Some Results on Generalized Multiplicative Perfect Numbers

Total Page:16

File Type:pdf, Size:1020Kb

Some Results on Generalized Multiplicative Perfect Numbers Some Results on Generalized Multiplicative Perfect Numbers Alexandre Laugier Lyc´eeprofessionnel Tristan Corbi`ere 16 rue de Kerveguen - BP 17149 29671 Morlaix cedex France [email protected] Manjil P. Saikia1 Fakult¨atf¨urMathematik Universit¨atWien Oskar-Morgenstern-Platz 1 1090 Wien Austria [email protected] Abstract In this article, we define k-multiplicatively e-perfect numbers and k-multiplicatively e-superperfect numbers and prove some results on them. We also characterize the k- ∗ T0T -perfect numbers defined by Das and Saikia (2013). 1 Introduction A natural number n is said to be perfect (A000396) if the sum of all aliqout divisors of n is equal to n. Or equivalently, σ(n) = 2n, where σ(k) is the sum of the divisors of k. It is a well known result of Euler-Euclid that the form of even perfect numbers is n = 2kp, where p = 2k+1 − 1 is a Mersenne prime and k ≥ 1. Till date, no odd perfect number is known, and it is believed that none exists. Moreover n is said to be super-perfect if σ(σ(n)) = 2n. It was proved by Suryanarayana-Kanold [3,7] that the general form of such super-perfect numbers are n = 2k, where 2k+1 − 1 is a prime and k ≥ 1. No odd super-perfect numbers are known till date. Unless, otherwise mentioned all n considered in this paper will be a natural number. We also denote by 1; n , the set f1; 2; : : : ; ng. J K 1Corresponding author 1 Let T (n) denote the product of all the divisors of n.A multiplicatively perfect (A007422) number is a number n such that T (n) = n2 and n is called a multiplicatively super-perfect if T (T (n)) = n2. S´andor [4] characterized such numbers and also numbers called k-multiplicatively perfect numbers, which are numbers n, such that T (n) = nk for k ≥ 2. In this article we shall give some results on other classes of perfect numbers defined by various authors. For a general introduction to such numbers, we refer the readers to the article [2], which contains various references to the existing literature. 2 k-multiplicatively e-perfect numbers S´andor[5] studied the multiplicatively e-perfect numbers defined in the previous section. If a1 ar n = p1 ··· pr is the prime factorization of n > 1, a divisor d of n is called an exponential b1 br divisor (or, e-divisor for short) if d = p1 ··· pr with bi j ai for i = 1; : : : ; r. This notion is due to Straus and Subbarao [6]. Let σe(n) denote the sum of e-divisors of n, then Straus and Subbarao define n as exponentially perfect (or, e-perfect for short) (A054979) if σe(n) = 2n. They proved that there are no odd e-perfect numbers, and for each r, such numbers with r prime factors are finite. We refer the reader to the article [5] for some historical comments and results related to such e-perfect numbers. Let Te(n) denote the product of all the e-divisors of n. Then n is called multiplicatively 2 2 e-perfect if Te(n) = n and multiplicatively e-superperfect if Te(Te(n)) = n . The main result of S´andor[5] is the following. Theorem 1 (S´andor,[5] Theorem 2.1). n is multiplicatively e-perfect if and only if n = pa, where p is a prime and a is an ordinary perfect number. n is multiplicatively e-superperfect if and only if n = pa, where p is a prime and a is an ordinary superperfect number, that is σ(σ(a)) = 2a. Inspired by the work of others in introducing generalized multiplicative perfect numbers, we now introduce the following two classes of numbers. k Definition 2. A natural number n is called k-multiplicatively e-perfect if Te(n) = n , where k ≥ 2. Definition 3. A natural number n is called a k-multiplicatively e-superperfect number k if Te(Te(n)) = n , where k ≥ 2. Example 4. There exist 6k-multiplicatively e-perfect numbers with k 2 N?, which have the α form (p1 · p2 · p3) provided σ(α)d(α)2 = 6kα