Sums of Powers and the Bernoulli Numbers Laura Elizabeth S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Generalizations of Euler Numbers and Polynomials 1
GENERALIZATIONS OF EULER NUMBERS AND POLYNOMIALS QIU-MING LUO AND FENG QI Abstract. In this paper, the concepts of Euler numbers and Euler polyno- mials are generalized, and some basic properties are investigated. 1. Introduction It is well-known that the Euler numbers and polynomials can be defined by the following definitions. Definition 1.1 ([1]). The Euler numbers Ek are defined by the following expansion t ∞ 2e X Ek = tk, |t| ≤ π. (1.1) e2t + 1 k! k=0 In [4, p. 5], the Euler numbers is defined by t/2 ∞ n 2n 2e t X (−1) En t = sech = , |t| ≤ π. (1.2) et + 1 2 (2n)! 2 n=0 Definition 1.2 ([1, 4]). The Euler polynomials Ek(x) for x ∈ R are defined by xt ∞ 2e X Ek(x) = tk, |t| ≤ π. (1.3) et + 1 k! k=0 It can also be shown that the polynomials Ei(t), i ∈ N, are uniquely determined by the following two properties 0 Ei(t) = iEi−1(t),E0(t) = 1; (1.4) i Ei(t + 1) + Ei(t) = 2t . (1.5) 2000 Mathematics Subject Classification. 11B68. Key words and phrases. Euler numbers, Euler polynomials, generalization. The authors were supported in part by NNSF (#10001016) of China, SF for the Prominent Youth of Henan Province, SF of Henan Innovation Talents at Universities, NSF of Henan Province (#004051800), Doctor Fund of Jiaozuo Institute of Technology, China. This paper was typeset using AMS-LATEX. 1 2 Q.-M. LUO AND F. QI Euler polynomials are related to the Bernoulli numbers. For information about Bernoulli numbers and polynomials, please refer to [1, 2, 3, 4]. -
Introduction to Analytic Number Theory the Riemann Zeta Function and Its Functional Equation (And a Review of the Gamma Function and Poisson Summation)
Math 229: Introduction to Analytic Number Theory The Riemann zeta function and its functional equation (and a review of the Gamma function and Poisson summation) Recall Euler’s identity: ∞ ∞ X Y X Y 1 [ζ(s) :=] n−s = p−cps = . (1) 1 − p−s n=1 p prime cp=0 p prime We showed that this holds as an identity between absolutely convergent sums and products for real s > 1. Riemann’s insight was to consider (1) as an identity between functions of a complex variable s. We follow the curious but nearly universal convention of writing the real and imaginary parts of s as σ and t, so s = σ + it. We already observed that for all real n > 0 we have |n−s| = n−σ, because n−s = exp(−s log n) = n−σe−it log n and e−it log n has absolute value 1; and that both sides of (1) converge absolutely in the half-plane σ > 1, and are equal there either by analytic continuation from the real ray t = 0 or by the same proof we used for the real case. Riemann showed that the function ζ(s) extends from that half-plane to a meromorphic function on all of C (the “Riemann zeta function”), analytic except for a simple pole at s = 1. The continuation to σ > 0 is readily obtained from our formula ∞ ∞ 1 X Z n+1 X Z n+1 ζ(s) − = n−s − x−s dx = (n−s − x−s) dx, s − 1 n=1 n n=1 n since for x ∈ [n, n + 1] (n ≥ 1) and σ > 0 we have Z x −s −s −1−s −1−σ |n − x | = s y dy ≤ |s|n n so the formula for ζ(s) − (1/(s − 1)) is a sum of analytic functions converging absolutely in compact subsets of {σ + it : σ > 0} and thus gives an analytic function there. -
An Identity for Generalized Bernoulli Polynomials
