Some Problems Exercise

Total Page:16

File Type:pdf, Size:1020Kb

Some Problems Exercise Java, Lesson 2 38 Some Problems Exercise. Revise your multiplication program from the last problem set to accept an argument m. Print out the addition and multiplication tables of integers modulo m. [Hint: Use the remainder operator %.] Exercise. The game “FizzBuzz” is played as follows. Players count o↵ positive integers, saying aloud the next integer when it is their turn unless the number is divisible by 5 or by 7. If the next number is divisible by 5, the player says “fizz”. If the next number is divisible by 7, the player says “buzz”. If the next number is divisible by both 5 and 7, the player says “fizzbuzz”. Write a program that plays “fizzbuzz” with itself. [Hint: use the remainder operator %.] Exercise. Write a program that takes an input argument consisting of one integer and finds the prime factorization of that number. [Hint: You do not need to check whether any number is prime, because smallest divisor of any number must be prime. Do you see why? Formulate a theorem about the smallest nontrivial positive divisor of any integer. (Nontrivial means “not equal to one”.) Exercise. Modify the previous program so that it loops through all the integers from 1 to 1000 and finds the prime factorization of each one. Exercise. 1. Write a program that takes an input argument consisting of one integer and computes the sum of the digits of that number. 2. Extend your program to decide whether the input integer is divisible by 3 or 9. 3. Extend your program to decide whether the input integer is divisible by 11. [Hint: What do you get if you compute a%10 and a/10?] Exercise. Write a program that takes a single string as input and counts the number of vowels in the string. [Hint: Use the charAt() method.] Exercise. Write a program that displays the steps of the Four Numbers Game played with integers. The initial four integers should be given as command line inputs to the program. Copyright c 2019, 2020 by Walter Carlip and the University of Chicago Young Scholars Program Java, Lesson 2 39 Exercise. Universal Product Codes (UPC-A) consist of twelve digits. The twelfth digit is a check-digit that is computed from the other eleven digits as follows: 1. Add the digits in the odd-numbered positions and multiply by three. 2. Add the digits in the even-numbered positions to the result. 3. Find the result modulo 10. 4. If the result is not zero, subtract the result from ten. Write a program that takes an eleven digit integer as input and produces a 12 digit integer by appending the correct check-digit to the original number. [Hint: What do you get if you compute a/10 followed by a%10?] Exercise. Write a program that takes a String as input and computes the “value” of the String. In this problem an “a” is worth one cent, a “b” two cents, a “c” three cents, etc. [Hint: Use the charAt() method. Decide how you want to handle letters not in the lower case alphabet and program accordingly.] Exercise. 1. Write a program that takes a String and an integer as input and computes the code word obtained using a Caesar Cipher with shift given by the input integer. [Hint: Write the program first using only lower case letters, then expand to use upper and lower case. Of course, you will need a loop and the charAt() method.] 2. Modify your program to take a String and two integers as input and compute the String obtained by applying an affine code using the two input integers. Exercise. Write a program that takes an integer n as an input argument and computes how many ways n can be written as the di↵erence of two squares, that is, find every pair of integers s and t with the property that n = s2 t2. Which numbers can be written as the di↵erence of squares in only one− way? Do you see a pattern? Copyright c 2019, 2020 by Walter Carlip and the University of Chicago Young Scholars Program Java, Lesson 2 40 Exercise. If the sequence of Fibonacci numbers is reduced modulo n (for some integer n), does the sequence eventually repeat? 1. Write a program that computes an array of Fibonacci numbers modulo n and determine whether the answer to the question is yes or no for several examples. 2. For cases in which the sequences does repeat, compute one complete cycle of the sequence (that is, the part of the sequence that repeats). 