24 Nobel laureates 30 About University History and Heritage 34 History and heritage map 36 The city of Manchester helped shape the modern world. For over two centuries, industry, business and science have been central to its development. The University of Manchester, from its origins in workers’ education, medical schools and Owens College, has been a major part of that history. he University was the first and most Original plans for eminent of the civic universities, the Christie Library T furthering the frontiers of knowledge but included a bridge also contributing to the well-being of its region. linking it to the The many Nobel Prize winners in the sciences and John Owens Building. economics who have worked or studied here are complemented by outstanding achievements in the arts, social sciences, medicine, engineering, computing and radio astronomy. -
Historical Group
Historical Group NEWSLETTER and SUMMARY OF PAPERS No. 78 Summer 2020 Registered Charity No. 207890 COMMITTEE Chairman: Dr Peter J T Morris ! Dr Christopher J Cooksey (Watford, 5 Helford Way, Upminster, Essex RM14 1RJ ! Hertfordshire) [e-mail: [email protected]] !Prof Alan T Dronsfield (Swanwick) Secretary: Prof. John W Nicholson ! Dr John A Hudson (Cockermouth) 52 Buckingham Road, Hampton, Middlesex, !Prof Frank James (University College) TW12 3JG [e-mail: [email protected]] !Dr Michael Jewess (Harwell, Oxon) Membership Prof Bill P Griffith ! Dr Fred Parrett (Bromley, London) Secretary: Department of Chemistry, Imperial College, ! Prof Henry Rzepa (Imperial College) London, SW7 2AZ [e-mail: [email protected]] Treasurer: Prof Richard Buscall, Exeter, Devon [e-mail: [email protected]] Newsletter Dr Anna Simmons Editor Epsom Lodge, La Grande Route de St Jean, St John, Jersey, JE3 4FL [e-mail: [email protected]] Newsletter Dr Gerry P Moss Production: School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS [e-mail: [email protected]] https://www.qmul.ac.uk/sbcs/rschg/ http://www.rsc.org/historical/ 1 RSC Historical Group Newsletter No. 78 Summer 2020 Contents From the Editor (Anna Simmons) 2 ROYAL SOCIETY OF CHEMISTRY HISTORICAL GROUP NEWS 3 Letter from the Chair (Peter Morris) 3 New “Lockdown” Webinar Series (Peter Morris) 3 RSC 2020 Award for Exceptional Service 3 OBITUARIES 4 Noel G. Coley (1927-2020) (Peter Morris, Jack Betteridge, John Hudson, Anna Simons) 4 Kenneth Schofield (1921-2019), FRSC (W. H. Brock) 5 MEMBERS’ PUBLICATIONS 5 Special Issue of Ambix August 2020 5 PUBLICATIONS OF INTEREST 7 SOCIETY NEWS 8 OTHER NEWS 9 Giessen Celebrates (?) the Centenary of the Liebig Museum (W. -
Manchester University and the City: Aspects of Policy-Making in Higher Education, 1900-1930
Manchester University and the City: Aspects of Policy-Making in Higher Education, 1900-1930 COLIN LEES AND ALEX ROBERTSON School of Education, University of Manchester It is generally agreed that the most characteristic aspect of the new 'civic' university colleges of the second half of the nineteenth century was involvement in the life of their community. 1 There can have been no better example of this than Owens College, the first of the civics in 1851. Until the re-foundation of 1871 the trustees were closely involved in the political, commercial and industrial life of the city and, by John Owens's will, they were required to live within a fifty-mile radius. Also by a clause of the will students were to be recruited as far as possible from the parliamentary borough. The first generation of professors, including the unworldly first principal, Alexander Scott, were acutely aware of the necessity of acknowledging the expectations and needs of those social groups without which the college would not survive, and the Science Faculty, in particular, spearheaded by Henry Roscoe, engaged in local consultancy work and shaped courses to local needs.2 More dramatically, for many years the college absorbed or co-operated with local institutions. In the early years the Lancashire Independent College sent its theological students to the Classics Department and evening work for elementary school teachers formed the basis, almost from the beginning, of the remarkable evening classes which gave access to higher education to Mancunians from many walks of life until the end of the century. In 1861 the Working Man's College merged after three years of 1 S. -
Conceptualizing Energy
