1 Abelian Group 266 Absolute Value 307 Addition Mod P 427 Additive
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Double-Authentication-Preventing Signatures
A preliminary version of this paper appears in the proceedings of ESORICS 2014 [PS14]. The full version appears in the International Journal of Information Security [PS15]. This is the author's copy of the full version. The final publication is available at Springer via http://dx.doi.org/10.1007/s10207-015-0307-8. Double-authentication-preventing signatures Bertram Poettering1 and Douglas Stebila2 1 Foundations of Cryptography, Ruhr University Bochum, Germany 2 School of Electrical Engineering and Computer Science and School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia [email protected] [email protected] January 18, 2016 Abstract Digital signatures are often used by trusted authorities to make unique bindings between a subject and a digital object; for example, certificate authorities certify a public key belongs to a domain name, and time-stamping authorities certify that a certain piece of information existed at a certain time. Traditional digital signature schemes however impose no uniqueness conditions, so a trusted authority could make multiple certifications for the same subject but different objects, be it intentionally, by accident, or following a (legal or illegal) coercion. We propose the notion of a double-authentication-preventing signature, in which a value to be signed is split into two parts: a subject and a message. If a signer ever signs two different messages for the same subject, enough information is revealed to allow anyone to compute valid signatures on behalf of the signer. This double-signature forgeability property discourages signers from misbehaving|a form of self-enforcement|and would give binding authorities like CAs some cryptographic arguments to resist legal coercion. -
Fast Tabulation of Challenge Pseudoprimes Andrew Shallue and Jonathan Webster
THE OPEN BOOK SERIES 2 ANTS XIII Proceedings of the Thirteenth Algorithmic Number Theory Symposium Fast tabulation of challenge pseudoprimes Andrew Shallue and Jonathan Webster msp THE OPEN BOOK SERIES 2 (2019) Thirteenth Algorithmic Number Theory Symposium msp dx.doi.org/10.2140/obs.2019.2.411 Fast tabulation of challenge pseudoprimes Andrew Shallue and Jonathan Webster We provide a new algorithm for tabulating composite numbers which are pseudoprimes to both a Fermat test and a Lucas test. Our algorithm is optimized for parameter choices that minimize the occurrence of pseudoprimes, and for pseudoprimes with a fixed number of prime factors. Using this, we have confirmed that there are no PSW-challenge pseudoprimes with two or three prime factors up to 280. In the case where one is tabulating challenge pseudoprimes with a fixed number of prime factors, we prove our algorithm gives an unconditional asymptotic improvement over previous methods. 1. Introduction Pomerance, Selfridge, and Wagstaff famously offered $620 for a composite n that satisfies (1) 2n 1 1 .mod n/ so n is a base-2 Fermat pseudoprime, Á (2) .5 n/ 1 so n is not a square modulo 5, and j D (3) Fn 1 0 .mod n/ so n is a Fibonacci pseudoprime, C Á or to prove that no such n exists. We call composites that satisfy these conditions PSW-challenge pseudo- primes. In[PSW80] they credit R. Baillie with the discovery that combining a Fermat test with a Lucas test (with a certain specific parameter choice) makes for an especially effective primality test[BW80]. -
11Th International Conference for Internet Technology and Secured Transactions
Analysis of PRNGs with Large State Spaces and Structural Improvements Gabriele Spenger, Jörg Keller Faculty of Mathematics and Computer Science FernUniversität in Hagen 58084 Hagen, Germany [email protected], [email protected] Abstract usually been subject for a lot of scientific work trying to find any kinds of weaknesses before their standardization. But there are also occasions where the The security of cryptographic functions such as standards do not provide the right tools for an pseudo random number generators (PRNGs) can application. One example is the application on low cost usually not be mathematically proven. Instead, RFID transmitters, which only allow a very low statistical properties of the generator are commonly complexity of the algorithms due to the cost restraints evaluated using standardized test batteries on a (the cost is mostly driven by the required chip area [1]). limited number of output values. This paper In these cases, it might be required to use a non- demonstrates that valuable additional information standardized algorithm. This implies the danger of about the properties of the algorithm can be gathered choosing an algorithm that does not provide the by analyzing the state space. As the state space for necessary security. practical use cases is usually huge, two approaches Besides the algorithms themselves also a couple of are presented to make this analysis manageable. methods for the assessment of the suitability of Results for a practical application of these cryptographic functions have been standardized. approaches to the algorithms AKARI and A5/1 are Examples for methods for assessing the security of provided, giving new insights about the suitability of PRNGs are the Marsaglia suite of Tests of these PRNGs for security applications. -