Indeed, according to Theorem 2.1 of [5], we have α σ(α)d(α)2 Te((p1 · p2 · p3) ) = (p1 · p2 · p3) Particularly, if d(α) = 6, then αk = 6 · σ(α). Some cases are listed below 2 • α = 2, k = 1 where d(α) = 2 and σ(α) = 3; • α = 8, k = 5 where d(α) = 4 and σ(α) = 15; • α = 28, k = 12 where d(α) = 6 and σ(α) = 56; • α = 18, k = 13 where d(α) = 6 and σ(α) = 39; • α = 12, k = 14 where d(α) = 6 and σ(α) = 28. Afterwards, we characterize some of these class of numbers in the following theorems. Theorem 5. If n = pa, where p is a prime and a is a k-perfect number, then n is k- multiplicatively e-perfect. If n = pa, where p is a prime and a is a k-superperfect number, then n is k-multiplicatively e-superperfect. Proof. We know from S´andor[5], that if n = pa where p is a prime and a is a non-zero positive integer, then we have σ(a) Te(n) = p : So, if n = pa where p is a prime and a is a k-perfect number, then σ(a) = ka; and so ka k Te(n) = p = n : Moreover, if n = pa where p is a prime and a is a non-zero positive integer, then we have σ(a) σ(σ(a)) Te(Te(n)) = Te(p ) = p : So, if n = pa where p is a prime and a is a k-perfect number, then σ(σ(a)) = ka; and so ka k Te(Te(n)) = p = n : In the following, we denote by d(n), the number of positive divisors of n. α1 αr ∗ Theorem 6. Let p be a prime number and let n = p1 ··· pr , with r 2 N be the prime ∗ factorisation of an integer n > 1 where pi with i 2 1; r are prime numbers and αi 2 N for all i 2 1; r . n is p-multiplicatively e-perfect if andJ onlyK if for each i 2 1; r , we have J K J K σ(αi) = gcd(αi; σ(αi))p 3 and Y αi = gcd(αi; σ(αi)) d(αj); j2 1;r nfig J K with r−1 Y 2 ≤ d(αj) < p; j2 1;r nfig J K where we set Y d(αj) = 1: j2; In particular, if r = 1, then α1jσ(α1) and we have σ(α1) = α1p: Proof. Before proceeding to the proof, we know from S´andor[5] that σ(α1)d(α2)···d(αr) σ(αr)d(α1)···d(αr−1) Te(n) = p1 ··· pr : (2.1) α1 If r = 1, then using Theorem5, n = p1 is p-multiplivatively e-perfect if and only if α1 is a p-perfect number. We now assume that r ≥ 2. We have 8 > σ(α1)d(α2) ··· d(αr) = pα1; > p < Te(n) = n , ······ (2.2) > > : σ(αr)d(α1) ··· d(αr−1) = pαr: Clearly, if for each i 2 1; r , we have J K σ(αi) = gcd(αi; σ(αi))p and Y αi = gcd(αi; σ(αi)) d(αj) j2 1;r nfig J K then it can be easily verified that (2.2) is satisfied. Now we notice that if all αi (i 2 1; r ) are equal to 1, then (2.2) is consistent only if p = 1. It is impossible since p is a primeJ number.K If at least an αi is equal to 1, say α1 = 1, then from (2.2), we have d(α2) ··· d(αr) = p: Then one of d(α2); : : : ; d(αr) is equal to the prime p and the others are equal to 1. Say d(α2) = p; 4 and d(α3) = ··· = d(αr) = 1: It implies that α1 = α3 = ··· = αr = 1: Then the equation σ(α2)d(α1)d(α3) ··· d(αr) = pα2 of (2.2) gives σ(α2) = pα2. But, for all i 2 1; r n f1; 2g, the equation σ(αi)d(α1)d(α2) ··· d(αr) = pαi of (2.2) gives σ(αi) = αi whichJ isK not possible since we know that σ(αi) ≥ αi + 1. So, we must have αi ≥ 2 for all i 2 1; r . Thus, J K Y r−1 d(αj) ≥ 2 : j2 1;r nfig J K We now prove that if (2.2) is true, then for each i 2 1; r , we have J K σ(αi) = gcd(αi; σ(αi))p and Y αi = gcd(αi; σ(αi)) d(αj): j2 1;r nfig J K Let gi = gcd(αi; σ(αi)) for all i 2 1; r . So, for each i 2 1; r , there exists two non-zero positive integer ai; si such that αi =J giaKi and σ(αi) = gisi withJ K gcd(ai; si) = 1. Notice that si > 1. Otherwise, we would have σ(αi)jαi, a contradiction. For each i 2 1; r , the equation J K Y σ(αi) d(αj) = pαi j2 1;r nfig J K of (2.2) now gives Y si d(αj) = pai: j2 1;r nfig J K Since gcd(ai; si) = 1, then from Euclid's lemma we get Y aij d(αj); j2 1;r nfig J K and sijp: So, there exists an integer k such that Y d(αj) = kai; j2 1;r nfig J K and p = ksi: 5 Using the fact that p is a prime and si > 1, it results that k = 1 and we get Y d(αj) = ai; j2 1;r nfig J K and p = si: Therefore σ(αi) = gip and gcd(p; ai) = 1.
