Download PDF # Integer Sequences

Total Page:16

File Type:pdf, Size:1020Kb

Download PDF # Integer Sequences 4DHTUDDXIK44 ^ eBook ^ Integer sequences Integer sequences Filesize: 8.43 MB Reviews Extensive information for ebook lovers. It typically is not going to expense too much. I discovered this book from my i and dad recommended this pdf to learn. (Prof. Gerardo Grimes III) DISCLAIMER | DMCA DS4ABSV1JQ8G > Kindle » Integer sequences INTEGER SEQUENCES Reference Series Books LLC Dez 2011, 2011. Taschenbuch. Book Condition: Neu. 247x192x7 mm. This item is printed on demand - Print on Demand Neuware - Source: Wikipedia. Pages: 141. Chapters: Prime number, Factorial, Binomial coeicient, Perfect number, Carmichael number, Integer sequence, Mersenne prime, Bernoulli number, Euler numbers, Fermat number, Square-free integer, Amicable number, Stirling number, Partition, Lah number, Super-Poulet number, Arithmetic progression, Derangement, Composite number, On-Line Encyclopedia of Integer Sequences, Catalan number, Pell number, Power of two, Sylvester's sequence, Regular number, Polite number, Ménage problem, Greedy algorithm for Egyptian fractions, Practical number, Bell number, Dedekind number, Hofstadter sequence, Beatty sequence, Hyperperfect number, Elliptic divisibility sequence, Powerful number, Znám's problem, Eulerian number, Singly and doubly even, Highly composite number, Strict weak ordering, Calkin Wilf tree, Lucas sequence, Padovan sequence, Triangular number, Squared triangular number, Figurate number, Cube, Square triangular number, Multiplicative partition, Perrin number, Smooth number, Ulam number, Primorial, Lambek Moser theorem, Harmonic divisor number, Lucas number, Home prime, Meander, Primefree sequence, Lucas-Carmichael number, Semiprime, Lazy caterer's sequence, Friendly number, Small set, Cullen number, Abundant number, Perfect totient number, Juggler sequence, Antichain, Perfect power, Pronic number, Superabundant number, Woodall number, Double Mersenne number, Strictly non-palindromic number, Boustrophedon transform, Somos sequence, Lucky number, Highly abundant number, Primary pseudoperfect number, Leyland number, Complete sequence, Weird number, Jacobsthal number, Sociable number, Ban number, Factorion, Giuga number, Almost prime, Primitive permutation group, Superperfect number, Euclid Mullin sequence, Motzkin number, Untouchable number, Refactorable number, Sphenic number, Thabit number, Carol number, Primorial prime, Blum integer, Deficient number, Idoneal number, Lobb numbers, Achilles number, Semiperfect number, Alternating factorial, Fractal sequence, Erdos Woods number, Magic constant, Euclid number, Proth number, Zeisel number, Multiply perfect number, Noncototient, Colossally abundant number, Nontotient, Fortunate number, Factorial prime, Nonhypotenuse number, Unitary perfect number, Kynea number, Schröder number, Poly-Bernoulli number, Hilbert number, Highly totient... Read Integer sequences Online Download PDF Integer sequences E89R3X82LV0Z / Doc \ Integer sequences Related eBooks Number One Fan CreateSpace Independent Publishing Platform. Paperback. Book Condition: New. This item is printed on demand. Paperback. 160 pages. Dimensions: 8.0in. x 5.2in. x 0.4in.Fourteen-year-old Billy Davis is mystery and suspense writer Stephen Michaelss number one fan.... Read eBook » Perfect Psychometric Test Results Cornerstone. Paperback. Book Condition: new. BRAND NEW, Perfect Psychometric Test Results, Joanna Moutafi, Ian Newcombe, Perfect Psychometric Test Results is an invaluable guide for anyone who wants to secure their ideal job. Written by a... Read eBook » Choose the Perfect Baby Name: Teach Yourself Hodder & Stoughton General Division. Paperback. Book Condition: new. BRAND NEW, Choose the Perfect Baby Name: Teach Yourself, Victoria Wilson, Whether you're expecting, planning or just interested, Choose the Perfect Baby Name will help you... Read eBook » Perfect Numerical Test Results Cornerstone. Paperback. Book Condition: new. BRAND NEW, Perfect Numerical Test Results, Joanna Moutafi, Ian Newcombe, Perfect Numerical Test Results is the essential guide for anyone who wants to secure their ideal job. Written by a... Read eBook » Perfect Numerical and Logical Test Results Cornerstone. Paperback. Book Condition: new. BRAND NEW, Perfect Numerical and Logical Test Results, Joanna Moutafi, Marianna Moutafi, Have you been asked to sit a numerical or logical reasoning test? -Do you need some help preparing... Read eBook » .
