POWERFUL AMICABLE NUMBERS 1. Introduction Let S(N) := ∑ D Be the Sum of the Proper Divisors of the Natural Number N. Two Disti

Total Page:16

File Type:pdf, Size:1020Kb

POWERFUL AMICABLE NUMBERS 1. Introduction Let S(N) := ∑ D Be the Sum of the Proper Divisors of the Natural Number N. Two Disti POWERFUL AMICABLE NUMBERS PAUL POLLACK P Abstract. Let s(n) := djn; d<n d denote the sum of the proper di- visors of the natural number n. Two distinct positive integers n and m are said to form an amicable pair if s(n) = m and s(m) = n; in this case, both n and m are called amicable numbers. The first example of an amicable pair, known already to the ancients, is f220; 284g. We do not know if there are infinitely many amicable pairs. In the opposite direction, Erd}osshowed in 1955 that the set of amicable numbers has asymptotic density zero. Let ` ≥ 1. A natural number n is said to be `-full (or `-powerful) if p` divides n whenever the prime p divides n. As shown by Erd}osand 1=` Szekeres in 1935, the number of `-full n ≤ x is asymptotically c`x , as x ! 1. Here c` is a positive constant depending on `. We show that for each fixed `, the set of amicable `-full numbers has relative density zero within the set of `-full numbers. 1. Introduction P Let s(n) := djn; d<n d be the sum of the proper divisors of the natural number n. Two distinct natural numbers n and m are said to form an ami- cable pair if s(n) = m and s(m) = n; in this case, both n and m are called amicable numbers. The first amicable pair, 220 and 284, was known already to the Pythagorean school. Despite their long history, we still know very little about such pairs. Thus, we know over 10 million examples [19] (cf. [11]), but we have no proof that there are infinitely many. In the opposite direction, Erd}os[5] showed in 1955 that the set of amicable numbers has as- ymptotic density zero. The strongest result of this type is due to Pomerance [23]. Another unsolved problem concerns the existence of an amicable pair of opposite parity. It is easy to prove (see, e.g., [12]) that in such a pair, the odd member is a square and the even member is either a square or twice a square. Thus, it is natural to ask how often s(n2) is a perfect square or twice a square. Iannucci and Luca [16] have shown that the number of n ≤ x for which s(n2) is a square is bounded by x=(log x)3=2+o(1), as x ! 1, and their 2010 Mathematics Subject Classification. Primary: 11A25, Secondary: 11N37. Key words and phrases. amicable number, powerful number, sociable number, aliquot sequence. 1 2 P. POLLACK method yields the same estimate for how often s(n2) is twice a square. As a corollary, the set of n for which n2 is amicable has asymptotic density zero. Squares are an example of 2-full numbers. Here the natural number n is called `-full if every prime dividing n appears to at least the `th power in the prime factorization of n. It is known (see [9]) that the number of `-full 1=` numbers n ≤ x is asymptotically c`x , as x ! 1, where c` is a positive constant depending on `. Our main result is the following: Theorem 1.1. Fix ` ≥ 1. As x ! 1, only o(x1=`) of the `-full natural numbers not exceeding x are amicable. Note that the case ` = 1 is exactly the theorem of Erd}osquoted in the opening paragraph. Our method is entirely different from that of Iannucci and Luca. We adopt two strategies, depending on the parity of `. If ` is odd, we show that an `-full number n usually satisfies either n < s(n) < s(s(n)) or n > s(n) > s(s(n)). In neither case can n be amicable. The ideas here trace back to Erd}os[5] (see also [7]) and Erd}os{Granville{Pomerance{Spiro [8]. Suppose now that ` is even. We apply an elementary sieving argument to show that for most `-full n, the number s(n) has many primes appearing to the first power. Thus, σ(s(n)) is divisible by a large power of 2. On the other hand, if n is amicable, then σ(s(n)) = σ(n). For most `-full numbers n, nearly all of the primes dividing n show up to precisely the `th power; since ` is even, these prime powers have odd σ-value. Thus, for an `-full number n, we expect that σ(n) is only divisible by a small power of 2. So most `-full numbers are not amicable. Amicable numbers are a special class of sociable numbers. In the final section of this paper, we review what it means for a number to be sociable, and we prove the analogue of Theorem 1.1 for sociable numbers of a fixed odd order. Notation. Throughout, the letters p and q are reserved for primes. We write P (n) for the largest prime divisor of n, with the understanding that P P (1) = 1. We say that n is y-smooth if P (n) ≤ y. We let !