Using Map Service API for Driving Cycle Detection for Wearable GPS Data: Preprint
Using Map Service API for Driving Cycle Detection for Wearable GPS Data Preprint Lei Zhu and Jeffrey Gonder National Renewable Energy Laboratory To be presented at Transportation Research Board (TRB) 97th Annual Meeting Washington, DC January 7-11, 2018 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Conference Paper NREL/CP-5400-70474 December 2017 Contract No. DE-AC36-08GO28308 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. -
Secret Sharing and Perfect Zero Knowledge*
Secret Sharing and Perfect Zero Knowledge* A. De Santis,l G. Di Crescenzo,l G. Persiano2 Dipartimento di Informatica ed Applicazioni, Universiti di Salerno, 84081 Baronissi (SA), Italy Dipartimento di Matematica, Universitk di Catania, 95125 Catania, Italy Abstract. In this work we study relations between secret sharing and perfect zero knowledge in the non-interactive model. Both secret sharing schemes and non-interactive zero knowledge are important cryptographic primitives with several applications in the management of cryptographic keys, in multi-party secure protocols, and many other areas. Secret shar- ing schemes are very well-studied objects while non-interactive perfect zer-knowledge proofs seem to be very elusive. In fact, since the intro- duction of the non-interactive model for zero knowledge, the only perfect zero-knowledge proof known was for quadratic non residues. In this work, we show that a large class of languages related to quadratic residuosity admits non-interactive perfect zero-knowledge proofs. More precisely, we give a protocol for proving non-interactively and in perfect zero knowledge the veridicity of any “threshold” statement where atoms are statements about the quadratic character of input elements. We show that our technique is very general and extend this result to any secret sharing scheme (of which threshold schemes are just an example). 1 Introduction Secret Sharing. The fascinating concept of Secret Sharing scheme has been first considered in [18] and [3]. A secret sharing scheme is a method of dividing a secret s among a set of participants in such a way that only qualified subsets of participants can reconstruct s but non-qualified subsets have absolutely no information on s. -
FACTORING COMPOSITES TESTING PRIMES Amin Witno
WON Series in Discrete Mathematics and Modern Algebra Volume 3 FACTORING COMPOSITES TESTING PRIMES Amin Witno Preface These notes were used for the lectures in Math 472 (Computational Number Theory) at Philadelphia University, Jordan.1 The module was aborted in 2012, and since then this last edition has been preserved and updated only for minor corrections. Outline notes are more like a revision. No student is expected to fully benefit from these notes unless they have regularly attended the lectures. 1 The RSA Cryptosystem Sensitive messages, when transferred over the internet, need to be encrypted, i.e., changed into a secret code in such a way that only the intended receiver who has the secret key is able to read it. It is common that alphabetical characters are converted to their numerical ASCII equivalents before they are encrypted, hence the coded message will look like integer strings. The RSA algorithm is an encryption-decryption process which is widely employed today. In practice, the encryption key can be made public, and doing so will not risk the security of the system. This feature is a characteristic of the so-called public-key cryptosystem. Ali selects two distinct primes p and q which are very large, over a hundred digits each. He computes n = pq, ϕ = (p − 1)(q − 1), and determines a rather small number e which will serve as the encryption key, making sure that e has no common factor with ϕ. He then chooses another integer d < n satisfying de % ϕ = 1; This d is his decryption key. When all is ready, Ali gives to Beth the pair (n; e) and keeps the rest secret. -
Exact Learning of Sequences from Queries and Trackers