Recommended publications
  • Double-Authentication-Preventing Signatures
    A preliminary version of this paper appears in the proceedings of ESORICS 2014 [PS14]. The full version appears in the International Journal of Information Security [PS15]. This is the author's copy of the full version. The final publication is available at Springer via http://dx.doi.org/10.1007/s10207-015-0307-8. Double-authentication-preventing signatures Bertram Poettering1 and Douglas Stebila2 1 Foundations of Cryptography, Ruhr University Bochum, Germany 2 School of Electrical Engineering and Computer Science and School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia [email protected] [email protected] January 18, 2016 Abstract Digital signatures are often used by trusted authorities to make unique bindings between a subject and a digital object; for example, certificate authorities certify a public key belongs to a domain name, and time-stamping authorities certify that a certain piece of information existed at a certain time. Traditional digital signature schemes however impose no uniqueness conditions, so a trusted authority could make multiple certifications for the same subject but different objects, be it intentionally, by accident, or following a (legal or illegal) coercion. We propose the notion of a double-authentication-preventing signature, in which a value to be signed is split into two parts: a subject and a message. If a signer ever signs two different messages for the same subject, enough information is revealed to allow anyone to compute valid signatures on behalf of the signer. This double-signature forgeability property discourages signers from misbehaving|a form of self-enforcement|and would give binding authorities like CAs some cryptographic arguments to resist legal coercion.
    [Show full text]
  • Generalizations of Euler Numbers and Polynomials 1
    GENERALIZATIONS OF EULER NUMBERS AND POLYNOMIALS QIU-MING LUO AND FENG QI Abstract. In this paper, the concepts of Euler numbers and Euler polyno- mials are generalized, and some basic properties are investigated. 1. Introduction It is well-known that the Euler numbers and polynomials can be defined by the following definitions. Definition 1.1 ([1]). The Euler numbers Ek are defined by the following expansion t ∞ 2e X Ek = tk, |t| ≤ π. (1.1) e2t + 1 k! k=0 In [4, p. 5], the Euler numbers is defined by t/2 ∞ n 2n 2e t X (−1) En t = sech = , |t| ≤ π. (1.2) et + 1 2 (2n)! 2 n=0 Definition 1.2 ([1, 4]). The Euler polynomials Ek(x) for x ∈ R are defined by xt ∞ 2e X Ek(x) = tk, |t| ≤ π. (1.3) et + 1 k! k=0 It can also be shown that the polynomials Ei(t), i ∈ N, are uniquely determined by the following two properties 0 Ei(t) = iEi−1(t),E0(t) = 1; (1.4) i Ei(t + 1) + Ei(t) = 2t . (1.5) 2000 Mathematics Subject Classification. 11B68. Key words and phrases. Euler numbers, Euler polynomials, generalization. The authors were supported in part by NNSF (#10001016) of China, SF for the Prominent Youth of Henan Province, SF of Henan Innovation Talents at Universities, NSF of Henan Province (#004051800), Doctor Fund of Jiaozuo Institute of Technology, China. This paper was typeset using AMS-LATEX. 1 2 Q.-M. LUO AND F. QI Euler polynomials are related to the Bernoulli numbers. For information about Bernoulli numbers and polynomials, please refer to [1, 2, 3, 4].
