Fermat's Last Theorem
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:2003.01675V1 [Math.NT] 3 Mar 2020 of Their Locations
DIVISORS OF MODULAR PARAMETRIZATIONS OF ELLIPTIC CURVES MICHAEL GRIFFIN AND JONATHAN HALES Abstract. The modularity theorem implies that for every elliptic curve E=Q there exist rational maps from the modular curve X0(N) to E, where N is the conductor of E. These maps may be expressed in terms of pairs of modular functions X(z) and Y (z) where X(z) and Y (z) satisfy the Weierstrass equation for E as well as a certain differential equation. Using these two relations, a recursive algorithm can be used to calculate the q - expansions of these parametrizations at any cusp. Using these functions, we determine the divisor of the parametrization and the preimage of rational points on E. We give a sufficient condition for when these preimages correspond to CM points on X0(N). We also examine a connection between the al- gebras generated by these functions for related elliptic curves, and describe sufficient conditions to determine congruences in the q-expansions of these objects. 1. Introduction and statement of results The modularity theorem [2, 12] guarantees that for every elliptic curve E of con- ductor N there exists a weight 2 newform fE of level N with Fourier coefficients in Z. The Eichler integral of fE (see (3)) and the Weierstrass }-function together give a rational map from the modular curve X0(N) to the coordinates of some model of E: This parametrization has singularities wherever the value of the Eichler integral is in the period lattice. Kodgis [6] showed computationally that many of the zeros of the Eichler integral occur at CM points. -
MY UNFORGETTABLE EARLY YEARS at the INSTITUTE Enstitüde Unutulmaz Erken Yıllarım
MY UNFORGETTABLE EARLY YEARS AT THE INSTITUTE Enstitüde Unutulmaz Erken Yıllarım Dinakar Ramakrishnan `And what was it like,’ I asked him, `meeting Eliot?’ `When he looked at you,’ he said, `it was like standing on a quay, watching the prow of the Queen Mary come towards you, very slowly.’ – from `Stern’ by Seamus Heaney in memory of Ted Hughes, about the time he met T.S.Eliot It was a fortunate stroke of serendipity for me to have been at the Institute for Advanced Study in Princeton, twice during the nineteen eighties, first as a Post-doctoral member in 1982-83, and later as a Sloan Fellow in the Fall of 1986. I had the privilege of getting to know Robert Langlands at that time, and, needless to say, he has had a larger than life influence on me. It wasn’t like two ships passing in the night, but more like a rowboat feeling the waves of an oncoming ship. Langlands and I did not have many conversations, but each time we did, he would make a Zen like remark which took me a long time, at times months (or even years), to comprehend. Once or twice it even looked like he was commenting not on the question I posed, but on a tangential one; however, after much reflection, it became apparent that what he had said had an interesting bearing on what I had been wondering about, and it always provided a new take, at least to me, on the matter. Most importantly, to a beginner in the field like I was then, he was generous to a fault, always willing, whenever asked, to explain the subtle aspects of his own work. -
A Look at the ABC Conjecture Via Elliptic Curves
A Look at the ABC Conjecture via Elliptic Curves Nicole Cleary Brittany DiPietro Alexander Hill Gerard D.Koffi Beihua Yan Abstract We study the connection between elliptic curves and ABC triples. Two important results are proved. The first gives a method for finding new ABC triples. The second result states conditions under which the power of the new ABC triple increases or decreases. Finally, we present two algorithms stemming from these two results. 1 Introduction The ABC conjecture is a central open problem in number theory. It was formu- lated in 1985 by Joseph Oesterl´eand David Masser, who worked separately but eventually proposed equivalent conjectures. Like many other problems in number theory, the ABC conjecture can be stated in relatively simple, understandable terms. However, there are several profound implications of the ABC conjecture. Fermat's Last Theorem is one such implication which we will explore in the second section of this paper. 1.1 Statement of The ABC Conjecture Before stating the ABC conjecture, we define a few terms that are used frequently throughout this paper. Definition 1.1.1 The radical of a positive integer n, denoted rad(n), is defined as the product of the distinct prime factors of n. That is, rad(n) = Q p where p is prime. pjn 1 Example 1.1.2 Let n = 72 = 23 · 32: Then rad(n) = rad(72) = rad(23 · 32) = 2 · 3 = 6: Definition 1.1.3 Let A; B; C 2 Z. A triple (A; B; C) is called an ABC triple if A + B = C and gcd(A; B; C) = 1. -