1 2 Journal of Integer Sequences, Vol. 23 (2020), 3 Article 20.11.2 47 6 23 11 An Identity for Generalized Bernoulli Polynomials Redha Chellal1 and Farid Bencherif LA3C, Faculty of Mathematics USTHB Algiers Algeria [email protected] [email protected] [email protected] Mohamed Mehbali Centre for Research Informed Teaching London South Bank University London United Kingdom [email protected] Abstract Recognizing the great importance of Bernoulli numbers and Bernoulli polynomials in various branches of mathematics, the present paper develops two results dealing with these objects. The first one proposes an identity for the generalized Bernoulli poly- nomials, which leads to further generalizations for several relations involving classical Bernoulli numbers and Bernoulli polynomials. In particular, it generalizes a recent identity suggested by Gessel. The second result allows the deduction of similar identi- ties for Fibonacci, Lucas, and Chebyshev polynomials, as well as for generalized Euler polynomials, Genocchi polynomials, and generalized numbers of Stirling. 1Corresponding author. 1 1 Introduction Let N and C denote, respectively, the set of positive integers and the set of complex numbers. (α) In his book, Roman [41, p. 93] defined generalized Bernoulli polynomials Bn (x) as follows: for all n ∈ N and α ∈ C, we have ∞ tn t α B(α)(x) = etx. (1) n n! et − 1 Xn=0 The Bernoulli numbers Bn, classical Bernoulli polynomials Bn(x), and generalized Bernoulli (α) numbers Bn are, respectively, defined by (1) (α) (α) Bn = Bn(0), Bn(x)= Bn (x), and Bn = Bn (0). (2) The Bernoulli numbers and the Bernoulli polynomials play a fundamental role in various branches of mathematics, such as combinatorics, number theory, mathematical analysis, and topology. -
Accessing Bernoulli-Numbers by Matrix-Operations Gottfried Helms 3'2006 Version 2.3
Accessing Bernoulli-Numbers by Matrix-Operations Gottfried Helms 3'2006 Version 2.3 Accessing Bernoulli-Numbers by Matrixoperations ........................................................................ 2 1. Introduction....................................................................................................................................................................... 2 2. A common equation of recursion (containing a significant error)..................................................................................... 3 3. Two versions B m and B p of bernoulli-numbers? ............................................................................................................... 4 4. Computation of bernoulli-numbers by matrixinversion of (P-I) ....................................................................................... 6 5. J contains the eigenvalues, and G m resp. G p contain the eigenvectors of P z resp. P s ......................................................... 7 6. The Binomial-Matrix and the Matrixexponential.............................................................................................................. 8 7. Bernoulli-vectors and the Matrixexponential.................................................................................................................... 8 8. The structure of the remaining coefficients in the matrices G m - and G p........................................................................... 9 9. The original problem of Jacob Bernoulli: "Powersums" - from G -
INTEGRALS of POWERS of LOGGAMMA 1. Introduction The
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 139, Number 2, February 2011, Pages 535–545 S 0002-9939(2010)10589-0 Article electronically published on August 18, 2010 INTEGRALS OF POWERS OF LOGGAMMA TEWODROS AMDEBERHAN, MARK W. COFFEY, OLIVIER ESPINOSA, CHRISTOPH KOUTSCHAN, DANTE V. MANNA, AND VICTOR H. MOLL (Communicated by Ken Ono) Abstract. Properties of the integral of powers of log Γ(x) from 0 to 1 are con- sidered. Analytic evaluations for the first two powers are presented. Empirical evidence for the cubic case is discussed. 