UNITARY HARMONIC NUMBERS (3) //*(«) = Nd*(N)/A*(N) = U 2P?Ap? +
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bi-Unitary Multiperfect Numbers, I
Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 Vol. 26, 2020, No. 1, 93–171 DOI: 10.7546/nntdm.2020.26.1.93-171 Bi-unitary multiperfect numbers, I Pentti Haukkanen1 and Varanasi Sitaramaiah2 1 Faculty of Information Technology and Communication Sciences, FI-33014 Tampere University, Finland e-mail: [email protected] 2 1/194e, Poola Subbaiah Street, Taluk Office Road, Markapur Prakasam District, Andhra Pradesh, 523316 India e-mail: [email protected] Dedicated to the memory of Prof. D. Suryanarayana Received: 19 December 2019 Revised: 21 January 2020 Accepted: 5 March 2020 Abstract: A divisor d of a positive integer n is called a unitary divisor if gcd(d; n=d) = 1; and d is called a bi-unitary divisor of n if the greatest common unitary divisor of d and n=d is unity. The concept of a bi-unitary divisor is due to D. Surynarayana [12]. Let σ∗∗(n) denote the sum of the bi-unitary divisors of n: A positive integer n is called a bi-unitary perfect number if σ∗∗(n) = 2n. This concept was introduced by C. R. Wall in 1972 [15], and he proved that there are only three bi-unitary perfect numbers, namely 6, 60 and 90. In 1987, Peter Hagis [6] introduced the notion of bi-unitary multi k-perfect numbers as solu- tions n of the equation σ∗∗(n) = kn. A bi-unitary multi 3-perfect number is called a bi-unitary triperfect number. A bi-unitary multiperfect number means a bi-unitary multi k-perfect number with k ≥ 3: Hagis [6] proved that there are no odd bi-unitary multiperfect numbers. -
On the Largest Odd Component of a Unitary Perfect Number*
ON THE LARGEST ODD COMPONENT OF A UNITARY PERFECT NUMBER* CHARLES R. WALL Trident Technical College, Charleston, SC 28411 (Submitted September 1985) 1. INTRODUCTION A divisor d of an integer n is a unitary divisor if gcd (d9 n/d) = 1. If d is a unitary divisor of n we write d\\n9 a natural extension of the customary notation for the case in which d is a prime power. Let o * (n) denote the sum of the unitary divisors of n: o*(n) = £ d. d\\n Then o* is a multiplicative function and G*(pe)= 1 + p e for p prime and e > 0. We say that an integer N is unitary perfect if o* (N) = 2#. In 1966, Sub- baro and Warren [2] found the first four unitary perfect numbers: 6 = 2 * 3 ; 60 = 223 - 5 ; 90 = 2 * 325; 87,360 = 263 • 5 • 7 • 13. In 1969s I announced [3] the discovery of another such number, 146,361,936,186,458,562,560,000 = 2183 • 5^7 • 11 • 13 • 19 • 37 • 79 • 109 * 157 • 313, which I later proved [4] to be the fifth unitary perfect number. No other uni- tary perfect numbers are known. Throughout what follows, let N = 2am (with m odd) be unitary perfect and suppose that K is the largest odd component (i.e., prime power unitary divisor) of N. In this paper we outline a proof that, except for the five known unitary perfect numbers, K > 2 2. TECHNIQUES In light of the fact that 0*(pe) = 1 + pe for p prime, the problem of find- ing a unitary perfect number is equivalent to that of expressing 2 as a product of fractions, with each numerator being 1 more than its denominator, and with the denominators being powers of distinct primes. -
Types of Integer Harmonic Numbers (Ii)
