Integer Sequences

Total Page:16

File Type:pdf, Size:1020Kb

Integer Sequences UHX6PF65ITVK Book > Integer sequences Integer sequences Filesize: 5.04 MB Reviews A very wonderful book with lucid and perfect answers. It is probably the most incredible book i have study. Its been designed in an exceptionally simple way and is particularly just after i finished reading through this publication by which in fact transformed me, alter the way in my opinion. (Macey Schneider) DISCLAIMER | DMCA 4VUBA9SJ1UP6 PDF > Integer sequences INTEGER SEQUENCES Reference Series Books LLC Dez 2011, 2011. Taschenbuch. Book Condition: Neu. 247x192x7 mm. This item is printed on demand - Print on Demand Neuware - Source: Wikipedia. Pages: 141. Chapters: Prime number, Factorial, Binomial coeicient, Perfect number, Carmichael number, Integer sequence, Mersenne prime, Bernoulli number, Euler numbers, Fermat number, Square-free integer, Amicable number, Stirling number, Partition, Lah number, Super-Poulet number, Arithmetic progression, Derangement, Composite number, On-Line Encyclopedia of Integer Sequences, Catalan number, Pell number, Power of two, Sylvester's sequence, Regular number, Polite number, Ménage problem, Greedy algorithm for Egyptian fractions, Practical number, Bell number, Dedekind number, Hofstadter sequence, Beatty sequence, Hyperperfect number, Elliptic divisibility sequence, Powerful number, Znám's problem, Eulerian number, Singly and doubly even, Highly composite number, Strict weak ordering, Calkin Wilf tree, Lucas sequence, Padovan sequence, Triangular number, Squared triangular number, Figurate number, Cube, Square triangular number, Multiplicative partition, Perrin number, Smooth number, Ulam number, Primorial, Lambek Moser theorem, Harmonic divisor number, Lucas number, Home prime, Meander, Primefree sequence, Lucas-Carmichael number, Semiprime, Lazy caterer's sequence, Friendly number, Small set, Cullen number, Abundant number, Perfect totient number, Juggler sequence, Antichain, Perfect power, Pronic number, Superabundant number, Woodall number, Double Mersenne number, Strictly non-palindromic number, Boustrophedon transform, Somos sequence, Lucky number, Highly abundant number, Primary pseudoperfect number, Leyland number, Complete sequence, Weird number, Jacobsthal number, Sociable number, Ban number, Factorion, Giuga number, Almost prime, Primitive permutation group, Superperfect number, Euclid Mullin sequence, Motzkin number, Untouchable number, Refactorable number, Sphenic number, Thabit number, Carol number, Primorial prime, Blum integer, Deficient number, Idoneal number, Lobb numbers, Achilles number, Semiperfect number, Alternating factorial, Fractal sequence, Erdos Woods number, Magic constant, Euclid number, Proth number, Zeisel number, Multiply perfect number, Noncototient, Colossally abundant number, Nontotient, Fortunate number, Factorial prime, Nonhypotenuse number, Unitary perfect number, Kynea number, Schröder number, Poly-Bernoulli number, Hilbert number, Highly totient... Read Integer sequences Online Download PDF Integer sequences JAKMP1ADKTW3 / PDF ~ Integer sequences Oth er Kindle Books Number One Fan CreateSpace Independent Publishing Platform. Paperback. Book Condition: New. This item is printed on demand. Paperback. 160 pages. Dimensions: 8.0in. x 5.2in. x 0.4in.Fourteen-year-old Billy Davis is mystery and suspense writer Stephen Michaelss number one fan.... Download ePub » Perfect Psychometric Test Results Cornerstone. Paperback. Book Condition: new. BRAND NEW, Perfect Psychometric Test Results, Joanna Moutafi, Ian Newcombe, Perfect Psychometric Test Results is an invaluable guide for anyone who wants to secure their ideal job. Written by a... Download ePub » Choose the Perfect Baby Name: Teach Yourself Hodder & Stoughton General Division. Paperback. Book Condition: new. BRAND NEW, Choose the Perfect Baby Name: Teach Yourself, Victoria Wilson, Whether you're expecting, planning or just interested, Choose the Perfect Baby Name will help you... Download ePub » Perfect Numerical Test Results Cornerstone. Paperback. Book Condition: new. BRAND NEW, Perfect Numerical Test Results, Joanna Moutafi, Ian Newcombe, Perfect Numerical Test Results is the essential guide for anyone who wants to secure their ideal job. Written by a... Download ePub » Perfect Numerical and Logical Test Results Cornerstone. Paperback. Book Condition: new. BRAND NEW, Perfect Numerical and Logical Test Results, Joanna Moutafi, Marianna Moutafi, Have you been asked to sit a numerical or logical