Recommended publications
  • Bi-Unitary Multiperfect Numbers, I
    Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 Vol. 26, 2020, No. 1, 93–171 DOI: 10.7546/nntdm.2020.26.1.93-171 Bi-unitary multiperfect numbers, I Pentti Haukkanen1 and Varanasi Sitaramaiah2 1 Faculty of Information Technology and Communication Sciences, FI-33014 Tampere University, Finland e-mail: [email protected] 2 1/194e, Poola Subbaiah Street, Taluk Office Road, Markapur Prakasam District, Andhra Pradesh, 523316 India e-mail: [email protected] Dedicated to the memory of Prof. D. Suryanarayana Received: 19 December 2019 Revised: 21 January 2020 Accepted: 5 March 2020 Abstract: A divisor d of a positive integer n is called a unitary divisor if gcd(d; n=d) = 1; and d is called a bi-unitary divisor of n if the greatest common unitary divisor of d and n=d is unity. The concept of a bi-unitary divisor is due to D. Surynarayana [12]. Let σ∗∗(n) denote the sum of the bi-unitary divisors of n: A positive integer n is called a bi-unitary perfect number if σ∗∗(n) = 2n. This concept was introduced by C. R. Wall in 1972 [15], and he proved that there are only three bi-unitary perfect numbers, namely 6, 60 and 90. In 1987, Peter Hagis [6] introduced the notion of bi-unitary multi k-perfect numbers as solu- tions n of the equation σ∗∗(n) = kn. A bi-unitary multi 3-perfect number is called a bi-unitary triperfect number. A bi-unitary multiperfect number means a bi-unitary multi k-perfect number with k ≥ 3: Hagis [6] proved that there are no odd bi-unitary multiperfect numbers.
    [Show full text]
  • Generalized Perfect Numbers
    Acta Univ. Sapientiae, Mathematica, 1, 1 (2009) 73–82 Generalized perfect numbers Antal Bege Kinga Fogarasi Sapientia–Hungarian University of Sapientia–Hungarian University of Transilvania Transilvania Department of Mathematics and Department of Mathematics and Informatics, Informatics, Tˆargu Mure¸s, Romania Tˆargu Mure¸s, Romania email: [email protected] email: [email protected] Abstract. Let σ(n) denote the sum of positive divisors of the natural number n. A natural number is perfect if σ(n) = 2n. This concept was already generalized in form of superperfect numbers σ2(n)= σ(σ(n)) = k+1 k−1 2n and hyperperfect numbers σ(n)= k n + k . In this paper some new ways of generalizing perfect numbers are inves- tigated, numerical results are presented and some conjectures are estab- lished. 1 Introduction For the natural number n we denote the sum of positive divisors by arXiv:1008.0155v1 [math.NT] 1 Aug 2010 σ(n)= X d. d|n Definition 1 A positive integer n is called perfect number if it is equal to the sum of its proper divisors. Equivalently: σ(n)= 2n, where AMS 2000 subject classifications: 11A25, 11Y70 Key words and phrases: perfect number, superperfect number, k-hyperperfect number 73 74 A. Bege, K. Fogarasi Example 1 The first few perfect numbers are: 6, 28, 496, 8128, . (Sloane’s A000396 [15]), since 6 = 1 + 2 + 3 28 = 1 + 2 + 4 + 7 + 14 496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248 Euclid discovered that the first four perfect numbers are generated by the for- mula 2n−1(2n − 1).