1. Introduction The evaluation of definite integrals is a subject full of interconnections of many parts of mathematics. Since the beginning of Integral Calculus, scientists have developed a large variety of techniques to produce magnificent formulae. A partic- ularly beautiful formula due to J. L. Raabe [12] is 1 Γ(x + t) (1.1) log √ dx = t log t − t, for t ≥ 0, 0 2π which includes the special case 1 √ (1.2) L1 := log Γ(x) dx =log 2π. 0 Here Γ(x)isthegamma function defined by the integral representation ∞ (1.3) Γ(x)= ux−1e−udu, 0 for Re x>0. Raabe’s formula can be obtained from the Hurwitz zeta function ∞ 1 (1.4) ζ(s, q)= (n + q)s n=0 via the integral formula 1 t1−s (1.5) ζ(s, q + t) dq = − 0 s 1 coupled with Lerch’s formula ∂ Γ(q) (1.6) ζ(s, q) =log √ . ∂s s=0 2π An interesting extension of these formulas to the p-adic gamma function has recently appeared in [3]. -
A New Family of Zeta Type Functions Involving the Hurwitz Zeta Function and the Alternating Hurwitz Zeta Function
mathematics Article A New Family of Zeta Type Functions Involving the Hurwitz Zeta Function and the Alternating Hurwitz Zeta Function Daeyeoul Kim 1,* and Yilmaz Simsek 2 1 Department of Mathematics and Institute of Pure and Applied Mathematics, Jeonbuk National University, Jeonju 54896, Korea 2 Department of Mathematics, Faculty of Science, University of Akdeniz, Antalya TR-07058, Turkey; [email protected] * Correspondence: [email protected] Abstract: In this paper, we further study the generating function involving a variety of special numbers and ploynomials constructed by the second author. Applying the Mellin transformation to this generating function, we define a new class of zeta type functions, which is related to the interpolation functions of the Apostol–Bernoulli polynomials, the Bernoulli polynomials, and the Euler polynomials. This new class of zeta type functions is related to the Hurwitz zeta function, the alternating Hurwitz zeta function, and the Lerch zeta function. Furthermore, by using these functions, we derive some identities and combinatorial sums involving the Bernoulli numbers and polynomials and the Euler numbers and polynomials. Keywords: Bernoulli numbers and polynomials; Euler numbers and polynomials; Apostol–Bernoulli and Apostol–Euler numbers and polynomials; Hurwitz–Lerch zeta function; Hurwitz zeta function; alternating Hurwitz zeta function; generating function; Mellin transformation MSC: 05A15; 11B68; 26C0; 11M35 Citation: Kim, D.; Simsek, Y. A New Family of Zeta Type Function 1. Introduction Involving the Hurwitz Zeta Function The families of zeta functions and special numbers and polynomials have been studied and the Alternating Hurwitz Zeta widely in many areas. They have also been used to model real-world problems. -
The Euler-Maclaurin Summation Formula and Bernoulli Polynomials R 1 Consider Two Different Ways of Applying Integration by Parts to 0 F(X)Dx
The Euler-Maclaurin Summation Formula and Bernoulli Polynomials R 1 Consider two different ways of applying integration by parts to 0 f(x)dx. Z 1 Z 1 Z 1 1 0 0 f(x)dx = [xf(x)]0 − xf (x)dx = f(1) − xf (x)dx (1) 0 0 0 Z 1 Z 1 Z 1 1 0 f(1) + f(0) 0 f(x)dx = [(x − 1/2)f(x)]0 − (x − 1/2)f (x)dx = − (x − 1/2)f (x)dx (2) 0 0 2 0 The constant of integration was chosen to be 0 in (1), but −1/2 in (2). Which way is better? In general R 1 (2) is better. Since 0 (x − 1/2)dx = 0, that is x − 1/2 has zero average in (0, 1), it has better chance of reducing the last integral term, which is regarded as the error in estimating the given integral. We can again apply integration by parts to (2). Then the last integral will have f 00(x) multiplied by an integral of x − 1/2. We can select the constant of integration in such a way that the new polynomial multiplying f 00(x) will have zero average in the interval. If we continue this way we will get a formula which will have a higher derivative of f in the last integral multiplying a higher degree polynomial in x. If at each step the constant of integration is chosen in such a way that the new polynomial has zero average over (0, 1), we will get the Euler-Maclaurin summation formula. -
