Euclid's Number Theory

Total Page:16

File Type:pdf, Size:1020Kb

Euclid's Number Theory Euclid of Alexandria, II: Number Theory Euclid of Alexandria, II: Number Theory Waseda University, SILS, History of Mathematics Euclid of Alexandria, II: Number Theory Outline Introduction Euclid’s number theory The overall structure Definitions for number theory Theory of prime numbers Properties of primes Infinitude of primes Euclid of Alexandria, II: Number Theory Introduction Concepts of number § The natural numbers is the set N “ t1; 2; 3;::: u. § The whole numbers is the set W “ t0; 1; 2; 3;::: u. § The integers is the set of positive and negative whole numbers Z “ t0; 1; ´1; 2; ´2;::: u. § The rational numbers is the set Q, of numbers of the form p{q, where p; q P Z,1 but q ‰ 0. § The real numbers, R, is the set of all the values mapped to the points of the number line. (The definition is tricky.) § An irrational number is a number that belongs to the reals, but is not rational. 1The symbol P means “in the set of,” or “is an element of.” Euclid of Alexandria, II: Number Theory Introduction The Greek concept of number § Greek number theory was exclusively interested in natural numbers. § In fact, the Greek also did not regard “1” as a number, but rather considered it the unit by which other numbers are numbered (or measured). § We can define Greek natural numbers as G “ t2; 3; 4;::: u. (But we can do most Greek number theory with N, so we will generally use this set, for simplicity.) Euclid of Alexandria, II: Number Theory Introduction Number theory before Euclid § The semi-legendary Pythagorus himself and other Pythagoreans are attributed with a fascination with numbers and with the development of a certain “pebble arithmetic” which studied the mathematical properties of numbers that correspond to certain geometry shapes (figurate numbers). § Philolaus of Croton (late 5th, earth 4th BCE) is attributed with some numerological speculations related to music theory and cosmology. § Archytus of Tarentum (4th BCE) is attributed with some theorems of number theory, most of which are directly applicable to ancient music theory. Euclid of Alexandria, II: Number Theory Euclid’s number theory The overall structure Elements VII–IX As in earlier books, Euclid probably based much of his work on the discoveries of others, but the organization and presentation was his own. § Book VII: numbers and proportions, theory of divisors, theory of least common multiples § Book VIII: theory of figurate numbers, mean proportionals § Book IX: numbers and proportions, theory of prime numbers, theory of even and odd, perfect numbers2 2A perfect number is a number whose factors sum together to equal the number, ex. 6 “ 1 ` 2 ` 3, or 28 “ 1 ` 2 ` 4 ` 7 ` 14. Euclid of Alexandria, II: Number Theory Euclid’s number theory Definitions for number theory Definitions for Euclidean number theory § 1: A unit is that by virtue of which each of the things that exists is called one. § 2: A number is a multitude made up of units. § 5: The greater number is a multiple of the lesser when it is measured by 3 the lesser number. § 11: A prime number is that which is measured by a unit alone. § 12: Numbers prime to one another are those which are measured by a unit alone as common measure. § 13: A composite number is that which is measured by some number. § 22: A perfect number is that which is equal to its own parts. 3“Measured by” is an undefined concept in Euclid’s theory. It means something like divided by, with no remainder. Euclid of Alexandria, II: Number Theory Theory of prime numbers Properties of primes Theory of Primes § We start with some “problems” that show how to determine if two numbers are relatively prime (VII 1), or, if not, to find their greatest common factor (VII.2). § If p ab, then p a or p b, where p is prime (VII.30).4 § “Any composite number is divisible by some prime number.” (VII.31) [That is, given ab, there exists some p such that p ab.] A proof by cases and by contradiction... § “If a number be the least that is measured by prime numbers, it will not be measured by any prime number except those originally measuring it.” (IX.14) [That is, if x1 x2 x3 a “ p1 p2 p3 :::, then there is no pn R tp1; p2; p3; :::u, such that pn a.] A proof by contradiction. 4The expression a b means “a divides into b with no remainder,” or as the Greeks would say, “a measures b.” That is, there is some n P N, such that an “ b. Euclid of Alexandria, II: Number Theory Theory of prime numbers Infinitude of primes Elements IX.21 — The primes are infinite § “Prime numbers are more than any assigned multitude of prime numbers.” § A proof by construction that uses cases and an indirect argument. § Preliminary: If g a and g b then g pa ´ bq. That is, a “ gm and b “ gn ñ a ´ b “ gpm ´ nq. § Let tp1; p2; p3u be the greatest known set of primes. Take the number a “ p1p2p3 ` 1. (A construction.) § There are two cases: either, (1) a is a prime, or (2) a is composite and has some prime factor pn. § In case (2), we use an indirect proof to show that pn ‰ p1; p2; p3. § The arguments in Elements IX.14 and IX.21 provide a sort of proof strategy that we could apply to any other set of numbers that was assumed to be the set in question. Euclid of Alexandria, II: Number Theory Theory of prime numbers Infinitude of primes Euclid’s approach to studying the nature of numbers § We begin with some “intuitive” assumptions about numbers and some carefully designed definitions. § We do some “problems” that show us how to carry out certain operations or algorithms. § We develop a theory of the concepts of measure, divisibility, etc., which leads to a theory of primes as the fundamental building blocks of all numbers. § We see again how mathematical theories help us develop our ideas of certain key concepts..