(n) := pjn 1 stand for the number of distinct prime divisors of n, and we write rad(n) := Q pjn p for the largest squarefree divisor of n. If d divides n and gcd(d; n=d) = 1, we say that d exactly divides n, and we write d k n. We write νp(n) for the nonnegative integer satisfying pνp(n) k n (the p-adic order of n). We use POWERFUL AMICABLE NUMBERS 3 1C for the indicator function of the set defined by the condition C; so, for 2 example, 1v squarefree = µ (v). If S1 and S2 are subsets of the natural numbers, by the relative density of S1 within S2, we mean the limit #fn ≤ x : n 2 S1g lim ; x!1 #fn ≤ x : n 2 S2g if it exists. The upper and lower relative densities are defined analogously, with lim sup and lim inf replacing lim. We say that a property holds for almost all m if it holds for all m outside of a set of density zero (or relative density zero, depending on context). We use both the Landau{Bachmann O-notation and Vinogradov's notation; implied constants are absolute unless specified otherwise by subscripts. We write log1 x = maxf1; log xg, and for k > 1, we let logk denote the kth iterate of log1. 2. Preliminaries for the case of odd ` Fix an odd natural number `. We begin by proving the following theorem, the lower-bound half of which generalizes a theorem from [5] (see also [7]) and the upper-bound half of which generalizes [8, Theorem 5.1]. In both our notation and our general strategy, we follow [8] closely. Theorem 2.1. For each fixed > 0, all but o(x1=`) of the `-full numbers n ≤ x satisfy s(n) s(s(n)) s(n) (1) − ≤ ≤ + . n s(n) n Rather than treating all `-full numbers on an equal footing, we introduce a certain convenient partition: For each `-full number n, we write n in the form dv`, where d is (`+1)-full and v is squarefree. Then most `-full numbers correspond to small values of d. Indeed, the number of `-full n ≤ x for which d > y (say) is bounded by X X 1=` X −1=` 1=` − 1 1 ≤ x d ` x y `(`+1) : d>y v≤(x=d)1=` d>y d (` + 1)-full d (` + 1)-full It follows that to prove a result about almost all `-full numbers, such as Theorem 1.1 or Theorem 2.1, we may assume that the (` + 1)-full part d of n is fixed. Our task then becomes showing that as x ! 1, all but o(x) of the squarefree v ≤ x coprime to d are such that n = dv` satisfies the statement in question. 4 P. POLLACK For the rest of this section, we assume the (` + 1)-full number d is fixed. Whenever we use v below, we always mean a squarefree integer coprime to d, whether this is stated explicitly or not. Lemma 2.2. Fix a natural number T . For each value of v with 1 < v ≤ x, write ` ` dv = n1n2 and s(dv ) = N1N2; where P (n1N1) ≤ T and every prime dividing n2N2 exceeds T . Then, except for o(x) (as x ! 1) choices of v, we have n1 = N1. Proof. At the cost of excluding o(x) values of v ≤ x, we may assume that !−1 1=2 Y n1 ≤ d(log2 x) p : p≤T ` Indeed, in the opposite case, v has a T -smooth divisor e := n1=(n1; d) −1 1=2 Q exceeding (log2 x) p≤T p . For each such e, let e1 be the minimal ` ` 1=` integer with e j e1. Since e j v , we have that e1 j v; moreover, e1 ≥ e . So the number of v that may arise is at most X X X 1 (2) 1 ≤ x : e1=` e T -smooth v≤x e T -smooth 1=2 Q −1 1=2 Q −1 e>(log2 x) ( p≤T p) e1jv e>(log2 x) ( p≤T p) Observing that X 1 Y 1 1 = 1 + + + ::: < 1; e1=` p1=` p2=` e T -smooth p≤T we deduce that the right-hand side of (2) is o(x), as x ! 1. Now we show that for all but o(x) values of v ≤ x, the number σ(dv`) 2=3 is divisible by every natural number not exceeding (log2 x) . Let m be a natural number. For all but x=(log x)1='(m) exceptional values of v ≤ x, one can find a prime p ≡ −1 (mod m) for which p k v (see [22, Theorem 2]).