    [Show full text]
  • An Identity for Generalized Bernoulli Polynomials
    1 2 Journal of Integer Sequences, Vol. 23 (2020), 3 Article 20.11.2 47 6 23 11 An Identity for Generalized Bernoulli Polynomials Redha Chellal1 and Farid Bencherif LA3C, Faculty of Mathematics USTHB Algiers Algeria [email protected] [email protected] [email protected] Mohamed Mehbali Centre for Research Informed Teaching London South Bank University London United Kingdom [email protected] Abstract Recognizing the great importance of Bernoulli numbers and Bernoulli polynomials in various branches of mathematics, the present paper develops two results dealing with these objects. The first one proposes an identity for the generalized Bernoulli poly- nomials, which leads to further generalizations for several relations involving classical Bernoulli numbers and Bernoulli polynomials. In particular, it generalizes a recent identity suggested by Gessel. The second result allows the deduction of similar identi- ties for Fibonacci, Lucas, and Chebyshev polynomials, as well as for generalized Euler polynomials, Genocchi polynomials, and generalized numbers of Stirling. 1Corresponding author. 1 1 Introduction Let N and C denote, respectively, the set of positive integers and the set of complex numbers. (α) In his book, Roman [41, p. 93] defined generalized Bernoulli polynomials Bn (x) as follows: for all n ∈ N and α ∈ C, we have ∞ tn t α B(α)(x) = etx. (1) n n! et − 1 Xn=0 The Bernoulli numbers Bn, classical Bernoulli polynomials Bn(x), and generalized Bernoulli (α) numbers Bn are, respectively, defined by (1) (α) (α) Bn = Bn(0), Bn(x)= Bn (x), and Bn = Bn (0). (2) The Bernoulli numbers and the Bernoulli polynomials play a fundamental role in various branches of mathematics, such as combinatorics, number theory, mathematical analysis, and topology.
    [Show full text]
  • Secret Sharing and Perfect Zero Knowledge*
    Secret Sharing and Perfect Zero Knowledge* A. De Santis,l G. Di Crescenzo,l G. Persiano2 Dipartimento di Informatica ed Applicazioni, Universiti di Salerno, 84081 Baronissi (SA), Italy Dipartimento di Matematica, Universitk di Catania, 95125 Catania, Italy Abstract. In this work we study relations between secret sharing and perfect zero knowledge in the non-interactive model. Both secret sharing schemes and non-interactive zero knowledge are important cryptographic primitives with several applications in the management of cryptographic keys, in multi-party secure protocols, and many other areas. Secret shar- ing schemes are very well-studied objects while non-interactive perfect zer-knowledge proofs seem to be very elusive. In fact, since the intro- duction of the non-interactive model for zero knowledge, the only perfect zero-knowledge proof known was for quadratic non residues. In this work, we show that a large class of languages related to quadratic residuosity admits non-interactive perfect zero-knowledge proofs. More precisely, we give a protocol for proving non-interactively and in perfect zero knowledge the veridicity of any “threshold” statement where atoms are statements about the quadratic character of input elements. We show that our technique is very general and extend this result to any secret sharing scheme (of which threshold schemes are just an example). 1 Introduction Secret Sharing. The fascinating concept of Secret Sharing scheme has been first considered in [18] and [3]. A secret sharing scheme is a method of dividing a secret s among a set of participants in such a way that only qualified subsets of participants can reconstruct s but non-qualified subsets have absolutely no information on s.
    [Show full text]
  • Input for Carnival of Math: Number 115, October 2014
    Input for Carnival of Math: Number 115, October 2014 I visited Singapore in 1996 and the people were very kind to me. So I though this might be a little payback for their kindness. Good Luck. David Brooks The “Mathematical Association of America” (http://maanumberaday.blogspot.com/2009/11/115.html ) notes that: 115 = 5 x 23. 115 = 23 x (2 + 3). 115 has a unique representation as a sum of three squares: 3 2 + 5 2 + 9 2 = 115. 115 is the smallest three-digit integer, abc , such that ( abc )/( a*b*c) is prime : 115/5 = 23. STS-115 was a space shuttle mission to the International Space Station flown by the space shuttle Atlantis on Sept. 9, 2006. The “Online Encyclopedia of Integer Sequences” (http://www.oeis.org) notes that 115 is a tridecagonal (or 13-gonal) number. Also, 115 is the number of rooted trees with 8 vertices (or nodes). If you do a search for 115 on the OEIS website you will find out that there are 7,041 integer sequences that contain the number 115. The website “Positive Integers” (http://www.positiveintegers.org/115) notes that 115 is a palindromic and repdigit number when written in base 22 (5522). The website “Number Gossip” (http://www.numbergossip.com) notes that: 115 is the smallest three-digit integer, abc, such that (abc)/(a*b*c) is prime. It also notes that 115 is a composite, deficient, lucky, odd odious and square-free number. The website “Numbers Aplenty” (http://www.numbersaplenty.com/115) notes that: It has 4 divisors, whose sum is σ = 144.