Recommended publications
  • Primality Testing for Beginners
    STUDENT MATHEMATICAL LIBRARY Volume 70 Primality Testing for Beginners Lasse Rempe-Gillen Rebecca Waldecker http://dx.doi.org/10.1090/stml/070 Primality Testing for Beginners STUDENT MATHEMATICAL LIBRARY Volume 70 Primality Testing for Beginners Lasse Rempe-Gillen Rebecca Waldecker American Mathematical Society Providence, Rhode Island Editorial Board Satyan L. Devadoss John Stillwell Gerald B. Folland (Chair) Serge Tabachnikov The cover illustration is a variant of the Sieve of Eratosthenes (Sec- tion 1.5), showing the integers from 1 to 2704 colored by the number of their prime factors, including repeats. The illustration was created us- ing MATLAB. The back cover shows a phase plot of the Riemann zeta function (see Appendix A), which appears courtesy of Elias Wegert (www.visual.wegert.com). 2010 Mathematics Subject Classification. Primary 11-01, 11-02, 11Axx, 11Y11, 11Y16. For additional information and updates on this book, visit www.ams.org/bookpages/stml-70 Library of Congress Cataloging-in-Publication Data Rempe-Gillen, Lasse, 1978– author. [Primzahltests f¨ur Einsteiger. English] Primality testing for beginners / Lasse Rempe-Gillen, Rebecca Waldecker. pages cm. — (Student mathematical library ; volume 70) Translation of: Primzahltests f¨ur Einsteiger : Zahlentheorie - Algorithmik - Kryptographie. Includes bibliographical references and index. ISBN 978-0-8218-9883-3 (alk. paper) 1. Number theory. I. Waldecker, Rebecca, 1979– author. II. Title. QA241.R45813 2014 512.72—dc23 2013032423 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.
    [Show full text]
  • 2017 Grand Lodge of Minnesota Annual Communication Proceedings
    2017 PROCEEDINGS The Grand Lodge A.F. and A.M. Minnesota Robert L. Darling, Grand Master Link to interactive index page 2017 ANNUAL PROCEEDINGS GRAND LODGE A. F. & A. M. of MINNESOTA 11501 Masonic Home Drive Bloomington, MN 55437-3699 952-948-6700 800-245-6050 952-948-6710 Fax E-Mail:[email protected] www.mn-masons.org 2017 ANNUAL PROCEEDINGS 3 ROBERT L. DARLING GRAND MASTER 4 GRAND LODGE OF MINNESOTA BIOGRAPHY GRAND MASTER ROBERT L. DARLING Robert L. Darling, “Bob”, was born on February 17, 1956 in Mattoon, Illinois. His parents were Russell D. and Theresa D. Darling. They lived in Greenup, Illinois. The family moved from Greenup to Decatur, Illinois and then to Maroa, Illinois where he attended the Maroa Elementary and Maroa-Forsyth High School. After graduating from the high school in mid-year, Bob enrolled and attended Illinois State University located in Normal, Illinois. In December 1976, he graduated with a B.S. Degree in Industrial Technology. Bob has worked for numerous companies including Caterpillar Inc. in Decatur, Illinois; Baldwin Associates, Clinton, Illinois; Schrock Cabinets/An Electrolux Company, Arthur, Illinois, Electrolux Home Products, St. Cloud, Minnesota. He is currently employed with the State of Minnesota, Department of Labor and Industry, OSHA Enforcement as a Safety Investigator Principal, and has worked there since 2003. Bob has been a Master Mason for 29 years. He was initiated on November 23, 1987; passed to a Fellowcraft on December 12, 1987; and was raised to the Sublime Degree of a Master Mason on January 9, 1988 by Maroa Lodge No.