Recommended publications
  • Paul Erdős and the Rise of Statistical Thinking in Elementary Number Theory
    Paul Erd®s and the rise of statistical thinking in elementary number theory Carl Pomerance, Dartmouth College based on the joint survey with Paul Pollack, University of Georgia 1 Let us begin at the beginning: 2 Pythagoras 3 Sum of proper divisors Let s(n) be the sum of the proper divisors of n: For example: s(10) = 1 + 2 + 5 = 8; s(11) = 1; s(12) = 1 + 2 + 3 + 4 + 6 = 16: 4 In modern notation: s(n) = σ(n) − n, where σ(n) is the sum of all of n's natural divisors. The function s(n) was considered by Pythagoras, about 2500 years ago. 5 Pythagoras: noticed that s(6) = 1 + 2 + 3 = 6 (If s(n) = n, we say n is perfect.) And he noticed that s(220) = 284; s(284) = 220: 6 If s(n) = m, s(m) = n, and m 6= n, we say n; m are an amicable pair and that they are amicable numbers. So 220 and 284 are amicable numbers. 7 In 1976, Enrico Bombieri wrote: 8 There are very many old problems in arithmetic whose interest is practically nil, e.g., the existence of odd perfect numbers, problems about the iteration of numerical functions, the existence of innitely many Fermat primes 22n + 1, etc. 9 Sir Fred Hoyle wrote in 1962 that there were two dicult astronomical problems faced by the ancients. One was a good problem, the other was not so good. 10 The good problem: Why do the planets wander through the constellations in the night sky? The not-so-good problem: Why is it that the sun and the moon are the same apparent size? 11 Perfect numbers, amicable numbers, and similar topics were important to the development of elementary number theory.
    [Show full text]
  • 2020 Chapter Competition Solutions
    2020 Chapter Competition Solutions Are you wondering how we could have possibly thought that a Mathlete® would be able to answer a particular Sprint Round problem without a calculator? Are you wondering how we could have possibly thought that a Mathlete would be able to answer a particular Target Round problem in less 3 minutes? Are you wondering how we could have possibly thought that a particular Team Round problem would be solved by a team of only four Mathletes? The following pages provide solutions to the Sprint, Target and Team Rounds of the 2020 MATHCOUNTS® Chapter Competition. These solutions provide creative and concise ways of solving the problems from the competition. There are certainly numerous other solutions that also lead to the correct answer, some even more creative and more concise! We encourage you to find a variety of approaches to solving these fun and challenging MATHCOUNTS problems. Special thanks to solutions author Howard Ludwig for graciously and voluntarily sharing his solutions with the MATHCOUNTS community. 2020 Chapter Competition Sprint Round 1. Each hour has 60 minutes. Therefore, 4.5 hours has 4.5 × 60 minutes = 45 × 6 minutes = 270 minutes. 2. The ratio of apples to oranges is 5 to 3. Therefore, = , where a represents the number of apples. So, 5 3 = 5 × 9 = 45 = = . Thus, apples. 3 9 45 3 3. Substituting for x and y yields 12 = 12 × × 6 = 6 × 6 = . 1 4. The minimum Category 4 speed is 130 mi/h2. The maximum Category 1 speed is 95 mi/h. Absolute difference is |130 95| mi/h = 35 mi/h.