reasoning test? -Do you need some help preparing... Download ePub » EFY9TEPLNTIT / Book \\ Integer sequences Play Baby by Disney Book Group Staff and Susan Amerikaner 2011 Board Book Book Condition: Brand New. Book Condition: Brand New. Save PDF » Top Gear: Official Annual 2011 BBC Children's Books, 2010. Hardcover. Book Condition: New. A BRAND NEW COPY. DISPATCHED FROM THE UK DAILY Another Croaking bargain from the Frog !!!. Save PDF » What is in My Net? (Pink B) NF Pearson Education Limited. Book Condition: New. This title is part of Pearson's Bug Club - the first whole-school reading programme that joins books and an online reading world to teach today's children to read. In Save PDF » New Kid on the Block (Live and Learn Books) Barron's Educational Series. PAPERBACK. Book Condition: New. 0764141813 Brand New - I ship FAST with FREE tracking!!. Save PDF » Genuine] outstanding teachers work (teachers Expo Picks Books)(Chinese Edition) paperback. Book Condition: New. Ship out in 2 business day, And Fast shipping, Free Tracking number will be provided aer the shipment.Paperback. Pub Date :2012-06 Pages: 214 Publisher: Fujian Education Press Introduction Most of the Save PDF » .
Recommended publications
  • Double-Authentication-Preventing Signatures
    A preliminary version of this paper appears in the proceedings of ESORICS 2014 [PS14]. The full version appears in the International Journal of Information Security [PS15]. This is the author's copy of the full version. The final publication is available at Springer via http://dx.doi.org/10.1007/s10207-015-0307-8. Double-authentication-preventing signatures Bertram Poettering1 and Douglas Stebila2 1 Foundations of Cryptography, Ruhr University Bochum, Germany 2 School of Electrical Engineering and Computer Science and School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia [email protected] [email protected] January 18, 2016 Abstract Digital signatures are often used by trusted authorities to make unique bindings between a subject and a digital object; for example, certificate authorities certify a public key belongs to a domain name, and time-stamping authorities certify that a certain piece of information existed at a certain time. Traditional digital signature schemes however impose no uniqueness conditions, so a trusted authority could make multiple certifications for the same subject but different objects, be it intentionally, by accident, or following a (legal or illegal) coercion. We propose the notion of a double-authentication-preventing signature, in which a value to be signed is split into two parts: a subject and a message. If a signer ever signs two different messages for the same subject, enough information is revealed to allow anyone to compute valid signatures on behalf of the signer. This double-signature forgeability property discourages signers from misbehaving|a form of self-enforcement|and would give binding authorities like CAs some cryptographic arguments to resist legal coercion.
    [Show full text]
  • Generalizations of Euler Numbers and Polynomials 1
    GENERALIZATIONS OF EULER NUMBERS AND POLYNOMIALS QIU-MING LUO AND FENG QI Abstract. In this paper, the concepts of Euler numbers and Euler polyno- mials are generalized, and some basic properties are investigated. 1. Introduction It is well-known that the Euler numbers and polynomials can be defined by the following definitions. Definition 1.1 ([1]). The Euler numbers Ek are defined by the following expansion t ∞ 2e X Ek = tk, |t| ≤ π. (1.1) e2t + 1 k! k=0 In [4, p. 5], the Euler numbers is defined by t/2 ∞ n 2n 2e t X (−1) En t = sech = , |t| ≤ π. (1.2) et + 1 2 (2n)! 2 n=0 Definition 1.2 ([1, 4]). The Euler polynomials Ek(x) for x ∈ R are defined by xt ∞ 2e X Ek(x) = tk, |t| ≤ π. (1.3) et + 1 k! k=0 It can also be shown that the polynomials Ei(t), i ∈ N, are uniquely determined by the following two properties 0 Ei(t) = iEi−1(t),E0(t) = 1; (1.4) i Ei(t + 1) + Ei(t) = 2t . (1.5) 2000 Mathematics Subject Classification. 11B68. Key words and phrases. Euler numbers, Euler polynomials, generalization. The authors were supported in part by NNSF (#10001016) of China, SF for the Prominent Youth of Henan Province, SF of Henan Innovation Talents at Universities, NSF of Henan Province (#004051800), Doctor Fund of Jiaozuo Institute of Technology, China. This paper was typeset using AMS-LATEX. 1 2 Q.-M. LUO AND F. QI Euler polynomials are related to the Bernoulli numbers. For information about Bernoulli numbers and polynomials, please refer to [1, 2, 3, 4].