The Structure of Bernoulli Numbers
The structure of Bernoulli numbers Bernd C. Kellner Abstract We conjecture that the structure of Bernoulli numbers can be explicitly given in the closed form n 2 −1 −1 n−l −1 −1 Bn = (−1) |n|p |p (χ(p,l) − p−1 )|p p p,l ∈ irr p−1∤n ( ) Ψ1 p−1|n Y n≡l (modY p−1) Y irr where the χ(p,l) are zeros of certain p-adic zeta functions and Ψ1 is the set of irregular pairs. The more complicated but improbable case where the conjecture does not hold is also handled; we obtain an unconditional structural formula for Bernoulli numbers. Finally, applications are given which are related to classical results. Keywords: Bernoulli number, Kummer congruences, irregular prime, irregular pair of higher order, Riemann zeta function, p-adic zeta function Mathematics Subject Classification 2000: 11B68 1 Introduction The classical Bernoulli numbers Bn are defined by the power series ∞ z zn = B , |z| < 2π , ez − 1 n n! n=0 X where all numbers Bn are zero with odd index n > 1. The even-indexed rational 1 1 numbers Bn alternate in sign. First values are given by B0 = 1, B1 = − 2 , B2 = 6 , 1 arXiv:math/0411498v1 [math.NT] 22 Nov 2004 B4 = − 30 . Although the first numbers are small with |Bn| < 1 for n = 2, 4,..., 12, these numbers grow very rapidly with |Bn|→∞ for even n →∞. For now, let n be an even positive integer. An elementary property of Bernoulli numbers is the following discovered independently by T. Clausen [Cla40] and K. -
Notes on Riemann's Zeta Function
NOTES ON RIEMANN’S ZETA FUNCTION DRAGAN MILICIˇ C´ 1. Gamma function 1.1. Definition of the Gamma function. The integral ∞ Γ(z)= tz−1e−tdt Z0 is well-defined and defines a holomorphic function in the right half-plane {z ∈ C | Re z > 0}. This function is Euler’s Gamma function. First, by integration by parts ∞ ∞ ∞ Γ(z +1)= tze−tdt = −tze−t + z tz−1e−t dt = zΓ(z) Z0 0 Z0 for any z in the right half-plane. In particular, for any positive integer n, we have Γ(n) = (n − 1)Γ(n − 1)=(n − 1)!Γ(1). On the other hand, ∞ ∞ Γ(1) = e−tdt = −e−t = 1; Z0 0 and we have the following result. 1.1.1. Lemma. Γ(n) = (n − 1)! for any n ∈ Z. Therefore, we can view the Gamma function as a extension of the factorial. 1.2. Meromorphic continuation. Now we want to show that Γ extends to a meromorphic function in C. We start with a technical lemma. Z ∞ 1.2.1. Lemma. Let cn, n ∈ +, be complex numbers such such that n=0 |cn| converges. Let P S = {−n | n ∈ Z+ and cn 6=0}. Then ∞ c f(z)= n z + n n=0 X converges absolutely for z ∈ C − S and uniformly on bounded subsets of C − S. The function f is a meromorphic function on C with simple poles at the points in S and Res(f, −n)= cn for any −n ∈ S. 1 2 D. MILICIˇ C´ Proof. Clearly, if |z| < R, we have |z + n| ≥ |n − R| for all n ≥ R. -
Tight Bounds on the Mutual Coherence of Sensing Matrices for Wigner D-Functions on Regular Grids