UNIVERSITY OF CALIFORNIA, IRVINE Exact Learning of Sequences from Queries and Trackers DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Computer Science by Pedro Ascens~ao Ferreira Matias Dissertation Committee: Distinguished Professor Michael T. Goodrich, Chair Distinguished Professor David Eppstein Professor Sandy Irani 2021 Chapter 2 c 2020 Springer Chapter 4 c 2021 Springer All other materials c 2021 Pedro Ascens~aoFerreira Matias DEDICATION To my parents Margarida and Lu´ıs,to my sister Ana and to my brother Luisito, for the encouragement in choosing my own path, and for always being there. { Senhorzinho Doutorzinho ii TABLE OF CONTENTS Page COVER DEDICATION ii TABLE OF CONTENTS iii LIST OF FIGURES v ACKNOWLEDGMENTS vii VITA ix ABSTRACT OF THE DISSERTATION xii 1 Introduction 1 1.1 Learning Strings . .3 1.2 Learning Paths in a Graph . .4 1.3 Literature Overview on Exact Learning and Other Learning Models . .5 2 Learning Strings 12 2.1 Introduction . 12 2.1.1 Related Work . 14 2.1.2 Our Results . 18 2.1.3 Preliminaries . 19 2.2 Substring Queries . 20 2.2.1 Uncorrupted Periodic Strings of Known Size . 22 2.2.2 Uncorrupted Periodic Strings of Unknown Size . 25 2.2.3 Corrupted Periodic Strings . 30 2.3 Subsequence Queries . 36 2.4 Jumbled-index Queries . 39 2.5 Conclusion and Open Questions . 46 3 Learning Paths in Planar Graphs 48 3.1 Introduction . 48 3.1.1 Related Work . 50 3.1.2 Definitions . 52 iii 3.2 Approximation algorithm . 53 3.2.1 Lower bound on OPT ......................... -
A Clasification of Known Root Prime-Generating
Special properties of the first absolute Fermat pseudoprime, the number 561 Marius Coman Bucuresti, Romania email: [email protected] Abstract. Though is the first Carmichael number, the number 561 doesn’t have the same fame as the third absolute Fermat pseudoprime, the Hardy-Ramanujan number, 1729. I try here to repair this injustice showing few special properties of the number 561. I will just list (not in the order that I value them, because there is not such an order, I value them all equally as a result of my more or less inspired work, though they may or not “open a path”) the interesting properties that I found regarding the number 561, in relation with other Carmichael numbers, other Fermat pseudoprimes to base 2, with primes or other integers. 1. The number 2*(3 + 1)*(11 + 1)*(17 + 1) + 1, where 3, 11 and 17 are the prime factors of the number 561, is equal to 1729. On the other side, the number 2*lcm((7 + 1),(13 + 1),(19 + 1)) + 1, where 7, 13 and 19 are the prime factors of the number 1729, is equal to 561. We have so a function on the prime factors of 561 from which we obtain 1729 and a function on the prime factors of 1729 from which we obtain 561. Note: The formula N = 2*(d1 + 1)*...*(dn + 1) + 1, where d1, d2, ...,dn are the prime divisors of a Carmichael number, leads to interesting results (see the sequence A216646 in OEIS); the formula M = 2*lcm((d1 + 1),...,(dn + 1)) + 1 also leads to interesting results (see the sequence A216404 in OEIS). -
On Types of Elliptic Pseudoprimes
journal of Groups, Complexity, Cryptology Volume 13, Issue 1, 2021, pp. 1:1–1:33 Submitted Jan. 07, 2019 https://gcc.episciences.org/ Published Feb. 09, 2021 ON TYPES OF ELLIPTIC PSEUDOPRIMES LILJANA BABINKOSTOVA, A. HERNANDEZ-ESPIET,´ AND H. Y. KIM Boise State University e-mail address: [email protected] Rutgers University e-mail address: [email protected] University of Wisconsin-Madison e-mail address: [email protected] Abstract. We generalize Silverman's [31] notions of elliptic pseudoprimes and elliptic Carmichael numbers to analogues of Euler-Jacobi and strong pseudoprimes. We inspect the relationships among Euler elliptic Carmichael numbers, strong elliptic Carmichael numbers, products of anomalous primes and elliptic Korselt numbers of Type I, the former two of which we introduce and the latter two of which were introduced by Mazur [21] and Silverman [31] respectively. In particular, we expand upon the work of Babinkostova et al. [3] on the density of certain elliptic Korselt numbers of Type I which are products of anomalous primes, proving a conjecture stated in [3]. 1. Introduction The problem of efficiently distinguishing the prime numbers from the composite numbers has been a fundamental problem for a long time. One of the first primality tests in modern number theory came from Fermat Little Theorem: if p is a prime number and a is an integer not divisible by p, then ap−1 ≡ 1 (mod p). The original notion of a pseudoprime (sometimes called a Fermat pseudoprime) involves counterexamples to the converse of this theorem. A pseudoprime to the base a is a composite number N such aN−1 ≡ 1 mod N. -
Fast Tabulation of Challenge Pseudoprimes