3. Alter your program to compute the number of times that the integer 0 appears on one cycle of the Fibonacci numbers modulo n (for various choices of n). Exercise. The ratios of adjacent Fibonacci numbers provide a good ap- proximation of the Golden Ratio. Write a program that computes the Fi- bonacci numbers F1,F2,F3,...,Fn,... and prints out the ratios F2/F1,F3/F2,...,Fn/Fn 1,.... − [Hint: Store the ratios in a variable of type double.] Exercise. A Hilbert prime is an integer of the form 4n + 1 (a Hilbert number) that is not divisible by any smaller Hilbert number other than 1. Write a program that finds all of the Hilbert primes less than a value input by the user. Exercise. Write a program that computes the day of the week when given the year, month, and day as input. Use the following formula: w = d + 26(m +3)/10 + y + y/4 + c/4 +5c 1(mod7), b c b c b c − where w is the day of the week (0 = Sunday, through 6 = Saturday); • d is the day of the month; • m is the shifted month (1 = March,through12=February); • y is the last two digits of the year (e.g., 14 for this year), with January • and February considered part of the previous year; c is the century (e.g., 20 for this century). • [Hint: In Java, when working with positive integers, integer division a/b gives the correct quotient, which is the same as a/b for real numbers!] b c Copyright c 2019, 2020 by Walter Carlip and the University of Chicago Young Scholars Program Java, Lesson 2 41 Exercise. If you multiply the first n primes together and add one, the resulting number En is called the n-th Euclid number,becauseoftheroleit plays in Euclid’s proof that there are infinitely many primes. For example, the third Euclid number is E =2 3 5+1=31. 5 · · The n-th Euclid number always has a “new” prime factor, that is, a prime factor larger than the each of the first n primes used to create En. Are the Euclid numbers themselves always prime? Are they ever prime? Write a Java program that uses your prime testing method to compute each of the first n Euclid numbers and determine whether or not they are prime. Your program should take the integer n as an input argument. Exercise. Aprimetripleisasetofthreeintegers(a, a +2,a+4)allof which are prime. There is only one prime triple, namely (3, 5, 7). What happens if we consider instead triples of integers (a, a +2,a+6),advancing the third number in the triple to the next odd number? Are there any triples of this sort consisting of three prime numbers? If so, how many? Is there more than one such triple? Write a Java program that examines such triples and prints out the triple if it consists of three prime numbers. Your program should take one input (the largest value to use for a)anduseyourbestprimetestingmethod. Exercise. The original Josephus problem asked the following question. Forty-one people sit in a circle in positions labeled from 1 to 41. Every third person in the circle is executed, until only two remain. What positions should you and your best friend sit in to be spared? Write a program that determines the positions of the two people who • are spared. Modify your program to print out in order the positions of the people • executed. Modify your program to include a method that returns an array con- • taining in the correct order the positions of the people executed and a main method that prints out the returned array. Modify your program to take two inputs: the number n of people sitting • in the circle and the the step m between executed people (i.e., every m-th person is executed). Copyright c 2019, 2020 by Walter Carlip and the University of Chicago Young Scholars Program Java, Lesson 2 42 n Exercise. A Mersenne number is an integer of the form Mn =2 1, that is, an integer that is one less than a power of two. If the Mersenne− number Mn is prime, then Mn is called Mersenne prime. Write a program that takes an integer n as input and computes and factors the corresponding Mersenne number Mn. What are the limitations of your program? Can you find any Mersenne primes? (You will revisit this program when you can perform arithmetic with larger integers.) Exercise. Integers n that are themselves not prime, but which share spe- cific properties with all primes are interesting. In particular, according to p 1 Fermat’s Theorem, if p is a prime, then 2 − 1isdivisiblebyp.Composite n −1 integers n that satisfy this property, i.e., 2 − 1isdivisiblebyn are called pseudoprimes (or sometimes base 2 pseudoprimes− or Poulet numbers. Write a program that searches for numbers n with the properties that 1. n is not prime, and n 1 2.