Tight bounds on the mutual coherence of sensing matrices for Wigner D-functions on regular grids Arya Bangun, Arash Behboodi, and Rudolf Mathar,∗ October 7, 2020 Abstract Many practical sampling patterns for function approximation on the rotation group utilizes regu- lar samples on the parameter axes. In this paper, we relate the mutual coherence analysis for sensing matrices that correspond to a class of regular patterns to angular momentum analysis in quantum mechanics and provide simple lower bounds for it. The products of Wigner d-functions, which ap- pear in coherence analysis, arise in angular momentum analysis in quantum mechanics. We first represent the product as a linear combination of a single Wigner d-function and angular momentum coefficients, otherwise known as the Wigner 3j symbols. Using combinatorial identities, we show that under certain conditions on the bandwidth and number of samples, the inner product of the columns of the sensing matrix at zero orders, which is equal to the inner product of two Legendre polynomials, dominates the mutual coherence term and fixes a lower bound for it. In other words, for a class of regular sampling patterns, we provide a lower bound for the inner product of the columns of the sensing matrix that can be analytically computed. We verify numerically our theoretical results and show that the lower bound for the mutual coherence is larger than Welch bound. Besides, we provide algorithms that can achieve the lower bound for spherical harmonics. 1 Introduction In many applications, the goal is to recover a function defined on a group, say on the sphere S2 and the rotation group SO(3), from only a few samples [1{5]. -
Higher Order Bernoulli and Euler Numbers
David Vella, Skidmore College [email protected] Generating Functions and Exponential Generating Functions • Given a sequence {푎푛} we can associate to it two functions determined by power series: • Its (ordinary) generating function is ∞ 풏 푓 풙 = 풂풏풙 풏=ퟏ • Its exponential generating function is ∞ 풂 품 풙 = 풏 풙풏 풏! 풏=ퟏ Examples • The o.g.f and the e.g.f of {1,1,1,1,...} are: 1 • f(x) = 1 + 푥 + 푥2 + 푥3 + ⋯ = , and 1−푥 푥 푥2 푥3 • g(x) = 1 + + + + ⋯ = 푒푥, respectively. 1! 2! 3! The second one explains the name... Operations on the functions correspond to manipulations on the sequence. For example, adding two sequences corresponds to adding the ogf’s, while to shift the index of a sequence, we multiply the ogf by x, or differentiate the egf. Thus, the functions provide a convenient way of studying the sequences. Here are a few more famous examples: Bernoulli & Euler Numbers • The Bernoulli Numbers Bn are defined by the following egf: x Bn n x x e 1 n1 n! • The Euler Numbers En are defined by the following egf: x 2e En n Sech(x) 2x x e 1 n0 n! Catalan and Bell Numbers • The Catalan Numbers Cn are known to have the ogf: ∞ 푛 1 − 1 − 4푥 2 퐶 푥 = 퐶푛푥 = = 2푥 1 + 1 − 4푥 푛=1 • Let Sn denote the number of different ways of partitioning a set with n elements into nonempty subsets. It is called a Bell number. It is known to have the egf: ∞ 푆 푥 푛 푥푛 = 푒 푒 −1 푛! 푛=1 Higher Order Bernoulli and Euler Numbers th w • The n Bernoulli Number of order w, B n is defined for positive integer w by: w x B w n xn x e 1 n1 n! th w • The n Euler Number of -
Special Values of the Gamma Function at CM Points
Special values of the Gamma function at CM points M. Ram Murty & Chester Weatherby The Ramanujan Journal An International Journal Devoted to the Areas of Mathematics Influenced by Ramanujan ISSN 1382-4090 Ramanujan J DOI 10.1007/s11139-013-9531-x 1 23 Your article is protected by copyright and all rights are held exclusively by Springer Science +Business Media New York. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Ramanujan J DOI 10.1007/s11139-013-9531-x Special values of the Gamma function at CM points M. Ram Murty · Chester Weatherby Received: 10 November 2011 / Accepted: 15 October 2013 © Springer Science+Business Media New York 2014 Abstract Little is known about the transcendence of certain values of the Gamma function, Γ(z). In this article, we study values of Γ(z)when Q(z) is an imaginary quadratic field. We also study special values of the digamma function, ψ(z), and the polygamma functions, ψt (z).