Bulletin of the Transilvania University of Bra¸sov • Vol 9(58), No. 1 - 2016 Series III: Mathematics, Informatics, Physics, 67-82 TYPES OF INTEGER HARMONIC NUMBERS (II) Adelina MANEA1 and Nicu¸sorMINCULETE2 Abstract In the first part of this paper we obtained several bi-unitary harmonic numbers which are higher than 109, using the Mersenne prime numbers. In this paper we investigate bi-unitary harmonic numbers of some particular forms: 2k · n, pqt2, p2q2t, with different primes p, q, t and a squarefree inte- ger n. 2010 Mathematics Subject Classification: 11A25. Key words: harmonic numbers, bi-unitary harmonic numbers. 1 Introduction The harmonic numbers introduced by O. Ore in [8] were named in this way by C. Pomerance in [11]. They are defined as positive integers for which the harmonic mean of their divisors is an integer. O. Ore linked the perfect numbers with the harmonic numbers, showing that every perfect number is harmonic. A list of the harmonic numbers less than 2 · 109 is given by G. L. Cohen in [1], finding a total of 130 of harmonic numbers, and G. L. Cohen and R. M. Sorli in [2] have continued to this list up to 1010. The notion of harmonic numbers is extended to unitary harmonic numbers by K. Nageswara Rao in [7] and then to bi-unitary harmonic numbers by J. S´andor in [12]. Our paper is inspired by [12], where J. S´andorpresented a table containing all the 211 bi-unitary harmonic numbers up to 109. We extend the J. S´andors's study, looking for other bi-unitary harmonic numbers, greater than 109. -
A Study of .Perfect Numbers and Unitary Perfect
CORE Metadata, citation and similar papers at core.ac.uk Provided by SHAREOK repository A STUDY OF .PERFECT NUMBERS AND UNITARY PERFECT NUMBERS By EDWARD LEE DUBOWSKY /I Bachelor of Science Northwest Missouri State College Maryville, Missouri: 1951 Master of Science Kansas State University Manhattan, Kansas 1954 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of .the requirements fqr the Degree of DOCTOR OF EDUCATION May, 1972 ,r . I \_J.(,e, .u,,1,; /q7Q D 0 &'ISs ~::>-~ OKLAHOMA STATE UNIVERSITY LIBRARY AUG 10 1973 A STUDY OF PERFECT NUMBERS ·AND UNITARY PERFECT NUMBERS Thesis Approved: OQ LL . ACKNOWLEDGEMENTS I wish to express my sincere gratitude to .Dr. Gerald K. Goff, .who suggested. this topic, for his guidance and invaluable assistance in the preparation of this dissertation. Special thanks.go to the members of. my advisory committee: 0 Dr. John Jewett, Dr. Craig Wood, Dr. Robert Alciatore, and Dr. Vernon Troxel. I wish to thank. Dr. Jeanne Agnew for the excellent training in number theory. that -made possible this .study. I wish tc;, thank Cynthia Wise for her excellent _job in typing this dissertation •. Finally, I wish to express gratitude to my wife, Juanita, .and my children, Sondra and David, for their encouragement and sacrifice made during this study. TABLE OF CONTENTS Chapter Page I. HISTORY AND INTRODUCTION. 1 II. EVEN PERFECT NUMBERS 4 Basic Theorems • • • • • • • • . 8 Some Congruence Relations ••• , , 12 Geometric Numbers ••.••• , , , , • , • . 16 Harmonic ,Mean of the Divisors •. ~ ••• , ••• I: 19 Other Properties •••• 21 Binary Notation. • •••• , ••• , •• , 23 III, ODD PERFECT NUMBERS . " . 27 Basic Structure • , , •• , , , . -
POWERFUL AMICABLE NUMBERS 1. Introduction Let S(N) := ∑ D Be the Sum of the Proper Divisors of the Natural Number N. Two Disti
POWERFUL AMICABLE NUMBERS PAUL POLLACK P Abstract. Let s(n) := djn; d<n d denote the sum of the proper di- visors of the natural number n. Two distinct positive integers n and m are said to form an amicable pair if s(n) = m and s(m) = n; in this case, both n and m are called amicable numbers. The first example of an amicable pair, known already to the ancients, is f220; 284g. We do not know if there are infinitely many amicable pairs. In the opposite direction, Erd}osshowed in 1955 that the set of amicable numbers has asymptotic density zero. Let ` ≥ 1. A natural number n is said to be `-full (or `-powerful) if p` divides n whenever the prime p divides n. As shown by Erd}osand 1=` Szekeres in 1935, the number of `-full n ≤ x is asymptotically c`x , as x ! 1. Here c` is a positive constant depending on `. We show that for each fixed `, the set of amicable `-full numbers has relative density zero within the set of `-full numbers. 1. Introduction P Let s(n) := djn; d<n d be the sum of the proper divisors of the natural number n. Two distinct natural numbers n and m are said to form an ami- cable pair if s(n) = m and s(m) = n; in this case, both n and m are called amicable numbers. The first amicable pair, 220 and 284, was known already to the Pythagorean school. Despite their long history, we still know very little about such pairs. -