    [Show full text]
  • On Abundancy Index of Some Special Class of Numbers
    Sohag J. Math. 4, No. 2, 37-40 (2017) 37 Sohag Journal of Mathematics An International Journal http://dx.doi.org/10.18576/sjm/040202 On Abundancy Index of Some Special Class of Numbers Bhabesh Das1,∗ and Helen K. Saikia2 1 Department of Mathematics, B.P.C.College, Assam, 781127, India 2 Department of Mathematics, Gauhati University, Assam, 781014, India Received: 10 Dec. 2015, Revised: 12 Sep. 2016, Accepted: 23 Sep. 2016 Published online: 1 May 2017 σ(n) σ Abstract: For any positive integer n, abundancy index I(n) is defined as I(n) = n , where (n) is the sum of all positive divisors of n. In this paper, we have discussed non trivial lower and upper bounds of I(n) for some special class of numbers like Quasi perfect numbers, Super hyperperfect numbers, Near perfect numbers and Hyperperfect numbers. Keywords: Quasi perfect number, Super hyperperfect number, Near perfect number, Hyperperfect number p−1 1 Introduction of n. If m = 2 Mp is an even perfect number, where p p both p and Mp = 2 − 1 are primes, then n = 2m, n = 2 m We known divisor function σ(n) is the sum of all positive and n = (2p − 1)m are near perfect numbers. There are divisors of n , including 1 and n itself. The abundancy finitely many near perfect numbers other than these three p index I(n) for any positive integer n is associated with the shapes. The primes of the form Mp = 2 − 1 are called divisor function σ(n) and is defined as Mersenne primes.
    [Show full text]
  • Generalized Perfect Numbers
    Acta Univ. Sapientiae, Mathematica, 1, 1 (2009) 73–82 Generalized perfect numbers Antal Bege Kinga Fogarasi Sapientia–Hungarian University of Sapientia–Hungarian University of Transilvania Transilvania Department of Mathematics and Department of Mathematics and Informatics, Informatics, Tˆargu Mure¸s, Romania Tˆargu Mure¸s, Romania email: [email protected] email: [email protected] Abstract. Let σ(n) denote the sum of positive divisors of the natural number n. A natural number is perfect if σ(n) = 2n. This concept was already generalized in form of superperfect numbers σ2(n)= σ(σ(n)) = k+1 k−1 2n and hyperperfect numbers σ(n)= k n + k . In this paper some new ways of generalizing perfect numbers are inves- tigated, numerical results are presented and some conjectures are estab- lished. 1 Introduction For the natural number n we denote the sum of positive divisors by arXiv:1008.0155v1 [math.NT] 1 Aug 2010 σ(n)= X d. d|n Definition 1 A positive integer n is called perfect number if it is equal to the sum of its proper divisors. Equivalently: σ(n)= 2n, where AMS 2000 subject classifications: 11A25, 11Y70 Key words and phrases: perfect number, superperfect number, k-hyperperfect number 73 74 A. Bege, K. Fogarasi Example 1 The first few perfect numbers are: 6, 28, 496, 8128, . (Sloane’s A000396 [15]), since 6 = 1 + 2 + 3 28 = 1 + 2 + 4 + 7 + 14 496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248 Euclid discovered that the first four perfect numbers are generated by the for- mula 2n−1(2n − 1).