    [Show full text]
  • PRIME-PERFECT NUMBERS Paul Pollack [email protected] Carl
    PRIME-PERFECT NUMBERS Paul Pollack Department of Mathematics, University of Illinois, Urbana, Illinois 61801, USA [email protected] Carl Pomerance Department of Mathematics, Dartmouth College, Hanover, New Hampshire 03755, USA [email protected] In memory of John Lewis Selfridge Abstract We discuss a relative of the perfect numbers for which it is possible to prove that there are infinitely many examples. Call a natural number n prime-perfect if n and σ(n) share the same set of distinct prime divisors. For example, all even perfect numbers are prime-perfect. We show that the count Nσ(x) of prime-perfect numbers in [1; x] satisfies estimates of the form c= log log log x 1 +o(1) exp((log x) ) ≤ Nσ(x) ≤ x 3 ; as x ! 1. We also discuss the analogous problem for the Euler function. Letting N'(x) denote the number of n ≤ x for which n and '(n) share the same set of prime factors, we show that as x ! 1, x1=2 x7=20 ≤ N (x) ≤ ; where L(x) = xlog log log x= log log x: ' L(x)1=4+o(1) We conclude by discussing some related problems posed by Harborth and Cohen. 1. Introduction P Let σ(n) := djn d be the sum of the proper divisors of n. A natural number n is called perfect if σ(n) = 2n and, more generally, multiply perfect if n j σ(n). The study of such numbers has an ancient pedigree (surveyed, e.g., in [5, Chapter 1] and [28, Chapter 1]), but many of the most interesting problems remain unsolved.
    [Show full text]
  • Cullen Numbers with the Lehmer Property
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000–000 S 0002-9939(XX)0000-0 CULLEN NUMBERS WITH THE LEHMER PROPERTY JOSE´ MAR´IA GRAU RIBAS AND FLORIAN LUCA Abstract. Here, we show that there is no positive integer n such that n the nth Cullen number Cn = n2 + 1 has the property that it is com- posite but φ(Cn) | Cn − 1. 1. Introduction n A Cullen number is a number of the form Cn = n2 + 1 for some n ≥ 1. They attracted attention of researchers since it seems that it is hard to find primes of this form. Indeed, Hooley [8] showed that for most n the number Cn is composite. For more about testing Cn for primality, see [3] and [6]. For an integer a > 1, a pseudoprime to base a is a compositive positive integer m such that am ≡ a (mod m). Pseudoprime Cullen numbers have also been studied. For example, in [12] it is shown that for most n, Cn is not a base a-pseudoprime. Some computer searchers up to several millions did not turn up any pseudo-prime Cn to any base. Thus, it would seem that Cullen numbers which are pseudoprimes are very scarce. A Carmichael number is a positive integer m which is a base a pseudoprime for any a. A composite integer m is called a Lehmer number if φ(m) | m − 1, where φ(m) is the Euler function of m. Lehmer numbers are Carmichael numbers; hence, pseudoprimes in every base. No Lehmer number is known, although it is known that there are no Lehmer numbers in certain sequences, such as the Fibonacci sequence (see [9]), or the sequence of repunits in base g for any g ∈ [2, 1000] (see [4]).