Recommended publications
  • Power Values of Divisor Sums Author(S): Frits Beukers, Florian Luca, Frans Oort Reviewed Work(S): Source: the American Mathematical Monthly, Vol
    Power Values of Divisor Sums Author(s): Frits Beukers, Florian Luca, Frans Oort Reviewed work(s): Source: The American Mathematical Monthly, Vol. 119, No. 5 (May 2012), pp. 373-380 Published by: Mathematical Association of America Stable URL: http://www.jstor.org/stable/10.4169/amer.math.monthly.119.05.373 . Accessed: 15/02/2013 04:05 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to The American Mathematical Monthly. http://www.jstor.org This content downloaded on Fri, 15 Feb 2013 04:05:44 AM All use subject to JSTOR Terms and Conditions Power Values of Divisor Sums Frits Beukers, Florian Luca, and Frans Oort Abstract. We consider positive integers whose sum of divisors is a perfect power. This prob- lem had already caught the interest of mathematicians from the 17th century like Fermat, Wallis, and Frenicle. In this article we study this problem and some variations. We also give an example of a cube, larger than one, whose sum of divisors is again a cube. 1. INTRODUCTION. Recently, one of the current authors gave a mathematics course for an audience with a general background and age over 50.
    [Show full text]
  • Generalizing Benford's Law Using Power Laws
    Hindawi Publishing Corporation International Journal of Mathematics and Mathematical Sciences Volume 2009, Article ID 970284, 10 pages doi:10.1155/2009/970284 Research Article Generalizing Benford’s Law Using Power Laws: Application to Integer Sequences Werner Hurlimann¨ Feldstrasse 145, CH-8004 Zurich,¨ Switzerland Correspondence should be addressed to Werner Hurlimann,¨ [email protected] Received 25 March 2009; Revised 16 July 2009; Accepted 19 July 2009 Recommended by Kenneth Berenhaut Many distributions for first digits of integer sequences are not Benford. A simple method to derive parametric analytical extensions of Benford’s law for first digits of numerical data is proposed. Two generalized Benford distributions are considered, namely, the two-sided power Benford TSPB distribution, which has been introduced in Hurlimann¨ 2003, and the new Pareto Benford PB distribution. Based on the minimum chi-square estimators, the fitting capabilities of these generalized Benford distributions are illustrated and compared at some interesting and important integer sequences. In particular, it is significant that much of the analyzed integer sequences follow with a high P-value the generalized Benford distributions. While the sequences of prime numbers less than 1000, respectively, 10 000 are not at all Benford or TSPB distributed, they are approximately PB distributed with high P-values of 93.3% and 99.9% and reveal after a further deeper analysis of longer sequences a new interesting property. On the other side, Benford’s law of a mixing of data sets is rejected at the 5% significance level while the PB law is accepted with a 93.6% P-value, which improves the P-value of 25.2%, which has been obtained previously for the TSPB law.
    [Show full text]
  • Results for Wieferich Primes 2
    Results for Wieferich Primes N. A. Carella Abstract: Let v 2 be a fixed integer, and let x 1 and z x be large numbers. ≥ ≥ ≥ The exact asymptotic formula for the number of Wieferich primes p, defined by vp−1 ≡ 1 mod p2, in the short interval [x,x + z] is proposed in this note. The search conducted on the last 100 years have produced two primes p<x = 1015 such that 2p−1 1 mod p2. ≡ The probabilistic and theoretical information within predicts the existence of another base v = 2 prime on the interval [1015, 1040]. Furthermore, a result for the upper bound on the number of Wieferich primes is used to demonstrate that the subset of nonWieferich primes has density 1. AMS Mathematical Subjects Classification: Primary 11A41; Secondary 11B25. Keywords: Distribution of Prime, Wieferiech prime, Finite Rings. Contents 1 Introduction 3 1.1 SummaryofHeuristics. .. .. .. .. .. .. .. .. 3 1.2 ResultsInShortIntervals . ... 4 1.3 AverageOrder .................................. 4 1.4 Guide ....................................... 5 2 Basic Analytic Results 6 2.1 SumsAndProductsOverThePrimes . 6 2.2 TotientsFunctions ............................... 7 2.3 Sums Of Totients Functions Over The Integers . ...... 7 2.4 Sums Of Totients Functions Over The Primes . ..... 9 2.5 Sums Of Totients Functionsc Over Subsets Of Integers . ......... 9 arXiv:1712.08166v2 [math.GM] 5 May 2018 2.6 Problems ..................................... 11 3 Finite Cyclic Groups 13 3.1 MultiplicativeOrders. 13 3.2 MaximalCyclicSubgroups . 14 4 Characteristic Functions 15 4.1 Characteristic Functions Modulo Prime Powers . ........ 15 4.2 Characteristic Functions Modulo n ....................... 16 4.3 Problems ..................................... 17 5 Equivalent Exponential Sums 17 1 results for wieferich primes 2 6 Upper Bound For The Main Term 20 7 Evaluations Of The Main Terms 21 7.1 SumsOverThePrimes.............................