    [Show full text]
  • On Perfect Numbers and Their Relations 1 Introduction
    Int. J. Contemp. Math. Sciences, Vol. 5, 2010, no. 27, 1337 - 1346 On Perfect Numbers and their Relations Recep G¨ur 2000 Evler Mahallesi Boykent Sitesi E Blok 26/7 Nevsehir, Turkey [email protected] Nihal Bircan Technische Universitaet Berlin Fakultaet II Institut f¨ur Mathematik MA 8 − 1 Strasse des 17. Juni 136 D-10623 Berlin, Germany [email protected] Abstract In this paper, we get some new formulas for generalized perfect numbers and their relationship between arithmetical functions φ, σ concerning Ore’s harmonic numbers and by using these formulas we present some examples. Mathematics Subject Classification: 11A25, 11A41, 11Y70 Keywords: perfect number, 2-hyperperfect number, Euler’s totient function, Ore harmonic number 1 Introduction In this section, we aimed to provide general information on perfect numbers shortly. Here and throughout the paper we assume m, n, k, d, b are positive integers and p is prime. N is called perfect number, if it is equal to the sum of its proper divisors. The first few perfect numbers are 6, 28, 496, 8128,... since, 6 = 1+2+3 28 = 1+2+4+7+14 496 = 1+2+4+8+16+31+62+124+248 Euclid discovered the first four perfect numbers which are generated by the formula 2n−1(2n−1), called Euclid number. In his book ’Elements’ he presented the proof of the formula which gives an even perfect number whenever 2n −1is 1338 Recep G¨ur and Nihal Bircan prime. In order for 2n −1 to be a prime n must itself be a prime.
    [Show full text]
  • Euclid's Proof of the Infinitude of Primes
    Euclid’s Proof of the Infinitude of Primes: Distorted, Clarified, Made Obsolete, and Confirmed in Modern Mathematics REINHARD SIEGMUND-SCHULTZE n this article1 I reflect on the recurrent theme of Michael Hardy and Catherine Woodgold (henceforth modernizing historical mathematical proofs, vocabulary, H&W) entitled ‘‘Prime Simplicity’’ appeared in this journal II and symbolism, and the extent to which this modern- in 2009. H&W discuss Euclid’s proof mainly from the ization serves to clarify, is able to preserve, or is bound to point of view of its distortion by modern authors who distort the original meaning. My example is also a quite often claim that it had the form of a reductio ad recurrent one: Euclid’s proof of the infinitude of primes absurdum.3 in book IX, theorem 20 of his Elements. Elementary My article, on the other hand, aims at a systematic pre- number theory is a very appropriate field for discussing sentation and logical analysis of Euclid’s proof (as it is such general historiographic questions on a nontechnical preserved in the critical editions by Euclid scholars) and, level.2 Indeed, a widely quoted and stimulating article by above all, at a more detailed discussion of its interpretation 1I dedicate this article to Walter Purkert (Bonn), the coordinator and very active force behind the excellent Felix Hausdorff edition soon to be completed, on the occasion of his 70th birthday in 2014. 2Mesˇ trovic´ (2012) contains many details on modern proofs of the infinitude of primes but is less interested in Euclid’s original theorem and its modern variants.