    [Show full text]
  • Connected Components of Complex Divisor Functions
    CONNECTED COMPONENTS OF COMPLEX DIVISOR FUNCTIONS COLIN DEFANT Princeton University Fine Hall, 304 Washington Rd. Princeton, NJ 08544 X c Abstract. For any complex number c, define the divisor function σc : N ! C by σc(n) = d . djn Let σc(N) denote the topological closure of the range of σc. Extending previous work of the current author and Sanna, we prove that σc(N) has nonempty interior and has finitely many connected components if <(c) ≤ 0 and c 6= 0. We end with some open problems. 2010 Mathematics Subject Classification: Primary 11B05; Secondary 11N64. Keywords: Divisor function; connected component; spiral; nonempty interior; perfect number; friendly number. 1. Introduction One of the most famous and perpetually mysterious mathematical contributions of the ancient Greeks is the notion of a perfect number, a number that is equal to the sum of its proper divisors. Many early theorems in number theory spawned from attempts to understand perfect numbers. Although few modern mathematicians continue to attribute the same theological or mystical sig- nificance to perfect numbers that ancient people once did, these numbers remain a substantial inspiration for research in elementary number theory [2, 3, 5, 11, 14{16, 18]. arXiv:1711.04244v3 [math.NT] 4 May 2018 P A positive integer n is perfect if and only if σ1(n)=n = 2, where σ1(n) = djn d. More generally, for any complex number c, we define the divisor function σc by X c σc(n) = d : djn These functions have been studied frequently in the special cases in which c 2 {−1; 0; 1g.
    [Show full text]
  • On Hardy's Apology Numbers
    ON HARDY’S APOLOGY NUMBERS HENK KOPPELAAR AND PEYMAN NASEHPOUR Abstract. Twelve well known ‘Recreational’ numbers are generalized and classified in three generalized types Hardy, Dudeney, and Wells. A novel proof method to limit the search for the numbers is exemplified for each of the types. Combinatorial operators are defined to ease programming the search. 0. Introduction “Recreational Mathematics” is a broad term that covers many different areas including games, puzzles, magic, art, and more [31]. Some may have the impres- sion that topics discussed in recreational mathematics in general and recreational number theory, in particular, are only for entertainment and may not have an ap- plication in mathematics, engineering, or science. As for the mathematics, even the simplest operation in this paper, i.e. the sum of digits function, has application outside number theory in the domain of combinatorics [13, 26, 27, 28, 34] and in a seemingly unrelated mathematical knowledge domain: topology [21, 23, 15]. Pa- pers about generalizations of the sum of digits function are discussed by Stolarsky [38]. It also is a surprise to see that another topic of this paper, i.e. Armstrong numbers, has applications in “data security” [16]. In number theory, functions are usually non-continuous. This inhibits solving equations, for instance, by application of the contraction mapping principle because the latter is normally for continuous functions. Based on this argument, questions about solving number-theoretic equations ramify to the following: (1) Are there any solutions to an equation? (2) If there are any solutions to an equation, then are finitely many solutions? (3) Can all solutions be found in theory? (4) Can one in practice compute a full list of solutions? arXiv:2008.08187v1 [math.NT] 18 Aug 2020 The main purpose of this paper is to investigate these constructive (or algorith- mic) problems by the fixed points of some special functions of the form f : N N.
    [Show full text]
  • Second Grade Unit 1: Extending Base Ten Understanding
    Georgia Standards of Excellence Curriculum Frameworks Mathematics GSE Second Grade Unit 1: Extending Base Ten Understanding These materials are for nonprofit educational purposes only. Any other use may constitute copyright infringement. Georgia Department of Education Georgia Standards of Excellence Framework GSE Extending Base Ten Understanding Unit 1 Unit 1: Extending Base Ten Understanding TABLE OF CONTENTS Overview……………………………………………………………………………..... 3 Standards for Mathematical Practice …………………………………………………. 5 Standards for Mathematical Content …………………………………………………. 6 Big Ideas ………………………………………………………………………………. 6 Essential Questions ……………………………………………………………………….. 7 Concepts and Skills to Maintain ………………………………………………………. 7 Strategies for Teaching and Learning ……………………………………………. 8 Selected Terms and Symbols ………………………………………………..………… 10 Task Types ………………………………………………………………...………….. 12 Task Descriptions …………………………………………………………………….. 13 Intervention Table………………….………………………………………………….. 15 Straws! Straws! Straws!.........................................................................… 16 Where Am I on the Number Line? …………………………………… 23 I Spy a Number ………………………………………………………. 31 Number Hop …………………………………………………………… 38 Place Value Play …………………………………………………….... 44 The Importance of Zero ………………………………………………. 51 Base Ten Pictures …………………………………………………….. 62 Building Base Ten Numbers …………………………………………. 69 What's My Number? …………………………………………………. 74 Capture the Caterpillar ……………………………………………….. 79 Formative Assessment Lesson ……………………………………….. 88 Fill the Bucket ………………………………………………………..