    [Show full text]
  • Wieferich Primes and Period Lengths for the Expansions of Fractions
    314 MATHEMATICSMAGAZINE Wieferich Primesand PeriodLengths for the Expansionsof Fractions GENE GARZA JEFF YOUNG University of Montevallo Montevallo, Al 35115 [email protected] It is well known that some decimal expansions terminate, while others repeat, at least eventually, in patterns,which may be short or lengthy (we shall call this repeating pattern the period of the expansion). Here we will extend some known results while exploring expansions of fractions in any base. Our goal will be to find a formula for the length of the period of such expansions. The interested reader is referred to the recent award-winning article by Jones and Pearce, who show how to display such decimal expansions graphically [3]. We will consider both the expansions of (the reciprocals of) primes and of com- posites. It would seem that the easier part of this problem would be that of primes. However, there are difficulties/anomalies among primes that make it hard to find a for- mula that works in all cases. The most interesting such case is that of Wieferich primes, whose reciprocals are characterizedby expansions whose periods are the same length as the periods of their squares. For example, the length of the period of 1/1093 is 1092 which is the same as that of 1/10932. This, as we shall see, is not normally the case. For someone seeking a simple formula, this is bad news. However, as our table at the end shows, Wieferich primes are quite rare. Preliminaries Let's review what is meant by the expansion of a fraction and, in particular,the decimal expansion of a fraction.
    [Show full text]
  • Primality Testing for Beginners
    STUDENT MATHEMATICAL LIBRARY Volume 70 Primality Testing for Beginners Lasse Rempe-Gillen Rebecca Waldecker http://dx.doi.org/10.1090/stml/070 Primality Testing for Beginners STUDENT MATHEMATICAL LIBRARY Volume 70 Primality Testing for Beginners Lasse Rempe-Gillen Rebecca Waldecker American Mathematical Society Providence, Rhode Island Editorial Board Satyan L. Devadoss John Stillwell Gerald B. Folland (Chair) Serge Tabachnikov The cover illustration is a variant of the Sieve of Eratosthenes (Sec- tion 1.5), showing the integers from 1 to 2704 colored by the number of their prime factors, including repeats. The illustration was created us- ing MATLAB. The back cover shows a phase plot of the Riemann zeta function (see Appendix A), which appears courtesy of Elias Wegert (www.visual.wegert.com). 2010 Mathematics Subject Classification. Primary 11-01, 11-02, 11Axx, 11Y11, 11Y16. For additional information and updates on this book, visit www.ams.org/bookpages/stml-70 Library of Congress Cataloging-in-Publication Data Rempe-Gillen, Lasse, 1978– author. [Primzahltests f¨ur Einsteiger. English] Primality testing for beginners / Lasse Rempe-Gillen, Rebecca Waldecker. pages cm. — (Student mathematical library ; volume 70) Translation of: Primzahltests f¨ur Einsteiger : Zahlentheorie - Algorithmik - Kryptographie. Includes bibliographical references and index. ISBN 978-0-8218-9883-3 (alk. paper) 1. Number theory. I. Waldecker, Rebecca, 1979– author. II. Title. QA241.R45813 2014 512.72—dc23 2013032423 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.