On the Number of Distinct Exponents in the Prime Factorization of an Integer
Proc. Indian Acad. Sci. (Math. Sci.) (2020) 130:27 https://doi.org/10.1007/s12044-020-0556-y On the number of distinct exponents in the prime factorization of an integer CARLO SANNA Department of Mathematics, Università degli Studi di Genova, Genoa, Italy E-mail: [email protected] MS received 25 February 2019; revised 5 September 2019; accepted 11 November 2019 Abstract. Let f (n) be the number of distinct exponents in the prime factorization of the natural number n. We prove some results about the distribution of f (n). In particular, for any positive integer k, we obtain that #{n ≤ x : f (n) = k}∼Ak x and Bx(log log x)k #{n ≤ x : f (n) = ω(n) − k}∼ , k! log x as x →+∞,whereω(n) is the number of prime factors of n and Ak, B > 0 are some explicit constants. The latter asymptotic extends a result of Akta¸s and Ram Murty (Proc. Indian Acad. Sci. (Math. Sci.) 127(3) (2017) 423–430) about numbers having mutually distinct exponents in their prime factorization. Keywords. Prime factorization; squarefree numbers; powerful number. 2010 Mathematics Subject Classification. Primary: 11N25; Secondary: 11N37, 11N64. 1. Introduction = a1 ··· as > < Let n p1 ps be the factorization of the natural number n 1, where p1 ··· < ps are prime numbers and a1,...,as are positive integers. Several functions of the exponents a1,...,as have been studied, including their product [17], their arithmetic mean [2,4,5,7], and their maximum and minimum [11,13,15,18]. See also [3,8]fora more general function. -
Integer Sequences
UHX6PF65ITVK Book > Integer sequences Integer sequences Filesize: 5.04 MB Reviews A very wonderful book with lucid and perfect answers. It is probably the most incredible book i have study. Its been designed in an exceptionally simple way and is particularly just after i finished reading through this publication by which in fact transformed me, alter the way in my opinion. (Macey Schneider) DISCLAIMER | DMCA 4VUBA9SJ1UP6 PDF > Integer sequences INTEGER SEQUENCES Reference Series Books LLC Dez 2011, 2011. Taschenbuch. Book Condition: Neu. 247x192x7 mm. This item is printed on demand - Print on Demand Neuware - Source: Wikipedia. Pages: 141. Chapters: Prime number, Factorial, Binomial coeicient, Perfect number, Carmichael number, Integer sequence, Mersenne prime, Bernoulli number, Euler numbers, Fermat number, Square-free integer, Amicable number, Stirling number, Partition, Lah number, Super-Poulet number, Arithmetic progression, Derangement, Composite number, On-Line Encyclopedia of Integer Sequences, Catalan number, Pell number, Power of two, Sylvester's sequence, Regular number, Polite number, Ménage problem, Greedy algorithm for Egyptian fractions, Practical number, Bell number, Dedekind number, Hofstadter sequence, Beatty sequence, Hyperperfect number, Elliptic divisibility sequence, Powerful number, Znám's problem, Eulerian number, Singly and doubly even, Highly composite number, Strict weak ordering, Calkin Wilf tree, Lucas sequence, Padovan sequence, Triangular number, Squared triangular number, Figurate number, Cube, Square triangular -
Universitatis Scientiarum Budapestinensis De Rolando Eötvös Nominatae Sectio Computatorica