June 2014 Society Meetings Society and Events SHEPHARD PRIZE: NEW PRIZE Meetings for MATHEMATICS 2014 and Events Following a Very Generous Tions Open in Late 2014
LONDONLONDON MATHEMATICALMATHEMATICAL SOCIETYSOCIETY NEWSLETTER No. 437 June 2014 Society Meetings Society and Events SHEPHARD PRIZE: NEW PRIZE Meetings FOR MATHEMATICS 2014 and Events Following a very generous tions open in late 2014. The prize Monday 16 June donation made by Professor may be awarded to either a single Midlands Regional Meeting, Loughborough Geoffrey Shephard, the London winner or jointly to collaborators. page 11 Mathematical Society will, in 2015, The mathematical contribution Friday 4 July introduce a new prize. The prize, to which an award will be made Graduate Student to be known as the Shephard must be published, though there Meeting, Prize will be awarded bienni- is no requirement that the pub- London ally. The award will be made to lication be in an LMS-published page 8 a mathematician (or mathemati- journal. Friday 4 July cians) based in the UK in recog- Professor Shephard himself is 1 Society Meeting nition of a specific contribution Professor of Mathematics at the Hardy Lecture to mathematics with a strong University of East Anglia whose London intuitive component which can be main fields of interest are in page 9 explained to those with little or convex geometry and tessella- Wednesday 9 July no knowledge of university math- tions. Professor Shephard is one LMS Popular Lectures ematics, though the work itself of the longest-standing members London may involve more advanced ideas. of the LMS, having given more page 17 The Society now actively en- than sixty years of membership. Tuesday 19 August courages members to consider The Society wishes to place on LMS Meeting and Reception nominees who could be put record its thanks for his support ICM 2014, Seoul forward for the award of a in the establishment of the new page 11 Shephard Prize when nomina- prize. -
Advanced Algebra
Cornerstones Series Editors Charles L. Epstein, University of Pennsylvania, Philadelphia Steven G. Krantz, University of Washington, St. Louis Advisory Board Anthony W. Knapp, State University of New York at Stony Brook, Emeritus Anthony W. Knapp Basic Algebra Along with a companion volume Advanced Algebra Birkhauser¨ Boston • Basel • Berlin Anthony W. Knapp 81 Upper Sheep Pasture Road East Setauket, NY 11733-1729 U.S.A. e-mail to: [email protected] http://www.math.sunysb.edu/˜ aknapp/books/b-alg.html Cover design by Mary Burgess. Mathematics Subject Classicification (2000): 15-01, 20-02, 13-01, 12-01, 16-01, 08-01, 18A05, 68P30 Library of Congress Control Number: 2006932456 ISBN-10 0-8176-3248-4 eISBN-10 0-8176-4529-2 ISBN-13 978-0-8176-3248-9 eISBN-13 978-0-8176-4529-8 Advanced Algebra ISBN 0-8176-4522-5 Basic Algebra and Advanced Algebra (Set) ISBN 0-8176-4533-0 Printed on acid-free paper. c 2006 Anthony W. Knapp All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Birkhauser¨ Boston, c/o Springer Science+Business Media LLC, 233 Spring Street, New York, NY 10013, USA) and the author, except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. -
A Dynamic Epistemic Logic Analysis of Equality Negation and Other Epistemic Covering Tasks$,$$
A Dynamic Epistemic Logic Analysis of Equality Negation and other Epistemic Covering TasksI,II Hans van Ditmarscha, Eric´ Goubaultb, Marijana Lazi´cc, J´er´emy Ledentd, Sergio Rajsbaume aUniversit´ede Lorraine, CNRS, LORIA, F-54000 Nancy, France bLIX, CNRS, Ecole´ Polytechnique, Institute Polytechnique de Paris, France cTechnical University of Munich, Germany dDepartment of Computer and Information Sciences, University of Strathclyde, UK eInstituto de Matem´aticas, UNAM, Mexico Abstract In this paper we study the solvability of the equality negation task in a simple wait- free model where two processes communicate by reading and writing shared variables or exchanging messages. In this task, the two processes start with a private input value in the set f0; 1; 2g, and after communicating, each one must decide a binary output value, so that the outputs of the processes are the same if and only if the input values of the processes are different. This task is already known to be unsolvable; our goal here is to prove this result using the dynamic epistemic logic (DEL) approach introduced by Goubault, Ledent and Rajsbaum in GandALF 2018. We show that in fact, there is no epistemic logic formula that explains why the task is unsolvable. Furthermore, we observe that this task is a particular case of an epistemic covering task. We thus establish a connection between the existing DEL framework and the theory of covering spaces in topology, and prove that the same result holds for any epistemic covering task: no epistemic formula explains the unsolvability. Keywords: Dynamic Epistemic Logic, distributed computing, equality negation, combinatorial topology, covering spaces. -