    [Show full text]
  • Integer Sequences
    UHX6PF65ITVK Book > Integer sequences Integer sequences Filesize: 5.04 MB Reviews A very wonderful book with lucid and perfect answers. It is probably the most incredible book i have study. Its been designed in an exceptionally simple way and is particularly just after i finished reading through this publication by which in fact transformed me, alter the way in my opinion. (Macey Schneider) DISCLAIMER | DMCA 4VUBA9SJ1UP6 PDF > Integer sequences INTEGER SEQUENCES Reference Series Books LLC Dez 2011, 2011. Taschenbuch. Book Condition: Neu. 247x192x7 mm. This item is printed on demand - Print on Demand Neuware - Source: Wikipedia. Pages: 141. Chapters: Prime number, Factorial, Binomial coeicient, Perfect number, Carmichael number, Integer sequence, Mersenne prime, Bernoulli number, Euler numbers, Fermat number, Square-free integer, Amicable number, Stirling number, Partition, Lah number, Super-Poulet number, Arithmetic progression, Derangement, Composite number, On-Line Encyclopedia of Integer Sequences, Catalan number, Pell number, Power of two, Sylvester's sequence, Regular number, Polite number, Ménage problem, Greedy algorithm for Egyptian fractions, Practical number, Bell number, Dedekind number, Hofstadter sequence, Beatty sequence, Hyperperfect number, Elliptic divisibility sequence, Powerful number, Znám's problem, Eulerian number, Singly and doubly even, Highly composite number, Strict weak ordering, Calkin Wilf tree, Lucas sequence, Padovan sequence, Triangular number, Squared triangular number, Figurate number, Cube, Square triangular
    [Show full text]
  • Introduction to the Theory of Numbers (Chicago University Press, 1929 : Introduction)
    AN INTRODUCTION TO THE THEORY OF NUMBERS AN INTRODUCTION TO THE THEORYOFNUMBERS BY G. H. HARDY AND E. M. WRIGHT Principal and Vice-Chancellor of the University of Aberdeen FOURTH EDITION OX.FORD AT THE CLARENDON PRESS Ox@d University Press, Ely House, London W. 1 OLASOOWNEW YORK TORONTOMELBOURNE WELLINGTON CAPETOWN IBADAN NAIROBI DAR ES SALAAMI.USAKA ADDISABABA DELEI BOMBAYC.4I.CUTTA MADRAS KARACHI LAHOREDACCA KUALALUMPUR SINOAPORE HONO RONO TOKYO ISBN 0 19 853310 7 Fi& edition 1938 Second edition xg45 Third edition 1954 Fourth edition 1960 rg6z (with corrections) 1965 (with corrections) 1968 (with cowectiona) =97=> 1975 Printed in Great B&ain at the University Press, Oxford by Vivian Ridler Printer to the University PREFACE TO THE FOURTH EDITION APART from the provision of an index of names, the main changes in this edition are in the Notes at the end of each chapter. These have been revised to include references to results published since the third edition went to press and to correct omissions. Therc are simpler proofs of Theorems 234, 352, and 357 and a new Theorem 272. The Postscript to the third edition now takes its proper place as part of Chapter XX. 1 am indebted to several correspondents who suggested improvements and corrections. 1 have to thank Dr. Ponting for again reading the proofs and Mrs. V. N. R. Milne for compiling the index of names. E. M. W. ABERDEEN July 1959 PREFACE TO THE FIRST EDITION THIS book has developed gradually from lectures delivered in a number of universities during the last ten years, and, like many books which have grown out of lectures, it has no very definite plan.
    [Show full text]
  • Numbers 1 to 100
    Numbers 1 to 100 PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Tue, 30 Nov 2010 02:36:24 UTC Contents Articles −1 (number) 1 0 (number) 3 1 (number) 12 2 (number) 17 3 (number) 23 4 (number) 32 5 (number) 42 6 (number) 50 7 (number) 58 8 (number) 73 9 (number) 77 10 (number) 82 11 (number) 88 12 (number) 94 13 (number) 102 14 (number) 107 15 (number) 111 16 (number) 114 17 (number) 118 18 (number) 124 19 (number) 127 20 (number) 132 21 (number) 136 22 (number) 140 23 (number) 144 24 (number) 148 25 (number) 152 26 (number) 155 27 (number) 158 28 (number) 162 29 (number) 165 30 (number) 168 31 (number) 172 32 (number) 175 33 (number) 179 34 (number) 182 35 (number) 185 36 (number) 188 37 (number) 191 38 (number) 193 39 (number) 196 40 (number) 199 41 (number) 204 42 (number) 207 43 (number) 214 44 (number) 217 45 (number) 220 46 (number) 222 47 (number) 225 48 (number) 229 49 (number) 232 50 (number) 235 51 (number) 238 52 (number) 241 53 (number) 243 54 (number) 246 55 (number) 248 56 (number) 251 57 (number) 255 58 (number) 258 59 (number) 260 60 (number) 263 61 (number) 267 62 (number) 270 63 (number) 272 64 (number) 274 66 (number) 277 67 (number) 280 68 (number) 282 69 (number) 284 70 (number) 286 71 (number) 289 72 (number) 292 73 (number) 296 74 (number) 298 75 (number) 301 77 (number) 302 78 (number) 305 79 (number) 307 80 (number) 309 81 (number) 311 82 (number) 313 83 (number) 315 84 (number) 318 85 (number) 320 86 (number) 323 87 (number) 326 88 (number)
    [Show full text]
  • Download PDF # Integer Sequences
    4DHTUDDXIK44 ^ eBook ^ Integer sequences Integer sequences Filesize: 8.43 MB Reviews Extensive information for ebook lovers. It typically is not going to expense too much. I discovered this book from my i and dad recommended this pdf to learn. (Prof. Gerardo Grimes III) DISCLAIMER | DMCA DS4ABSV1JQ8G > Kindle » Integer sequences INTEGER SEQUENCES Reference Series Books LLC Dez 2011, 2011. Taschenbuch. Book Condition: Neu. 247x192x7 mm. This item is printed on demand - Print on Demand Neuware - Source: Wikipedia. Pages: 141. Chapters: Prime number, Factorial, Binomial coeicient, Perfect number, Carmichael number, Integer sequence, Mersenne prime, Bernoulli number, Euler numbers, Fermat number, Square-free integer, Amicable number, Stirling number, Partition, Lah number, Super-Poulet number, Arithmetic progression, Derangement, Composite number, On-Line Encyclopedia of Integer Sequences, Catalan number, Pell number, Power of two, Sylvester's sequence, Regular number, Polite number, Ménage problem, Greedy algorithm for Egyptian fractions, Practical number, Bell number, Dedekind number, Hofstadter sequence, Beatty sequence, Hyperperfect number, Elliptic divisibility sequence, Powerful number, Znám's problem, Eulerian number, Singly and doubly even, Highly composite number, Strict weak ordering, Calkin Wilf tree, Lucas sequence, Padovan sequence, Triangular number, Squared triangular number, Figurate number, Cube, Square triangular number, Multiplicative partition, Perrin number, Smooth number, Ulam number, Primorial, Lambek Moser theorem,
    [Show full text]
  • An Invitation to Abstract Mathematics Undergraduate Texts in Mathematics Undergraduate Texts in Mathematics
    Undergraduate Texts in Mathematics Béla Bajnok An Invitation to Abstract Mathematics Undergraduate Texts in Mathematics Undergraduate Texts in Mathematics Series Editors: Sheldon Axler San Francisco State University, San Francisco, CA, USA Kenneth Ribet University of California, Berkeley, CA, USA Advisory Board: Colin Adams, Williams College, Williamstown, MA, USA Alejandro Adem, University of British Columbia, Vancouver, BC, Canada Ruth Charney, Brandeis University, Waltham, MA, USA Irene M. Gamba, The University of Texas at Austin, Austin, TX, USA Roger E. Howe, Yale University, New Haven, CT, USA David Jerison, Massachusetts Institute of Technology, Cambridge, MA, USA Jeffrey C. Lagarias, University of Michigan, Ann Arbor, MI, USA Jill Pipher, Brown University, Providence, RI, USA Fadil Santosa, University of Minnesota, Minneapolis, MN, USA Amie Wilkinson, University of Chicago, Chicago, IL, USA Undergraduate Texts in Mathematics are generally aimed at third- and fourth- year undergraduate mathematics students at North American universities. These texts strive to provide students and teachers with new perspectives and novel approaches. The books include motivation that guides the reader to an appreciation of interrelations among different aspects of the subject. They feature examples that illustrate key concepts as well as exercises that strengthen understanding. For further volumes: http://www.springer.com/series/666 Bela´ Bajnok An Invitation to Abstract Mathematics 123 Bela´ Bajnok Department of Mathematics Gettysburg College Gettysburg, PA, USA ISSN 0172-6056 ISBN 978-1-4614-6635-2 ISBN 978-1-4614-6636-9 (eBook) DOI 10.1007/978-1-4614-6636-9 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 2013935711 Mathematics Subject Classification: 00-01, 01-01, 03-01 ©Bela´ Bajnok 2013 This work is subject to copyright.