ANNALES Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae sectio computatorica TOMUS XXXIV. REDIGIT I. KÁTAI ADIUVANTIBUS N.L. BASSILY, A. BENCZÚR, BUI MINH PHONG, Z. DARÓCZY, J. DEMETROVICS, R. FARZAN, S. FRIDLI, J. GALAMBOS, J. GONDA, Z. HORVÁTH, K.-H. INDLEKOFER, A. IVÁNYI, A. JÁRAI, J.-M. DE KONINCK, A. KÓSA, M. KOVÁCS, L. KOZMA, L. LAKATOS, P. RACSKÓ, F. SCHIPP, P. SIMON, G. STOYAN, L. SZILI, P.D. VARBANETS, L. VARGA, F. WEISZ 2011 Jarai´ Antal RESULTS ON CLASSES OF FUNCTIONAL EQUATIONS TRIBUTE TO ANTAL JARAI´ by J´anos Acz´el and Che Tat Ng While individual noncomposite functional equations in several variables had been solved at least since d’Alembert 1747 [9] and Cauchy 1821 [8], results on broad classes of such equations began appearing in the 1950’s and 1960’s. On general methods of solution see e.g. Acz´el [1] and for uniqueness of solutions Acz´el [2, 3], Acz´el and Hossz´u [6], Miller [20], Ng [21, 22], followed by several others. – Opening up and cultivating the field of regularization is mainly J´arai’s achievement. By regularization we mean assuming weaker regularity condi- tions, say measurability, of the unknown function and proving differentiability of several orders, for whole classes of functional equations. Differentiability of the unknown function(s) in the functional equation often leads to differential equations that are easier to solve. For example, in Acz´el and Chung [5] it was shown that locally Lebesgue integrable solutions of the functional equation n m fi(x + λiy)= pk(x)qk(y) i=1 k=1 holding for x, y on open real intervals, with appropriate independence between the functions, are in fact differentiable infinitely many times. -
The Secret Code of God
The Secret Code of God Abul Hassan Copy Rights and 19 19 – The Secret Code of God By: Abul Hassan 1st Edition: 2010 No Part of this book may be reproduced in any form or by any means electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher or author. However any one can download the electronic version of this book, i.e. free eBook from any website on the internet without our permission for the purposes of reading and research or from our website – www.ali-pi.com. Abul Hassan www.ali-pi.com [email protected] [email protected] Price: US$ 19.00/CAN$ 19.00 19 – The Secret Code of God Page 2 Contents and 19 Topics Page 1. Copy Rights and 19 2 2. Abul Hassan’s Desk and 19 5 3. Dedication and 19 7 4. Coding and 19 8 5. Religions of the world and 19 10 6. Bahai’s and 19 11 7. Hinduism and 19 12 8. Symbolism and 19 12 9. Judaism and 19 13 10. Other faiths and 19 16 11. Christianity and 19 17 12. Islam and 19 25 13. Security Code and 19 29 14. Holy Quran and 19 30 15. 99 Names of Allah and 19 73 16. Arabic Alphabets and 19 87 17. Everything and 19 90 18. Mathematics and 19 94 19. Mathematical Properties of 19 97 20. Prime Numbers and 19 102 21. Perfect Numbers and 19 111 22. Powerful Numbers and 19 115 23. Enneadecagon and 19 116 24. -
Tables of Aliquot Cycles
5/29/2017 Tables of Aliquot Cycles http://amicable.homepage.dk/tables.htm Go FEB MAY JUN f ❎ 117 captures 02 ⍰ ▾ About 28 May 2002 ‑ 2 May 2014 2012 2014 2015 this capture Tables of Aliquot Cycles Click on the number of known cycles to view the corresponding lists. Sociable Sociable Numbers Amicable Numbers Numbers Perfect Numbers of order four Type of other orders Known Last Known Last Known Last Known Last Cycles Update Cycles Update Cycles Update Cycles Update 28Sep 01Oct 13Nov 11Sep Ordinary 11994387 142 10 44 2007 2007 2006 2006 28Sep 20Nov 14Jun 14Dec Unitary 4911908 191 24 5 2007 2006 2005 1997 28Sep 28Sep 20Nov 28Sep Infinitary 11538100 5034 129 190 2007 2007 2006 2007 Exponential (note 3089296 28Sep 371 20Nov 38 15Jun 12 06Dec 2) 2007 2006 2005 1998 05Feb 08May 18Oct 11Mar Augmented 1931 2 0 note 1 2002 2003 1997 1998 05Feb 06Dec 06Dec Augmented Unitary 27 0 0 2002 1998 1998 Augmented 