    [Show full text]
  • Programming Exam 1 on the Assignments Page
    COS 126 Midterm 1 Programming Exam Spring 2015 This part of your midterm exam is like a mini-programming assignment. You will create four programs, compile them, and run them on your laptop. Debug your code as needed. This exam is open book, open browser—but only our course website and booksite! Of course, no internal or external communication is permitted (e.g., talking, email, IM, texting, cell phones) during the exam. You may use code from your assignments or code found on the COS126 website. When you are done, submit your program via the course website using the submit link for Programming Exam 1 on the Assignments page. Grading. Your program will be graded on correctness, clarity (including comments), design, and efficiency. You will lose a substantial number of points if your program does not compile or does not have the proper API, or if it crashes on typical inputs. Even though you will electronically submit your code, you must turn in this paper so that we have a record that you took the exam and signed the Honor Code. Print your name, login ID, and precept number on this page (now), and write out and sign the Honor Code pledge before turning in this paper. Note: It is a violation of the Honor Code to discuss this midterm exam question with anyone until after everyone in the class has taken the exam. You have 90 minutes to complete the test. “I pledge my honor that I have not violated the Honor Code during this examination.” ___________________________________________________________________ ___________________________________________________________________ [copy the pledge onto these lines] _____________________________ [signature] NAME: ______________________ Part 0 /12 Part 1 /8 LOGIN: ______________________ Part 2 /5 Part 3 /5 PRECEPT: ______________________ TOTAL /30 !1 The aliquot sum of a positive integer is the sum of its positive divisors other than itself (these divisors are called its proper divisors).
    [Show full text]
  • Newsletter No. 31 March 2004
    Newsletter No. 31 March 2004 Welcome to the second newsletter of 2004. We have lots of goodies for you this month so let's get under way. Maths is commonly said to be useful. The variety of its uses is wide but how many times as teachers have we heard students exclaim, "What use will this be when I leave school?" I guess it's all a matter of perspective. A teacher might say mathematics is useful because it provides him/her with a livelihood. A scientist would probably say it's the language of science and an engineer might use it for calculations necessary to build bridges. What about the rest of us? A number of surveys have shown that the majority of us only need to handle whole numbers in counting, simple addition and subtraction and decimals as they relate to money and domestic measurement. We are adept in avoiding arithmetic - calculators in their various forms can handle that. We prefer to accept so-called ball-park figures rather than make useful estimates in day-to-day dealings and computer software combined with trial-and-error takes care of any design skills we might need. At the same time we know that in our technological world numeracy and computer literacy are vital. Research mathematicians can push boundaries into the esoteric, some of it will be found useful, but we can't leave mathematical expertise to a smaller and smaller proportion of the population, no matter how much our students complain. Approaching mathematics through problem solving - real and abstract - is the philosophy of the nzmaths website.
    [Show full text]
  • Sums of Divisors, Perfect Numbers and Factoring*
    J. COMPUT. 1986 Society for and Applied Mathematics No. 4, November 1986 02 SUMS OF DIVISORS, PERFECT NUMBERS AND FACTORING* ERIC GARY MILLER5 AND JEFFREY Abstract. Let N be a positive integer, and let denote the sum of the divisors of N = 1+2 +3+6 = 12). We show computing is equivalent to factoring N in the following sense: there is a random polynomial time algorithm that, given N),produces the prime factorization of N, and N) can be computed in polynomial time given the factorization of N. We show that the same result holds for the sum of the kth powers of divisors of We give three new examples of problems that are in Gill’s complexity class BPP perfect numbers, multiply perfect numbers, and amicable pairs. These are the first “natural” sets in BPP that are not obviously in RP. Key words. factoring, sum of divisors, perfect numbers, random reduction, multiply perfect numbers, amicable pairs subject classifications. 1. Introduction. Integer factoring is a well-known difficult problem whose precise computational complexity is still unknown. Several investigators have found algorithms that are much better than the classical method of trial division (see [Guy [Pol], [Dix], [Len]). We are interested in the relationship of factoring to other functions in number theory. It is trivial to show that classical functions like (the number of positive integers less than N and relatively prime to N) can be computed in polynomial time if one can factor N; hence computing is “easier” than factoring. One would also like to find functions “harder” than factoring.