EHIND B TH Y E Conceptualizing Energy R S O C T I Conservation of Mechanical Energy E S N E C E H and the Introduction of Potential Energy T William Thomson Most students who have taken high school chemistry or century, many French engineers had realized that the total physics know the First Law of Thermodynamics: “Energy work a moving body could perform was equal to half of its can neither be created nor destroyed.” But at the vis viva.These engineers redefined “work” as ½ mv2 . beginning of the nineteenth century, physicists had not yet formulated this fundamental law of nature. Moreover, at One of the most important French engineers of the early this time the term “energy” did not have a precise scientific nineteenth century was a man named Sadi Carnot (1796- definition, and most physicists thought matter and force 1832). As a young man, Carnot watched his home country were the only concepts needed to understand the natural lose the Napoleonic Wars to England. He was convinced world. that England's military superiority was due entirely to its industrial superiority, in particular its steam engines. The idea that mechanical energy is conserved and the Carnot became interested in how France could improve its introduction of potential energy transformed the study of own steam engines, and began thinking about the physics energy into one of the most important and exciting areas of behind the way engines worked. nineteenth-century physics. But assigning credit for developing these principles is difficult. The great Scottish ! physicist William Thomson (1824-1907) is generally given Science and technology are not the same, but credit for stating the first law, but to do so he drew on the they do significantly impact one another. -
J. R. Partington (1886-1965): Physical Chemistry in Deed and Word
Bull. Hist. Chem., VOLUME 34, Number 1 (2009) 11 J. R. PARTINGTON (1886-1965): PHYSICAL CHEMISTRY IN DEED AND WORD William H. Brock, University of Leicester, UK Introduction Scottish tailor. While he was still quite young his parents moved to the seaside town of Southport, to the north of Today James Riddick Partington (1886-1965) is remem- Liverpool, allowing Partington the benefit of education bered as an historian of chemistry rather than as the at the Victoria Science and Art School that had opened significant British research chemist and textbook writer in 1887 (1). Here his prowess as a mathematician and he was perceived to be in the 1920s and 1930s. Because practical chemist must have been forged. He left school his textbooks were specifically geared to the British in 1901 when he was 15 because his parents moved back secondary school and university systems, he is prob- to Bolton. There he began to assist the town’s Public ably not well known in the United States as a textbook Analyst, a post that must have involved the acquirement writer. Nor, in America or in Europe, is he remembered of the skills in volumetric and gravimetric analysis that as a practicing physical chemist who made contributions were a hallmark of his later work. After a couple of years, to thermodynamics, the determination of specific heats, and still in local government employment, he became a and to electrochemical theory. So, for example, he is not laboratory assistant in the town’s Pupil Teachers Train- mentioned in Keith Laidler’s World of Physical Chemis- ing College before finally becoming a clerk in Bolton’s try (1993). -
Marx and Engels and the Red Chemist
Marx and Engels and the Red Chemist climateandcapitalism.com /2017/03/21/marx-and-engels-and-the-red-chemist/ Posted on March 21, 2017 Most accounts of Marx and Engels’s lives ignore Carl Schorlemmer’s influence on their studies of the natural sciences. It is time to acknowledge his rightful place in the socialist tradition. First published in Monthly Review, March 2017 Carl Schorlemmer, 1834-1892 “One basis for life and another for science is, a priori, a lie.”—Karl Marx by Ian Angus In the closing decades of the twentieth century, a peculiar idea took hold in parts of academia. It contended that far from being the closest of comrades and collaborators, who worked in harmony for forty years, Karl Marx and Frederick Engels in fact disagreed with each other on fundamental questions of theory and practice. Their supposed disagreements concerned nature and the natural sciences. For example, Paul Thomas contrasts “Engels’s well-known interest in the natural science” with “Marx’s lack of concern,” suggesting that “Marx and Engels are separated by a conceptual chasm that should have resisted all attempts at papering it over.”[1] Terrence Ball likewise argues that “the idea (later espoused by Engels) that nature exists independently of, and prior to, man’s efforts to transform it is utterly foreign to Marx’s humanism.”[2] In Ball’s view, Engels’s distortions of Marxist philosophy were directly responsible for “some of the more repressive features of Soviet practice.”[3] In a still more extreme version, Terrell Carver and others insist that Marx was not a Marxist—that Marxism was a doctrine invented by Engels, whose scientific materialism was contrary to Marx’s liberal humanism.