Fast Tabulation of Challenge Pseudoprimes Andrew Shallue Jonathan Webster Illinois Wesleyan University Butler University ANTS-XIII, 2018 1 / 18 Outline Elementary theorems and definitions Challenge pseudoprime Algorithmic theory Sketch of analysis Future work 2 / 18 Definition If n is a composite integer with gcd(b, n) = 1 and bn−1 ≡ 1 (mod n) then we call n a base b Fermat pseudoprime. Fermat’s Little Theorem Theorem If p is prime and gcd(b, p) = 1 then bp−1 ≡ 1 (mod p). 3 / 18 Fermat’s Little Theorem Theorem If p is prime and gcd(b, p) = 1 then bp−1 ≡ 1 (mod p). Definition If n is a composite integer with gcd(b, n) = 1 and bn−1 ≡ 1 (mod n) then we call n a base b Fermat pseudoprime. 3 / 18 Lucas Sequences Definition Let P, Q be integers, and let D = P2 − 4Q (called the discriminant). Let α and β be the two roots of x 2 − Px + Q. Then we have an integer sequence Uk defined by αk − βk U = k α − β called the (P, Q)-Lucas sequence. Definition Equivalently, we may define this as a recurrence relation: U0 = 0, U1 = 1, and Un = PUn−1 − QUn−2. 4 / 18 Definition If n is a composite integer with gcd(n, 2QD) = 1 such that Un−(n) ≡ 0 (mod n) then we call n a (P, Q)-Lucas pseudoprime. An Analogous Theorem Theorem Let the (P, Q)-Lucas sequence be given, and let (n) = (D|n) be the Jacobi symbol. If p is an odd prime and gcd(p, 2QD) = 1, then Up−(p) ≡ 0 (mod p) 5 / 18 An Analogous Theorem Theorem Let the (P, Q)-Lucas sequence be given, and let (n) = (D|n) be the Jacobi symbol. -
Cuckoo Cycle: a Memory Bound Graph-Theoretic Proof-Of-Work
Cuckoo Cycle: a memory bound graph-theoretic proof-of-work John Tromp December 31, 2014 Abstract We introduce the first graph-theoretic proof-of-work system, based on finding small cycles or other structures in large random graphs. Such problems are trivially verifiable and arbitrarily scalable, presumably requiring memory linear in graph size to solve efficiently. Our cycle finding algorithm uses one bit per edge, and up to one bit per node. Runtime is linear in graph size and dominated by random access latency, ideal properties for a memory bound proof-of-work. We exhibit two alternative algorithms that allow for a memory-time trade-off (TMTO)|decreased memory usage, by a factor k, coupled with increased runtime, by a factor Ω(k). The constant implied in Ω() gives a notion of memory-hardness, which is shown to be dependent on cycle length, guiding the latter's choice. Our algorithms are shown to parallelize reasonably well. 1 Introduction A proof-of-work (PoW) system allows a verifier to check with negligible effort that a prover has expended a large amount of computational effort. Originally introduced as a spam fighting measure, where the effort is the price paid by an email sender for demanding the recipient's attention, they now form one of the cornerstones of crypto currencies. As proof-of-work for new blocks of transactions, Bitcoin [1] adopted Adam Back's hashcash [2]. Hashcash entails finding a nonce value such that application of a cryptographic hash function to this nonce and the rest of the block header, results in a number below a target threshold1. -
The Complexity of Prime Number Tests
Die approbierte Originalversion dieser Diplom-/ Masterarbeit ist in der Hauptbibliothek der Tech- nischen Universität Wien aufgestellt und zugänglich. http://www.ub.tuwien.ac.at The approved original version of this diploma or master thesis is available at the main library of the Vienna University of Technology. http://www.ub.tuwien.ac.at/eng The Complexity of Prime Number Tests Diplomarbeit Ausgeführt am Institut für Diskrete Mathematik und Geometrie der Technischen Universität Wien unter der Anleitung von Univ.Prof. Dipl.-Ing. Dr.techn. Michael Drmota durch Theres Steiner, BSc Matrikelnummer: 01025110 Ort, Datum Unterschrift (Student) Unterschrift (Betreuer) The problem of distinguishing prime numbers from composite numbers and of re- solving the latter into their prime factors is known to be one of the most important and useful in arithmetic. Carl Friedrich Gauss, Disquisitiones Arithmeticae, 1801 Ron and Hermione have 2 children: Rose and Hugo. Vogon poetry is the 3rd worst in the universe. Acknowledgements First, I would like to thank my parents, Rudolf and Doris Steiner, without them I would not be where I am now. I would also like to thank my professor Michael Drmota for supporting me and helping me with my thesis. Throughout the writing process he was always there for me and his input was always helpful. I would also like to thank my colleagues who made this stage of my life truly amazing. Also, a special thanks to the people that gave me valuable input on my thesis, mathematically or grammatically. 4 5 is the 5th digit in π. Abstract Prime numbers have been a signicant focus of mathematics throughout the years.