    [Show full text]
  • Mathematical Constants and Sequences
    Mathematical Constants and Sequences a selection compiled by Stanislav Sýkora, Extra Byte, Castano Primo, Italy. Stan's Library, ISSN 2421-1230, Vol.II. First release March 31, 2008. Permalink via DOI: 10.3247/SL2Math08.001 This page is dedicated to my late math teacher Jaroslav Bayer who, back in 1955-8, kindled my passion for Mathematics. Math BOOKS | SI Units | SI Dimensions PHYSICS Constants (on a separate page) Mathematics LINKS | Stan's Library | Stan's HUB This is a constant-at-a-glance list. You can also download a PDF version for off-line use. But keep coming back, the list is growing! When a value is followed by #t, it should be a proven transcendental number (but I only did my best to find out, which need not suffice). Bold dots after a value are a link to the ••• OEIS ••• database. This website does not use any cookies, nor does it collect any information about its visitors (not even anonymous statistics). However, we decline any legal liability for typos, editing errors, and for the content of linked-to external web pages. Basic math constants Binary sequences Constants of number-theory functions More constants useful in Sciences Derived from the basic ones Combinatorial numbers, including Riemann zeta ζ(s) Planck's radiation law ... from 0 and 1 Binomial coefficients Dirichlet eta η(s) Functions sinc(z) and hsinc(z) ... from i Lah numbers Dedekind eta η(τ) Functions sinc(n,x) ... from 1 and i Stirling numbers Constants related to functions in C Ideal gas statistics ... from π Enumerations on sets Exponential exp Peak functions (spectral) ..
    [Show full text]
  • Arxiv:2106.08994V2 [Math.GM] 1 Aug 2021 Efc Ubr N30b.H Rvdta F2 If That and Proved Properties He Studied BC
    Measuring Abundance with Abundancy Index Kalpok Guha∗ Presidency University, Kolkata Sourangshu Ghosh† Indian Institute of Technology Kharagpur, India Abstract A positive integer n is called perfect if σ(n) = 2n, where σ(n) denote n σ(n) the sum of divisors of . In this paper we study the ratio n . We de- I → I n σ(n) fine the function Abundancy Index : N Q with ( ) = n . Then we study different properties of Abundancy Index and discuss the set of Abundancy Index. Using this function we define a new class of num- bers known as superabundant numbers. Finally we study superabundant numbers and their connection with Riemann Hypothesis. 1 Introduction Definition 1.1. A positive integer n is called perfect if σ(n)=2n, where σ(n) denote the sum of divisors of n. The first few perfect numbers are 6, 28, 496, 8128, ... (OEIS A000396), This is a well studied topic in number theory. Euclid studied properties and nature of perfect numbers in 300 BC. He proved that if 2p −1 is a prime, then 2p−1(2p −1) is an even perfect number(Elements, Prop. IX.36). Later mathematicians have arXiv:2106.08994v2 [math.GM] 1 Aug 2021 spent years to study the properties of perfect numbers. But still many questions about perfect numbers remain unsolved. Two famous conjectures related to perfect numbers are 1. There exist infinitely many perfect numbers. Euler [1] proved that a num- ber is an even perfect numbers iff it can be written as 2p−1(2p − 1) and 2p − 1 is also a prime number.
    [Show full text]
  • Arxiv:2008.10398V1 [Math.NT] 24 Aug 2020 Children He Has
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000{000 S 0894-0347(XX)0000-0 RECURSIVELY ABUNDANT AND RECURSIVELY PERFECT NUMBERS THOMAS FINK London Institute for Mathematical Sciences, 35a South St, London W1K 2XF, UK Centre National de la Recherche Scientifique, Paris, France The divisor function σ(n) sums the divisors of n. We call n abundant when σ(n) − n > n and perfect when σ(n) − n = n. I recently introduced the recursive divisor function a(n), the recursive analog of the divisor function. It measures the extent to which a number is highly divisible into parts, such that the parts are highly divisible into subparts, so on. Just as the divisor function motivates the abundant and perfect numbers, the recursive divisor function motivates their recursive analogs, which I introduce here. A number is recursively abundant, or ample, if a(n) > n and recursively perfect, or pristine, if a(n) = n. There are striking parallels between abundant and perfect numbers and their recursive counterparts. The product of two ample numbers is ample, and ample numbers are either abundant or odd perfect numbers. Odd ample numbers exist but are rare, and I conjecture that there are such numbers not divisible by the first k primes|which is known to be true for the abundant numbers. There are infinitely many pristine numbers, but that they cannot be odd, apart from 1. Pristine numbers are the product of a power of two and odd prime solutions to certain Diophantine equations, reminiscent of how perfect numbers are the product of a power of two and a Mersenne prime.