    [Show full text]
  • 2017 Grand Lodge of Minnesota Annual Communication Proceedings
    2017 PROCEEDINGS The Grand Lodge A.F. and A.M. Minnesota Robert L. Darling, Grand Master Link to interactive index page 2017 ANNUAL PROCEEDINGS GRAND LODGE A. F. & A. M. of MINNESOTA 11501 Masonic Home Drive Bloomington, MN 55437-3699 952-948-6700 800-245-6050 952-948-6710 Fax E-Mail:[email protected] www.mn-masons.org 2017 ANNUAL PROCEEDINGS 3 ROBERT L. DARLING GRAND MASTER 4 GRAND LODGE OF MINNESOTA BIOGRAPHY GRAND MASTER ROBERT L. DARLING Robert L. Darling, “Bob”, was born on February 17, 1956 in Mattoon, Illinois. His parents were Russell D. and Theresa D. Darling. They lived in Greenup, Illinois. The family moved from Greenup to Decatur, Illinois and then to Maroa, Illinois where he attended the Maroa Elementary and Maroa-Forsyth High School. After graduating from the high school in mid-year, Bob enrolled and attended Illinois State University located in Normal, Illinois. In December 1976, he graduated with a B.S. Degree in Industrial Technology. Bob has worked for numerous companies including Caterpillar Inc. in Decatur, Illinois; Baldwin Associates, Clinton, Illinois; Schrock Cabinets/An Electrolux Company, Arthur, Illinois, Electrolux Home Products, St. Cloud, Minnesota. He is currently employed with the State of Minnesota, Department of Labor and Industry, OSHA Enforcement as a Safety Investigator Principal, and has worked there since 2003. Bob has been a Master Mason for 29 years. He was initiated on November 23, 1987; passed to a Fellowcraft on December 12, 1987; and was raised to the Sublime Degree of a Master Mason on January 9, 1988 by Maroa Lodge No.
    [Show full text]
  • Prime Divisors of Sparse Values of Cyclotomic Polynomials and Wieferich Primes
    Journal of Number Theory 201 (2019) 1–22 Contents lists available at ScienceDirect Journal of Number Theory www.elsevier.com/locate/jnt General Section Prime divisors of sparse values of cyclotomic ✩ polynomials and Wieferich primes M. Ram Murty ∗, François Séguin Department of Mathematics, Queen’s University, Kingston, Ontario K7L 3N6, Canada a r t i c l e i n f o a b s t r a c t Article history: Bang (1886), Zsigmondy (1892) and Birkhoff and Vandiver Received 17 September 2018 (1904) initiated the study of the largest prime divisors of Received in revised form 31 sequences of the form an − bn, denoted P (an − bn), by December 2018 essentially proving that for integers a >b > 0, P (an − bn) ≥ Accepted 25 February 2019 n +1 for every n > 2. Since then, the problem of finding Available online 20 March 2019 bounds on the largest prime factor of Lehmer sequences, Lucas Communicated by F. Pellarin sequences or special cases thereof has been studied by many, MSC: most notably by Schinzel (1962), and Stewart (1975, 2013). 11B39 In 2002, Murty and Wong proved, conditionally upon the abc − 11N69 conjecture, that P (an − bn) n2 for any > 0. In this 11D45 article, we improve this result for the specific case where b =1. 11A41 Specifically, we obtain a more precise result, and one that is Keywords: dependent on a condition we believe to be weaker than the Lucas sequences abc conjecture. Our result actually concerns the largest prime Wieferich primes factor of the nth cyclotomic polynomial evaluated at a fixed integer a, P (Φn(a)), as we let n grow.