    [Show full text]
  • Primality Testing for Beginners
    STUDENT MATHEMATICAL LIBRARY Volume 70 Primality Testing for Beginners Lasse Rempe-Gillen Rebecca Waldecker http://dx.doi.org/10.1090/stml/070 Primality Testing for Beginners STUDENT MATHEMATICAL LIBRARY Volume 70 Primality Testing for Beginners Lasse Rempe-Gillen Rebecca Waldecker American Mathematical Society Providence, Rhode Island Editorial Board Satyan L. Devadoss John Stillwell Gerald B. Folland (Chair) Serge Tabachnikov The cover illustration is a variant of the Sieve of Eratosthenes (Sec- tion 1.5), showing the integers from 1 to 2704 colored by the number of their prime factors, including repeats. The illustration was created us- ing MATLAB. The back cover shows a phase plot of the Riemann zeta function (see Appendix A), which appears courtesy of Elias Wegert (www.visual.wegert.com). 2010 Mathematics Subject Classification. Primary 11-01, 11-02, 11Axx, 11Y11, 11Y16. For additional information and updates on this book, visit www.ams.org/bookpages/stml-70 Library of Congress Cataloging-in-Publication Data Rempe-Gillen, Lasse, 1978– author. [Primzahltests f¨ur Einsteiger. English] Primality testing for beginners / Lasse Rempe-Gillen, Rebecca Waldecker. pages cm. — (Student mathematical library ; volume 70) Translation of: Primzahltests f¨ur Einsteiger : Zahlentheorie - Algorithmik - Kryptographie. Includes bibliographical references and index. ISBN 978-0-8218-9883-3 (alk. paper) 1. Number theory. I. Waldecker, Rebecca, 1979– author. II. Title. QA241.R45813 2014 512.72—dc23 2013032423 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.
    [Show full text]
  • 2017 Grand Lodge of Minnesota Annual Communication Proceedings
    2017 PROCEEDINGS The Grand Lodge A.F. and A.M. Minnesota Robert L. Darling, Grand Master Link to interactive index page 2017 ANNUAL PROCEEDINGS GRAND LODGE A. F. & A. M. of MINNESOTA 11501 Masonic Home Drive Bloomington, MN 55437-3699 952-948-6700 800-245-6050 952-948-6710 Fax E-Mail:[email protected] www.mn-masons.org 2017 ANNUAL PROCEEDINGS 3 ROBERT L. DARLING GRAND MASTER 4 GRAND LODGE OF MINNESOTA BIOGRAPHY GRAND MASTER ROBERT L. DARLING Robert L. Darling, “Bob”, was born on February 17, 1956 in Mattoon, Illinois. His parents were Russell D. and Theresa D. Darling. They lived in Greenup, Illinois. The family moved from Greenup to Decatur, Illinois and then to Maroa, Illinois where he attended the Maroa Elementary and Maroa-Forsyth High School. After graduating from the high school in mid-year, Bob enrolled and attended Illinois State University located in Normal, Illinois. In December 1976, he graduated with a B.S. Degree in Industrial Technology. Bob has worked for numerous companies including Caterpillar Inc. in Decatur, Illinois; Baldwin Associates, Clinton, Illinois; Schrock Cabinets/An Electrolux Company, Arthur, Illinois, Electrolux Home Products, St. Cloud, Minnesota. He is currently employed with the State of Minnesota, Department of Labor and Industry, OSHA Enforcement as a Safety Investigator Principal, and has worked there since 2003. Bob has been a Master Mason for 29 years. He was initiated on November 23, 1987; passed to a Fellowcraft on December 12, 1987; and was raised to the Sublime Degree of a Master Mason on January 9, 1988 by Maroa Lodge No.
    [Show full text]