    [Show full text]
  • Pseudoprime Reductions of Elliptic Curves
    Mathematical Proceedings of the Cambridge Philosophical Society VOL. 146 MAY 2009 PART 3 Math. Proc. Camb. Phil. Soc. (2009), 146, 513 c 2008 Cambridge Philosophical Society 513 doi:10.1017/S0305004108001758 Printed in the United Kingdom First published online 14 July 2008 Pseudoprime reductions of elliptic curves BY ALINA CARMEN COJOCARU Dept. of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL, 60607-7045, U.S.A. and The Institute of Mathematics of the Romanian Academy, Bucharest, Romania. e-mail: [email protected] FLORIAN LUCA Instituto de Matematicas,´ Universidad Nacional Autonoma´ de Mexico,´ C.P. 58089, Morelia, Michoacan,´ Mexico.´ e-mail: [email protected] AND IGOR E. SHPARLINSKI Dept. of Computing, Macquarie University, Sydney, NSW 2109, Australia. e-mail: [email protected] (Received 10 April 2007; revised 25 April 2008) Abstract Let b 2 be an integer and let E/Q be a fixed elliptic curve. In this paper, we estimate the number of primes p x such that the number of points n E (p) on the reduction of E modulo p is a base b prime or pseudoprime. In particular, we improve previously known bounds which applied only to prime values of n E (p). 1. Introduction Let b 2 be an integer. Recall that a pseudoprime to base b is a composite positive integer m such that the congruence bm ≡ b (mod m) holds. The question of the distri- bution of pseudoprimes in certain sequences of positive integers has received some in- terest. For example, in [PoRo], van der Poorten and Rotkiewicz show that any arithmetic 514 A.
    [Show full text]
  • Ces`Aro's Integral Formula for the Bell Numbers (Corrected)
    Ces`aro’s Integral Formula for the Bell Numbers (Corrected) DAVID CALLAN Department of Statistics University of Wisconsin-Madison Medical Science Center 1300 University Ave Madison, WI 53706-1532 [email protected] October 3, 2005 In 1885, Ces`aro [1] gave the remarkable formula π 2 cos θ N = ee cos(sin θ)) sin( ecos θ sin(sin θ) ) sin pθ dθ p πe Z0 where (Np)p≥1 = (1, 2, 5, 15, 52, 203,...) are the modern-day Bell numbers. This formula was reproduced verbatim in the Editorial Comment on a 1941 Monthly problem [2] (the notation Np for Bell number was still in use then). I have not seen it in recent works and, while it’s not very profound, I think it deserves to be better known. Unfortunately, it contains a typographical error: a factor of p! is omitted. The correct formula, with n in place of p and using Bn for Bell number, is π 2 n! cos θ B = ee cos(sin θ)) sin( ecos θ sin(sin θ) ) sin nθ dθ n ≥ 1. n πe Z0 eiθ The integrand is the imaginary part of ee sin nθ, and so an equivalent formula is π 2 n! eiθ B = Im ee sin nθ dθ . (1) n πe Z0 The formula (1) is quite simple to prove modulo a few standard facts about set par- n titions. Recall that the Stirling partition number k is the number of partitions of n n [n] = {1, 2,...,n} into k nonempty blocks and the Bell number Bn = k=1 k counts n k n n k k all partitions of [ ].