    [Show full text]
  • Eureka Issue 61
    Eureka 61 A Journal of The Archimedeans Cambridge University Mathematical Society Editors: Philipp Legner and Anja Komatar © The Archimedeans (see page 94 for details) Do not copy or reprint any parts without permission. October 2011 Editorial Eureka Reinvented… efore reading any part of this issue of Eureka, you will have noticed The Team two big changes we have made: Eureka is now published in full col- our, and printed on a larger paper size than usual. We felt that, with Philipp Legner Design and Bthe internet being an increasingly large resource for mathematical articles of Illustrations all kinds, it was necessary to offer something new and exciting to keep Eu- reka as successful as it has been in the past. We moved away from the classic Anja Komatar Submissions LATEX-look, which is so common in the scientific community, to a modern, more engaging, and more entertaining design, while being conscious not to Sean Moss lose any of the mathematical clarity and rigour. Corporate Ben Millwood To make full use of the new design possibilities, many of this issue’s articles Publicity are based around mathematical images: from fractal modelling in financial Lu Zou markets (page 14) to computer rendered pictures (page 38) and mathemati- Subscriptions cal origami (page 20). The Showroom (page 46) uncovers the fundamental role pictures have in mathematics, including patterns, graphs, functions and fractals. This issue includes a wide variety of mathematical articles, problems and puzzles, diagrams, movie and book reviews. Some are more entertaining, such as Bayesian Bets (page 10), some are more technical, such as Impossible Integrals (page 80), or more philosophical, such as How to teach Physics to Mathematicians (page 42).
    [Show full text]
  • On the Number of Distinct Exponents in the Prime Factorization of an Integer
    Proc. Indian Acad. Sci. (Math. Sci.) (2020) 130:27 https://doi.org/10.1007/s12044-020-0556-y On the number of distinct exponents in the prime factorization of an integer CARLO SANNA Department of Mathematics, Università degli Studi di Genova, Genoa, Italy E-mail: [email protected] MS received 25 February 2019; revised 5 September 2019; accepted 11 November 2019 Abstract. Let f (n) be the number of distinct exponents in the prime factorization of the natural number n. We prove some results about the distribution of f (n). In particular, for any positive integer k, we obtain that #{n ≤ x : f (n) = k}∼Ak x and Bx(log log x)k #{n ≤ x : f (n) = ω(n) − k}∼ , k! log x as x →+∞,whereω(n) is the number of prime factors of n and Ak, B > 0 are some explicit constants. The latter asymptotic extends a result of Akta¸s and Ram Murty (Proc. Indian Acad. Sci. (Math. Sci.) 127(3) (2017) 423–430) about numbers having mutually distinct exponents in their prime factorization. Keywords. Prime factorization; squarefree numbers; powerful number. 2010 Mathematics Subject Classification. Primary: 11N25; Secondary: 11N37, 11N64. 1. Introduction = a1 ··· as > < Let n p1 ps be the factorization of the natural number n 1, where p1 ··· < ps are prime numbers and a1,...,as are positive integers. Several functions of the exponents a1,...,as have been studied, including their product [17], their arithmetic mean [2,4,5,7], and their maximum and minimum [11,13,15,18]. See also [3,8]fora more general function.
    [Show full text]