    [Show full text]
  • On Perfect Numbers and Their Relations 1 Introduction
    Int. J. Contemp. Math. Sciences, Vol. 5, 2010, no. 27, 1337 - 1346 On Perfect Numbers and their Relations Recep G¨ur 2000 Evler Mahallesi Boykent Sitesi E Blok 26/7 Nevsehir, Turkey [email protected] Nihal Bircan Technische Universitaet Berlin Fakultaet II Institut f¨ur Mathematik MA 8 − 1 Strasse des 17. Juni 136 D-10623 Berlin, Germany [email protected] Abstract In this paper, we get some new formulas for generalized perfect numbers and their relationship between arithmetical functions φ, σ concerning Ore’s harmonic numbers and by using these formulas we present some examples. Mathematics Subject Classification: 11A25, 11A41, 11Y70 Keywords: perfect number, 2-hyperperfect number, Euler’s totient function, Ore harmonic number 1 Introduction In this section, we aimed to provide general information on perfect numbers shortly. Here and throughout the paper we assume m, n, k, d, b are positive integers and p is prime. N is called perfect number, if it is equal to the sum of its proper divisors. The first few perfect numbers are 6, 28, 496, 8128,... since, 6 = 1+2+3 28 = 1+2+4+7+14 496 = 1+2+4+8+16+31+62+124+248 Euclid discovered the first four perfect numbers which are generated by the formula 2n−1(2n−1), called Euclid number. In his book ’Elements’ he presented the proof of the formula which gives an even perfect number whenever 2n −1is 1338 Recep G¨ur and Nihal Bircan prime. In order for 2n −1 to be a prime n must itself be a prime.
    [Show full text]
  • MODERN MATHEMATICS 1900 to 1950
    Free ebooks ==> www.Ebook777.com www.Ebook777.com Free ebooks ==> www.Ebook777.com MODERN MATHEMATICS 1900 to 1950 Michael J. Bradley, Ph.D. www.Ebook777.com Free ebooks ==> www.Ebook777.com Modern Mathematics: 1900 to 1950 Copyright © 2006 by Michael J. Bradley, Ph.D. All rights reserved. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval systems, without permission in writing from the publisher. For information contact: Chelsea House An imprint of Infobase Publishing 132 West 31st Street New York NY 10001 Library of Congress Cataloging-in-Publication Data Bradley, Michael J. (Michael John), 1956– Modern mathematics : 1900 to 1950 / Michael J. Bradley. p. cm.—(Pioneers in mathematics) Includes bibliographical references and index. ISBN 0-8160-5426-6 (acid-free paper) 1. Mathematicians—Biography. 2. Mathematics—History—20th century. I. Title. QA28.B736 2006 510.92'2—dc22 2005036152 Chelsea House books are available at special discounts when purchased in bulk quantities for businesses, associations, institutions, or sales promotions. Please call our Special Sales Department in New York at (212) 967-8800 or (800) 322-8755. You can find Chelsea House on the World Wide Web at http://www.chelseahouse.com Text design by Mary Susan Ryan-Flynn Cover design by Dorothy Preston Illustrations by Jeremy Eagle Printed in the United States of America MP FOF 10 9 8 7 6 5 4 3 2 1 This book is printed on acid-free paper.
    [Show full text]
  • Scope of Various Random Number Generators in Ant System Approach for Tsp
    AC 2007-458: SCOPE OF VARIOUS RANDOM NUMBER GENERATORS IN ANT SYSTEM APPROACH FOR TSP S.K. Sen, Florida Institute of Technology Syamal K Sen ([email protected]) is currently a professor in the Dept. of Mathematical Sciences, Florida Institute of Technology (FIT), Melbourne, Florida. He did his Ph.D. (Engg.) in Computational Science from the prestigious Indian Institute of Science (IISc), Bangalore, India in 1973 and then continued as a faculty of this institute for 33 years. He was a professor of Supercomputer Computer Education and Research Centre of IISc during 1996-2004 before joining FIT in January 2004. He held a Fulbright Fellowship for senior teachers in 1991 and worked in FIT. He also held faculty positions, on leave from IISc, in several universities around the globe including University of Mauritius (Professor, Maths., 1997-98), Mauritius, Florida Institute of Technology (Visiting Professor, Math. Sciences, 1995-96), Al-Fateh University (Associate Professor, Computer Engg, 1981-83.), Tripoli, Libya, University of the West Indies (Lecturer, Maths., 1975-76), Barbados.. He has published over 130 research articles in refereed international journals such as Nonlinear World, Appl. Maths. and Computation, J. of Math. Analysis and Application, Simulation, Int. J. of Computer Maths., Int. J Systems Sci., IEEE Trans. Computers, Internl. J. Control, Internat. J. Math. & Math. Sci., Matrix & Tensor Qrtly, Acta Applicande Mathematicae, J. Computational and Applied Mathematics, Advances in Modelling and Simulation, Int. J. Engineering Simulation, Neural, Parallel and Scientific Computations, Nonlinear Analysis, Computers and Mathematics with Applications, Mathematical and Computer Modelling, Int. J. Innovative Computing, Information and Control, J. Computational Methods in Sciences and Engineering, and Computers & Mathematics with Applications.