    [Show full text]
  • On the Largest Odd Component of a Unitary Perfect Number*
    ON THE LARGEST ODD COMPONENT OF A UNITARY PERFECT NUMBER* CHARLES R. WALL Trident Technical College, Charleston, SC 28411 (Submitted September 1985) 1. INTRODUCTION A divisor d of an integer n is a unitary divisor if gcd (d9 n/d) = 1. If d is a unitary divisor of n we write d\\n9 a natural extension of the customary notation for the case in which d is a prime power. Let o * (n) denote the sum of the unitary divisors of n: o*(n) = £ d. d\\n Then o* is a multiplicative function and G*(pe)= 1 + p e for p prime and e > 0. We say that an integer N is unitary perfect if o* (N) = 2#. In 1966, Sub- baro and Warren [2] found the first four unitary perfect numbers: 6 = 2 * 3 ; 60 = 223 - 5 ; 90 = 2 * 325; 87,360 = 263 • 5 • 7 • 13. In 1969s I announced [3] the discovery of another such number, 146,361,936,186,458,562,560,000 = 2183 • 5^7 • 11 • 13 • 19 • 37 • 79 • 109 * 157 • 313, which I later proved [4] to be the fifth unitary perfect number. No other uni- tary perfect numbers are known. Throughout what follows, let N = 2am (with m odd) be unitary perfect and suppose that K is the largest odd component (i.e., prime power unitary divisor) of N. In this paper we outline a proof that, except for the five known unitary perfect numbers, K > 2 2. TECHNIQUES In light of the fact that 0*(pe) = 1 + pe for p prime, the problem of find- ing a unitary perfect number is equivalent to that of expressing 2 as a product of fractions, with each numerator being 1 more than its denominator, and with the denominators being powers of distinct primes.
    [Show full text]
  • The Math Problems Notebook
    Valentin Boju Louis Funar The Math Problems Notebook Birkhauser¨ Boston • Basel • Berlin Valentin Boju Louis Funar MontrealTech Institut Fourier BP 74 Institut de Technologie de Montreal URF Mathematiques P.O. Box 78575, Station Wilderton Universite´ de Grenoble I Montreal, Quebec, H3S 2W9 Canada 38402 Saint Martin d’Heres cedex [email protected] France [email protected] Cover design by Alex Gerasev. Mathematics Subject Classification (2000): 00A07 (Primary); 05-01, 11-01, 26-01, 51-01, 52-01 Library of Congress Control Number: 2007929628 ISBN-13: 978-0-8176-4546-5 e-ISBN-13: 978-0-8176-4547-2 Printed on acid-free paper. c 2007 Birkhauser¨ Boston All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Birkhauser¨ Boston, c/o Springer Science+Business Media LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbid- den. The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. 987654321 www.birkhauser.com (TXQ/SB) The Authors Valentin Boju was professor of mathematics at the University of Craiova, Romania, until his retirement in 2000. His research work was primarily in the field of geome- try.
    [Show full text]
  • Types of Integer Harmonic Numbers (Ii)
    Bulletin of the Transilvania University of Bra¸sov • Vol 9(58), No. 1 - 2016 Series III: Mathematics, Informatics, Physics, 67-82 TYPES OF INTEGER HARMONIC NUMBERS (II) Adelina MANEA1 and Nicu¸sorMINCULETE2 Abstract In the first part of this paper we obtained several bi-unitary harmonic numbers which are higher than 109, using the Mersenne prime numbers. In this paper we investigate bi-unitary harmonic numbers of some particular forms: 2k · n, pqt2, p2q2t, with different primes p, q, t and a squarefree inte- ger n. 2010 Mathematics Subject Classification: 11A25. Key words: harmonic numbers, bi-unitary harmonic numbers. 1 Introduction The harmonic numbers introduced by O. Ore in [8] were named in this way by C. Pomerance in [11]. They are defined as positive integers for which the harmonic mean of their divisors is an integer. O. Ore linked the perfect numbers with the harmonic numbers, showing that every perfect number is harmonic. A list of the harmonic numbers less than 2 · 109 is given by G. L. Cohen in [1], finding a total of 130 of harmonic numbers, and G. L. Cohen and R. M. Sorli in [2] have continued to this list up to 1010. The notion of harmonic numbers is extended to unitary harmonic numbers by K. Nageswara Rao in [7] and then to bi-unitary harmonic numbers by J. S´andor in [12]. Our paper is inspired by [12], where J. S´andorpresented a table containing all the 211 bi-unitary harmonic numbers up to 109. We extend the J. S´andors's study, looking for other bi-unitary harmonic numbers, greater than 109.