    [Show full text]
  • An Identity for Generalized Bernoulli Polynomials
    1 2 Journal of Integer Sequences, Vol. 23 (2020), 3 Article 20.11.2 47 6 23 11 An Identity for Generalized Bernoulli Polynomials Redha Chellal1 and Farid Bencherif LA3C, Faculty of Mathematics USTHB Algiers Algeria [email protected] [email protected] [email protected] Mohamed Mehbali Centre for Research Informed Teaching London South Bank University London United Kingdom [email protected] Abstract Recognizing the great importance of Bernoulli numbers and Bernoulli polynomials in various branches of mathematics, the present paper develops two results dealing with these objects. The first one proposes an identity for the generalized Bernoulli poly- nomials, which leads to further generalizations for several relations involving classical Bernoulli numbers and Bernoulli polynomials. In particular, it generalizes a recent identity suggested by Gessel. The second result allows the deduction of similar identi- ties for Fibonacci, Lucas, and Chebyshev polynomials, as well as for generalized Euler polynomials, Genocchi polynomials, and generalized numbers of Stirling. 1Corresponding author. 1 1 Introduction Let N and C denote, respectively, the set of positive integers and the set of complex numbers. (α) In his book, Roman [41, p. 93] defined generalized Bernoulli polynomials Bn (x) as follows: for all n ∈ N and α ∈ C, we have ∞ tn t α B(α)(x) = etx. (1) n n! et − 1 Xn=0 The Bernoulli numbers Bn, classical Bernoulli polynomials Bn(x), and generalized Bernoulli (α) numbers Bn are, respectively, defined by (1) (α) (α) Bn = Bn(0), Bn(x)= Bn (x), and Bn = Bn (0). (2) The Bernoulli numbers and the Bernoulli polynomials play a fundamental role in various branches of mathematics, such as combinatorics, number theory, mathematical analysis, and topology.
    [Show full text]
  • Secret Sharing and Perfect Zero Knowledge*
    Secret Sharing and Perfect Zero Knowledge* A. De Santis,l G. Di Crescenzo,l G. Persiano2 Dipartimento di Informatica ed Applicazioni, Universiti di Salerno, 84081 Baronissi (SA), Italy Dipartimento di Matematica, Universitk di Catania, 95125 Catania, Italy Abstract. In this work we study relations between secret sharing and perfect zero knowledge in the non-interactive model. Both secret sharing schemes and non-interactive zero knowledge are important cryptographic primitives with several applications in the management of cryptographic keys, in multi-party secure protocols, and many other areas. Secret shar- ing schemes are very well-studied objects while non-interactive perfect zer-knowledge proofs seem to be very elusive. In fact, since the intro- duction of the non-interactive model for zero knowledge, the only perfect zero-knowledge proof known was for quadratic non residues. In this work, we show that a large class of languages related to quadratic residuosity admits non-interactive perfect zero-knowledge proofs. More precisely, we give a protocol for proving non-interactively and in perfect zero knowledge the veridicity of any “threshold” statement where atoms are statements about the quadratic character of input elements. We show that our technique is very general and extend this result to any secret sharing scheme (of which threshold schemes are just an example). 1 Introduction Secret Sharing. The fascinating concept of Secret Sharing scheme has been first considered in [18] and [3]. A secret sharing scheme is a method of dividing a secret s among a set of participants in such a way that only qualified subsets of participants can reconstruct s but non-qualified subsets have absolutely no information on s.
    [Show full text]
  • On Cullen Numbers Which Are Both Riesel and Sierpiński Numbers
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Number Theory 132 (2012) 2836–2841 Contents lists available at SciVerse ScienceDirect Journal of Number Theory www.elsevier.com/locate/jnt On Cullen numbers which are both Riesel and Sierpinski´ numbers ∗ Pedro Berrizbeitia a, J.G. Fernandes a, ,MarcosJ.Gonzáleza,FlorianLucab, V. Janitzio Mejía Huguet c a Departamento de Matemáticas, Universidad Simón Bolívar, Caracas 1080-A, Venezuela b Instituto de Matemáticas, Universidad Nacional Autónoma de México, C.P. 58089, Morelia, Michoacán, Mexico c Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo #180, Col. Reynosa Tamaulipas, Azcapotzalco, 02200, México DF, Mexico article info abstract Article history: We describe an algorithm to determine whether or not a given Received 27 January 2012 system of congruences is satisfied by Cullen numbers. We use Revised 21 May 2012 this algorithm to prove that there are infinitely many Cullen Accepted 21 May 2012 numbers which are both Riesel and Sierpinski.´ (Such numbers Available online 3 August 2012 should be discarded if you are searching prime numbers with Communicated by David Goss Proth’s theorem.) Keywords: © 2012 Elsevier Inc. All rights reserved. Cullen numbers Covering congruences Sierpinski´ numbers Riesel numbers 1. Introduction n The numbers Cn = n2 + 1 where introduced, in 1905, by the Reverend J. Cullen [1] as a particular n n case of the Proth family k2 + 1, where k = n. The analogous numbers Wn = n2 − 1 where intro- duced as far as we know, in 1917, by Cunningham and Woodall [3].