    [Show full text]
  • Pseudoprimes, Perfect Numbers, and a Problem Of
    PSEUDOPRIMES, PERFECT NUMBERS, AND A PROBLEM OF LEHMER Walter Carlip Ohio University, Athens, OH 45701 Eliot Jacobson Ohio University, Athens, OH 45701 Lawrence Somer Catholic University of America, Washington, D.C. 20064 {SubmittedDecember 1996-Final Revision April 1997) 1. INTRODUCTION Two classical problems In elementary number theory appear, at first, to be unrelated. The first, posed by D. H. Lehmer in [7], asks whether there is a composite integer N such that </>{N) divides N-l, where &(N) is Euler's totient function. This question has received considerable attention and it has been demonstrated that such an integer, if it exists, must be extraordinary. For example, in [2] G. L. Cohen and P. Hagis, Jr., show that an integer providing an affirmative answer to Lehmer's question must have at least 14 distinct prime factors and exceed 1020. The second is the ancient question whether there exists an odd perfect number, that is, an odd integer N, such that a(N) = 2N, where a(N) is the sum of the divisors ofN. More generally, for each integer k>l, one can ask for odd multiperfect numbers, i.e., odd solutions N of the equation <j(N) = kN. This question has also received much attention and solutions must be extraordinary. For example, in [1] W. E. Beck and R. M. Rudolph show that an odd solution to a(N) = 3N must exceed 1050. Moreover, C. Pomerance [9], and more recently D. R. Heath- Brown [4], have found explicit upper bounds for multiperfect numbers with a bounded number of prime factors. In recent work [13], L.
    [Show full text]
  • Tutorme Subjects Covered.Xlsx
    Subject Group Subject Topic Computer Science Android Programming Computer Science Arduino Programming Computer Science Artificial Intelligence Computer Science Assembly Language Computer Science Computer Certification and Training Computer Science Computer Graphics Computer Science Computer Networking Computer Science Computer Science Address Spaces Computer Science Computer Science Ajax Computer Science Computer Science Algorithms Computer Science Computer Science Algorithms for Searching the Web Computer Science Computer Science Allocators Computer Science Computer Science AP Computer Science A Computer Science Computer Science Application Development Computer Science Computer Science Applied Computer Science Computer Science Computer Science Array Algorithms Computer Science Computer Science ArrayLists Computer Science Computer Science Arrays Computer Science Computer Science Artificial Neural Networks Computer Science Computer Science Assembly Code Computer Science Computer Science Balanced Trees Computer Science Computer Science Binary Search Trees Computer Science Computer Science Breakout Computer Science Computer Science BufferedReader Computer Science Computer Science Caches Computer Science Computer Science C Generics Computer Science Computer Science Character Methods Computer Science Computer Science Code Optimization Computer Science Computer Science Computer Architecture Computer Science Computer Science Computer Engineering Computer Science Computer Science Computer Systems Computer Science Computer Science Congestion Control
    [Show full text]
  • Aspect of Prime Numbers in Public Key Cryptosystem
    Aspect of Prime Numbers in Public Key Cryptosystem Aspect of Prime Numbers in Public Key Cryptosystem Md.Mehedi Masud, Huma Galzie, Kazi Arif Hossain and Md.Minhaj Ul Islam Computer Science and Engineering Discipline Khulna University, Khulna-9208, Bangladesh Email: [email protected] Abstract treatment in so many definitions and applications involving primes greater than or The secrecy of Public Key cryptosystem equal to 2 that it is usually placed into a class relies heavily on the intractability of various of its own. Since 2 is the only Even prime, it mathematical problems. As a result numbers is also somewhat special, so the set of all and their complexities play a very important primes excluding 2 is called the Odd role in keeping the system secure. Prime Primes. The first few primes are 2, 3, 5, 7, numbers are of the greatest importance here 11, 13, 17, 19, 23, 29, 31, 37,…..[6] due to their widespread use in encryption algorithms such as the RSA algorithm. For Let {Ee : e ∈ K} be a set of encryption example, if there were efficient algorithms transformations, and correspondingly let {Dd for factoring large numbers, the vast : d ∈ K} be the set of decryption majority of encrypted electronic transformations, where K is the key space. communications worldwide would be easily The cryptosystem is said to be a public key crackable. In most of the public key cryptosystem [1] if for each associated key algorithms large prime numbers (100 pair (e,d) the public key e, is made available decimal digits) have been used as a means of to all while the private key d, is kept secret.
    [Show full text]