    [Show full text]
  • A Study of .Perfect Numbers and Unitary Perfect
    CORE Metadata, citation and similar papers at core.ac.uk Provided by SHAREOK repository A STUDY OF .PERFECT NUMBERS AND UNITARY PERFECT NUMBERS By EDWARD LEE DUBOWSKY /I Bachelor of Science Northwest Missouri State College Maryville, Missouri: 1951 Master of Science Kansas State University Manhattan, Kansas 1954 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of .the requirements fqr the Degree of DOCTOR OF EDUCATION May, 1972 ,r . I \_J.(,e, .u,,1,; /q7Q D 0 &'ISs ~::>-~ OKLAHOMA STATE UNIVERSITY LIBRARY AUG 10 1973 A STUDY OF PERFECT NUMBERS ·AND UNITARY PERFECT NUMBERS Thesis Approved: OQ LL . ACKNOWLEDGEMENTS I wish to express my sincere gratitude to .Dr. Gerald K. Goff, .who suggested. this topic, for his guidance and invaluable assistance in the preparation of this dissertation. Special thanks.go to the members of. my advisory committee: 0 Dr. John Jewett, Dr. Craig Wood, Dr. Robert Alciatore, and Dr. Vernon Troxel. I wish to thank. Dr. Jeanne Agnew for the excellent training in number theory. that -made possible this .study. I wish tc;, thank Cynthia Wise for her excellent _job in typing this dissertation •. Finally, I wish to express gratitude to my wife, Juanita, .and my children, Sondra and David, for their encouragement and sacrifice made during this study. TABLE OF CONTENTS Chapter Page I. HISTORY AND INTRODUCTION. 1 II. EVEN PERFECT NUMBERS 4 Basic Theorems • • • • • • • • . 8 Some Congruence Relations ••• , , 12 Geometric Numbers ••.••• , , , , • , • . 16 Harmonic ,Mean of the Divisors •. ~ ••• , ••• I: 19 Other Properties •••• 21 Binary Notation. • •••• , ••• , •• , 23 III, ODD PERFECT NUMBERS . " . 27 Basic Structure • , , •• , , , .
    [Show full text]
  • On Perfect Numbers and Their Relations 1 Introduction
    Int. J. Contemp. Math. Sciences, Vol. 5, 2010, no. 27, 1337 - 1346 On Perfect Numbers and their Relations Recep G¨ur 2000 Evler Mahallesi Boykent Sitesi E Blok 26/7 Nevsehir, Turkey [email protected] Nihal Bircan Technische Universitaet Berlin Fakultaet II Institut f¨ur Mathematik MA 8 − 1 Strasse des 17. Juni 136 D-10623 Berlin, Germany [email protected] Abstract In this paper, we get some new formulas for generalized perfect numbers and their relationship between arithmetical functions φ, σ concerning Ore’s harmonic numbers and by using these formulas we present some examples. Mathematics Subject Classification: 11A25, 11A41, 11Y70 Keywords: perfect number, 2-hyperperfect number, Euler’s totient function, Ore harmonic number 1 Introduction In this section, we aimed to provide general information on perfect numbers shortly. Here and throughout the paper we assume m, n, k, d, b are positive integers and p is prime. N is called perfect number, if it is equal to the sum of its proper divisors. The first few perfect numbers are 6, 28, 496, 8128,... since, 6 = 1+2+3 28 = 1+2+4+7+14 496 = 1+2+4+8+16+31+62+124+248 Euclid discovered the first four perfect numbers which are generated by the formula 2n−1(2n−1), called Euclid number. In his book ’Elements’ he presented the proof of the formula which gives an even perfect number whenever 2n −1is 1338 Recep G¨ur and Nihal Bircan prime. In order for 2n −1 to be a prime n must itself be a prime.