    [Show full text]
  • Euclid's Number Theory
    Euclid of Alexandria, II: Number Theory Euclid of Alexandria, II: Number Theory Waseda University, SILS, History of Mathematics Euclid of Alexandria, II: Number Theory Outline Introduction Euclid’s number theory The overall structure Definitions for number theory Theory of prime numbers Properties of primes Infinitude of primes Euclid of Alexandria, II: Number Theory Introduction Concepts of number § The natural numbers is the set N “ t1; 2; 3;::: u. § The whole numbers is the set W “ t0; 1; 2; 3;::: u. § The integers is the set of positive and negative whole numbers Z “ t0; 1; ´1; 2; ´2;::: u. § The rational numbers is the set Q, of numbers of the form p{q, where p; q P Z,1 but q ‰ 0. § The real numbers, R, is the set of all the values mapped to the points of the number line. (The definition is tricky.) § An irrational number is a number that belongs to the reals, but is not rational. 1The symbol P means “in the set of,” or “is an element of.” Euclid of Alexandria, II: Number Theory Introduction The Greek concept of number § Greek number theory was exclusively interested in natural numbers. § In fact, the Greek also did not regard “1” as a number, but rather considered it the unit by which other numbers are numbered (or measured). § We can define Greek natural numbers as G “ t2; 3; 4;::: u. (But we can do most Greek number theory with N, so we will generally use this set, for simplicity.) Euclid of Alexandria, II: Number Theory Introduction Number theory before Euclid § The semi-legendary Pythagorus himself and other Pythagoreans are attributed with a fascination with numbers and with the development of a certain “pebble arithmetic” which studied the mathematical properties of numbers that correspond to certain geometry shapes (figurate numbers).
    [Show full text]
  • Overpseudoprimes, Mersenne Numbers and Wieferich Primes 2
    OVERPSEUDOPRIMES, MERSENNE NUMBERS AND WIEFERICH PRIMES VLADIMIR SHEVELEV Abstract. We introduce a new class of pseudoprimes - so-called “overpseu- doprimes” which is a special subclass of super-Poulet pseudoprimes. De- noting via h(n) the multiplicative order of 2 modulo n, we show that odd number n is overpseudoprime if and only if the value of h(n) is invariant of all divisors d > 1 of n. In particular, we prove that all composite Mersenne numbers 2p − 1, where p is prime, and squares of Wieferich primes are overpseudoprimes. 1. Introduction n Sometimes the numbers Mn =2 − 1, n =1, 2,..., are called Mersenne numbers, although this name is usually reserved for numbers of the form p (1) Mp =2 − 1 where p is prime. In our paper we use the latter name. In this form numbers Mp at the first time were studied by Marin Mersenne (1588-1648) at least in 1644 (see in [1, p.9] and a large bibliography there). We start with the following simple observation. Let n be odd and h(n) denote the multiplicative order of 2 modulo n. arXiv:0806.3412v9 [math.NT] 15 Mar 2012 Theorem 1. Odd d> 1 is a divisor of Mp if and only if h(d)= p. Proof. If d > 1 is a divisor of 2p − 1, then h(d) divides prime p. But h(d) > 1. Thus, h(d)= p. The converse statement is evident. Remark 1. This observation for prime divisors of Mp belongs to Max Alek- seyev ( see his comment to sequence A122094 in [5]).
    [Show full text]