10Sep 06Dec 06Dec 425 0 0 Infinitary 2003 1998 1998 15Feb 18Oct 18Oct 11Mar Reduced 1946 0 1 0 2003 1997 1997 1998 Reduced Unitary 28 15Feb 0 06Dec 0 06Dec http://web.archive.org/web/20140502102524/http://amicable.homepage.dk/tables.htm 1/3 5/29/2017 Tables of Aliquot Cycles http://amicable.homepage.dk/tables.htm2003 1998 Go 1998 FEB MAY JUN f ❎ 117 captures 10Sep 06Dec 06Dec 02 ⍰ Reduced Infinitary 427 0 0 ▾ About 28 May 2002 ‑ 2 May 2014 2003 1998 1998 2012 2014 2015 this capture Note 1: All powers of 2 are augmented perfect numbers; no other augmented perfect numbers are known. -
Elementary Number Theory and Its Applications
Elementary Number Theory andlts Applications KennethH. Rosen AT&T Informotion SystemsLaboratories (formerly part of Bell Laborotories) A YY ADDISON-WESLEY PUBLISHING COMPANY Read ing, Massachusetts Menlo Park, California London Amsterdam Don Mills, Ontario Sydney Cover: The iteration of the transformation n/2 if n T(n) : \ is even l Qn + l)/2 if n is odd is depicted.The Collatz conjectureasserts that with any starting point, the iteration of ?"eventuallyreaches the integer one. (SeeProblem 33 of Section l.2of the text.) Library of Congress Cataloging in Publication Data Rosen, Kenneth H. Elementary number theory and its applications. Bibliography: p. Includes index. l. Numbers, Theory of. I. Title. QA24l.R67 1984 512',.72 83-l1804 rsBN 0-201-06561-4 Reprinted with corrections, June | 986 Copyright O 1984 by Bell Telephone Laboratories and Kenneth H. Rosen. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical,photocopying, recording, or otherwise,without prior written permission of the publisher. printed in the United States of America. Published simultaneously in Canada. DEFGHIJ_MA_8987 Preface Number theory has long been a favorite subject for studentsand teachersof mathematics. It is a classical subject and has a reputation for being the "purest" part of mathematics, yet recent developments in cryptology and computer science are based on elementary number theory. This book is the first text to integrate these important applications of elementary number theory with the traditional topics covered in an introductory number theory course. This book is suitable as a text in an undergraduatenumber theory courseat any level. -
Numbers 1 to 100
Numbers 1 to 100 PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Tue, 30 Nov 2010 02:36:24 UTC Contents Articles −1 (number) 1 0 (number) 3 1 (number) 12 2 (number) 17 3 (number) 23 4 (number) 32 5 (number) 42 6 (number) 50 7 (number) 58 8 (number) 73 9 (number) 77 10 (number) 82 11 (number) 88 12 (number) 94 13 (number) 102 14 (number) 107 15 (number) 111 16 (number) 114 17 (number) 118 18 (number) 124 19 (number) 127 20 (number) 132 21 (number) 136 22 (number) 140 23 (number) 144 24 (number) 148 25 (number) 152 26 (number) 155 27 (number) 158 28 (number) 162 29 (number) 165 30 (number) 168 31 (number) 172 32 (number) 175 33 (number) 179 34 (number) 182 35 (number) 185 36 (number) 188 37 (number) 191 38 (number) 193 39 (number) 196 40 (number) 199 41 (number) 204 42 (number) 207 43 (number) 214 44 (number) 217 45 (number) 220 46 (number) 222 47 (number) 225 48 (number) 229 49 (number) 232 50 (number) 235 51 (number) 238 52 (number) 241 53 (number) 243 54 (number) 246 55 (number) 248 56 (number) 251 57 (number) 255 58 (number) 258 59 (number) 260 60 (number) 263 61 (number) 267 62 (number) 270 63 (number) 272 64 (number) 274 66 (number) 277 67 (number) 280 68 (number) 282 69 (number) 284 70 (number) 286 71 (number) 289 72 (number) 292 73 (number) 296 74 (number) 298 75 (number) 301 77 (number) 302 78 (number) 305 79 (number) 307 80 (number) 309 81 (number) 311 82 (number) 313 83 (number) 315 84 (number) 318 85 (number) 320 86 (number) 323 87 (number) 326 88 (number)