    [Show full text]
  • Eureka Issue 61
    Eureka 61 A Journal of The Archimedeans Cambridge University Mathematical Society Editors: Philipp Legner and Anja Komatar © The Archimedeans (see page 94 for details) Do not copy or reprint any parts without permission. October 2011 Editorial Eureka Reinvented… efore reading any part of this issue of Eureka, you will have noticed The Team two big changes we have made: Eureka is now published in full col- our, and printed on a larger paper size than usual. We felt that, with Philipp Legner Design and Bthe internet being an increasingly large resource for mathematical articles of Illustrations all kinds, it was necessary to offer something new and exciting to keep Eu- reka as successful as it has been in the past. We moved away from the classic Anja Komatar Submissions LATEX-look, which is so common in the scientific community, to a modern, more engaging, and more entertaining design, while being conscious not to Sean Moss lose any of the mathematical clarity and rigour. Corporate Ben Millwood To make full use of the new design possibilities, many of this issue’s articles Publicity are based around mathematical images: from fractal modelling in financial Lu Zou markets (page 14) to computer rendered pictures (page 38) and mathemati- Subscriptions cal origami (page 20). The Showroom (page 46) uncovers the fundamental role pictures have in mathematics, including patterns, graphs, functions and fractals. This issue includes a wide variety of mathematical articles, problems and puzzles, diagrams, movie and book reviews. Some are more entertaining, such as Bayesian Bets (page 10), some are more technical, such as Impossible Integrals (page 80), or more philosophical, such as How to teach Physics to Mathematicians (page 42).
    [Show full text]
  • On the Composition of Some Arithmetic Functions, II
    On the composition of some arithmetic functions, II. J´ozsefS´andor Department of Mathematics and Computer Science, Babe¸s-Bolyai University, Cluj-Napoca e-mail: [email protected], [email protected] Abstract We study certain properties and conjuctures on the composition of the arithmetic functions σ, ϕ, ψ, where σ is the sum of divisors function, ϕ is Euler’s totient, and ψ is Dedekind’s function. AMS subject classification: 11A25, 11N37. Key Words and Phrases: Arithmetic functions, Makowski-Schinzel conjuncture, S´andor’s conjuncture, inequalities. 1 Introduction P Let σ(n) denote the sum of divisors of the positive integer n, i.e. σ(n) = d/n d, where by convention σ(1) = 1. It is well-known that n is called perfect if σ(n) = 2n. Euclid and Euler ([10], [21]) have determined all even perfect numbers, by showing that they are of the form n = 2k(2k+1 − 1), where 2k+1 − 1 is a prime (k ≥ 1). The primes of the form 2k+1 − 1 are the so-called Mersenne primes, and at this moment there are known exactly 41 such primes (for the recent discovery of the 41th Mersenne prime, see the site www.ams.org). Probably, there are infinitely many Mersenne primes, but the proof of this result seems unattackable at present. On the other hand, no odd perfect number is known, and the existence of such numbers is one of the most difficult open problems of Mathematics. D. Suryanarayana [23] defined the notion of superperfect number, i.e. number n with property σ(σ(n)) = 2n, and he and H.J.