    [Show full text]
  • Recent Progress in Additive Prime Number Theory
    Introduction Arithmetic progressions Other linear patterns Recent progress in additive prime number theory Terence Tao University of California, Los Angeles Mahler Lecture Series Terence Tao Recent progress in additive prime number theory Introduction Arithmetic progressions Other linear patterns Additive prime number theory Additive prime number theory is the study of additive patterns in the prime numbers 2; 3; 5; 7;:::. Examples of additive patterns include twins p; p + 2, arithmetic progressions a; a + r;:::; a + (k − 1)r, and prime gaps pn+1 − pn. Many open problems regarding these patterns still remain, but there has been some recent progress in some directions. Terence Tao Recent progress in additive prime number theory Random models for the primes Introduction Sieve theory Arithmetic progressions Szemerédi’s theorem Other linear patterns Putting it together Long arithmetic progressions in the primes I’ll first discuss a theorem of Ben Green and myself from 2004: Theorem: The primes contain arbitrarily long arithmetic progressions. Terence Tao Recent progress in additive prime number theory Random models for the primes Introduction Sieve theory Arithmetic progressions Szemerédi’s theorem Other linear patterns Putting it together It was previously established by van der Corput (1929) that the primes contained infinitely many progressions of length three. In 1981, Heath-Brown showed that there are infinitely many progressions of length four, in which three elements are prime and the fourth is an almost prime (the product of at most
    [Show full text]
  • New Formulas for Semi-Primes. Testing, Counting and Identification
    New Formulas for Semi-Primes. Testing, Counting and Identification of the nth and next Semi-Primes Issam Kaddouraa, Samih Abdul-Nabib, Khadija Al-Akhrassa aDepartment of Mathematics, school of arts and sciences bDepartment of computers and communications engineering, Lebanese International University, Beirut, Lebanon Abstract In this paper we give a new semiprimality test and we construct a new formula for π(2)(N), the function that counts the number of semiprimes not exceeding a given number N. We also present new formulas to identify the nth semiprime and the next semiprime to a given number. The new formulas are based on the knowledge of the primes less than or equal to the cube roots 3 of N : P , P ....P 3 √N. 1 2 π( √N) ≤ Keywords: prime, semiprime, nth semiprime, next semiprime 1. Introduction Securing data remains a concern for every individual and every organiza- tion on the globe. In telecommunication, cryptography is one of the studies that permits the secure transfer of information [1] over the Internet. Prime numbers have special properties that make them of fundamental importance in cryptography. The core of the Internet security is based on protocols, such arXiv:1608.05405v1 [math.NT] 17 Aug 2016 as SSL and TSL [2] released in 1994 and persist as the basis for securing dif- ferent aspects of today’s Internet [3]. The Rivest-Shamir-Adleman encryption method [4], released in 1978, uses asymmetric keys for exchanging data. A secret key Sk and a public key Pk are generated by the recipient with the following property: A message enciphered Email addresses: [email protected] (Issam Kaddoura), [email protected] (Samih Abdul-Nabi) 1 by Pk can only be deciphered by Sk and vice versa.