    [Show full text]
  • Integer Sequences
    UHX6PF65ITVK Book > Integer sequences Integer sequences Filesize: 5.04 MB Reviews A very wonderful book with lucid and perfect answers. It is probably the most incredible book i have study. Its been designed in an exceptionally simple way and is particularly just after i finished reading through this publication by which in fact transformed me, alter the way in my opinion. (Macey Schneider) DISCLAIMER | DMCA 4VUBA9SJ1UP6 PDF > Integer sequences INTEGER SEQUENCES Reference Series Books LLC Dez 2011, 2011. Taschenbuch. Book Condition: Neu. 247x192x7 mm. This item is printed on demand - Print on Demand Neuware - Source: Wikipedia. Pages: 141. Chapters: Prime number, Factorial, Binomial coeicient, Perfect number, Carmichael number, Integer sequence, Mersenne prime, Bernoulli number, Euler numbers, Fermat number, Square-free integer, Amicable number, Stirling number, Partition, Lah number, Super-Poulet number, Arithmetic progression, Derangement, Composite number, On-Line Encyclopedia of Integer Sequences, Catalan number, Pell number, Power of two, Sylvester's sequence, Regular number, Polite number, Ménage problem, Greedy algorithm for Egyptian fractions, Practical number, Bell number, Dedekind number, Hofstadter sequence, Beatty sequence, Hyperperfect number, Elliptic divisibility sequence, Powerful number, Znám's problem, Eulerian number, Singly and doubly even, Highly composite number, Strict weak ordering, Calkin Wilf tree, Lucas sequence, Padovan sequence, Triangular number, Squared triangular number, Figurate number, Cube, Square triangular
    [Show full text]
  • Universitatis Scientiarum Budapestinensis De Rolando Eötvös Nominatae Sectio Computatorica
    ANNALES Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae sectio computatorica TOMUS XXXIV. REDIGIT I. KÁTAI ADIUVANTIBUS N.L. BASSILY, A. BENCZÚR, BUI MINH PHONG, Z. DARÓCZY, J. DEMETROVICS, R. FARZAN, S. FRIDLI, J. GALAMBOS, J. GONDA, Z. HORVÁTH, K.-H. INDLEKOFER, A. IVÁNYI, A. JÁRAI, J.-M. DE KONINCK, A. KÓSA, M. KOVÁCS, L. KOZMA, L. LAKATOS, P. RACSKÓ, F. SCHIPP, P. SIMON, G. STOYAN, L. SZILI, P.D. VARBANETS, L. VARGA, F. WEISZ 2011 Jarai´ Antal RESULTS ON CLASSES OF FUNCTIONAL EQUATIONS TRIBUTE TO ANTAL JARAI´ by J´anos Acz´el and Che Tat Ng While individual noncomposite functional equations in several variables had been solved at least since d’Alembert 1747 [9] and Cauchy 1821 [8], results on broad classes of such equations began appearing in the 1950’s and 1960’s. On general methods of solution see e.g. Acz´el [1] and for uniqueness of solutions Acz´el [2, 3], Acz´el and Hossz´u [6], Miller [20], Ng [21, 22], followed by several others. – Opening up and cultivating the field of regularization is mainly J´arai’s achievement. By regularization we mean assuming weaker regularity condi- tions, say measurability, of the unknown function and proving differentiability of several orders, for whole classes of functional equations. Differentiability of the unknown function(s) in the functional equation often leads to differential equations that are easier to solve. For example, in Acz´el and Chung [5] it was shown that locally Lebesgue integrable solutions of the functional equation n m fi(x + λiy)= pk(x)qk(y) i=1 k=1 holding for x, y on open real intervals, with appropriate independence between the functions, are in fact differentiable infinitely many times.
    [Show full text]
  • Handbook of Number Theory Ii
    HANDBOOK OF NUMBER THEORY II by J. Sandor´ Babes¸-Bolyai University of Cluj Department of Mathematics and Computer Science Cluj-Napoca, Romania and B. Crstici formerly the Technical University of Timis¸oara Timis¸oara Romania KLUWER ACADEMIC PUBLISHERS DORDRECHT / BOSTON / LONDON A C.I.P. Catalogue record for this book is available from the Library of Congress. ISBN 1-4020-2546-7 (HB) ISBN 1-4020-2547-5 (e-book) Published by Kluwer Academic Publishers, P.O. Box 17, 3300 AA Dordrecht, The Netherlands. Sold and distributed in North, Central and South America by Kluwer Academic Publishers, 101 Philip Drive, Norwell, MA 02061, U.S.A. In all other countries, sold and distributed by Kluwer Academic Publishers, P.O. Box 322, 3300 AH Dordrecht, The Netherlands. Printed on acid-free paper All Rights Reserved C 2004 Kluwer Academic Publishers No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Printed in the Netherlands. Contents PREFACE 7 BASIC SYMBOLS 9 BASIC NOTATIONS 10 1 PERFECT NUMBERS: OLD AND NEW ISSUES; PERSPECTIVES 15 1.1 Introduction .............................. 15 1.2 Some historical facts ......................... 16 1.3 Even perfect numbers ......................... 20 1.4 Odd perfect numbers ......................... 23 1.5 Perfect, multiperfect and multiply perfect numbers ......... 32 1.6 Quasiperfect, almost perfect, and pseudoperfect numbers ...............................
    [Show full text]