    [Show full text]
  • Input for Carnival of Math: Number 115, October 2014
    Input for Carnival of Math: Number 115, October 2014 I visited Singapore in 1996 and the people were very kind to me. So I though this might be a little payback for their kindness. Good Luck. David Brooks The “Mathematical Association of America” (http://maanumberaday.blogspot.com/2009/11/115.html ) notes that: 115 = 5 x 23. 115 = 23 x (2 + 3). 115 has a unique representation as a sum of three squares: 3 2 + 5 2 + 9 2 = 115. 115 is the smallest three-digit integer, abc , such that ( abc )/( a*b*c) is prime : 115/5 = 23. STS-115 was a space shuttle mission to the International Space Station flown by the space shuttle Atlantis on Sept. 9, 2006. The “Online Encyclopedia of Integer Sequences” (http://www.oeis.org) notes that 115 is a tridecagonal (or 13-gonal) number. Also, 115 is the number of rooted trees with 8 vertices (or nodes). If you do a search for 115 on the OEIS website you will find out that there are 7,041 integer sequences that contain the number 115. The website “Positive Integers” (http://www.positiveintegers.org/115) notes that 115 is a palindromic and repdigit number when written in base 22 (5522). The website “Number Gossip” (http://www.numbergossip.com) notes that: 115 is the smallest three-digit integer, abc, such that (abc)/(a*b*c) is prime. It also notes that 115 is a composite, deficient, lucky, odd odious and square-free number. The website “Numbers Aplenty” (http://www.numbersaplenty.com/115) notes that: It has 4 divisors, whose sum is σ = 144.
    [Show full text]
  • MAT344 Lecture 6
    MAT344 Lecture 6 2019/May/22 1 Announcements 2 This week This week, we are talking about 1. Recursion 2. Induction 3 Recap Last time we talked about 1. Recursion 4 Fibonacci numbers The famous Fibonacci sequence starts like this: 1; 1; 2; 3; 5; 8; 13;::: The rule defining the sequence is F1 = 1;F2 = 1, and for n ≥ 3, Fn = Fn−1 + Fn−2: This is a recursive formula. As you might expect, if certain kinds of numbers have a name, they answer many counting problems. Exercise 4.1 (Example 3.2 in [KT17]). Show that a 2 × n checkerboard can be tiled with 2 × 1 dominoes in Fn+1 many ways. Solution: Denote the number of tilings of a 2 × n rectangle by Tn. We check that T1 = 1 and T2 = 2. We want to prove that they satisfy the recurrence relation Tn = Tn−1 + Tn−2: Consider the domino occupying the rightmost spot in the top row of the tiling. It is either a vertical domino, in which case the rest of the tiling can be interpreted as a tiling of a 2 × (n − 1) rectangle, or it is a horizontal domino, in which case there must be another horizontal domino under it, and the rest of the tiling can be interpreted as a tiling of a 2 × (n − 2) rectangle. Therefore Tn = Tn−1 + Tn−2: Since the number of tilings satisfies the same recurrence relation as the Fibonacci numbers, and T1 = F2 = 1 and T2 = F3 = 2, we may conclude that Tn = Fn+1.
    [Show full text]
  • Second Grade Unit 1: Extending Base Ten Understanding
    Georgia Standards of Excellence Curriculum Frameworks Mathematics GSE Second Grade Unit 1: Extending Base Ten Understanding These materials are for nonprofit educational purposes only. Any other use may constitute copyright infringement. Georgia Department of Education Georgia Standards of Excellence Framework GSE Extending Base Ten Understanding Unit 1 Unit 1: Extending Base Ten Understanding TABLE OF CONTENTS Overview……………………………………………………………………………..... 3 Standards for Mathematical Practice …………………………………………………. 5 Standards for Mathematical Content …………………………………………………. 6 Big Ideas ………………………………………………………………………………. 6 Essential Questions ……………………………………………………………………….. 7 Concepts and Skills to Maintain ………………………………………………………. 7 Strategies for Teaching and Learning ……………………………………………. 8 Selected Terms and Symbols ………………………………………………..………… 10 Task Types ………………………………………………………………...………….. 12 Task Descriptions …………………………………………………………………….. 13 Intervention Table………………….………………………………………………….. 15 Straws! Straws! Straws!.........................................................................… 16 Where Am I on the Number Line? …………………………………… 23 I Spy a Number ………………………………………………………. 31 Number Hop …………………………………………………………… 38 Place Value Play …………………………………………………….... 44 The Importance of Zero ………………………………………………. 51 Base Ten Pictures …………………………………………………….. 62 Building Base Ten Numbers …………………………………………. 69 What's My Number? …………………………………………………. 74 Capture the Caterpillar ……………………………………………….. 79 Formative Assessment Lesson ……………………………………….. 88 Fill the Bucket ………………………………………………………..
    [Show full text]