Eureka Issue 61

Total Page:16

File Type:pdf, Size:1020Kb

Eureka Issue 61 Eureka 61 A Journal of The Archimedeans Cambridge University Mathematical Society Editors: Philipp Legner and Anja Komatar © The Archimedeans (see page 94 for details) Do not copy or reprint any parts without permission. October 2011 Editorial Eureka Reinvented… efore reading any part of this issue of Eureka, you will have noticed The Team two big changes we have made: Eureka is now published in full col- our, and printed on a larger paper size than usual. We felt that, with Philipp Legner Design and Bthe internet being an increasingly large resource for mathematical articles of Illustrations all kinds, it was necessary to offer something new and exciting to keep Eu- reka as successful as it has been in the past. We moved away from the classic Anja Komatar Submissions LATEX-look, which is so common in the scientific community, to a modern, more engaging, and more entertaining design, while being conscious not to Sean Moss lose any of the mathematical clarity and rigour. Corporate Ben Millwood To make full use of the new design possibilities, many of this issue’s articles Publicity are based around mathematical images: from fractal modelling in financial Lu Zou markets (page 14) to computer rendered pictures (page 38) and mathemati- Subscriptions cal origami (page 20). The Showroom (page 46) uncovers the fundamental role pictures have in mathematics, including patterns, graphs, functions and fractals. This issue includes a wide variety of mathematical articles, problems and puzzles, diagrams, movie and book reviews. Some are more entertaining, such as Bayesian Bets (page 10), some are more technical, such as Impossible Integrals (page 80), or more philosophical, such as How to teach Physics to Mathematicians (page 42). Whether pure or applied, mathematician or not, there will be something interesting for everyone. If you don’t know where to start reading, skim through the pages and have a look at the Number Dictionary at the bottom. If you have any comments, would like to write an article for the next issue, or be part of the next production team, please do not hesitate to contact us or any member of the Archimedeans committee. I hope you will enjoy reading the 61st issue of Eureka! Philipp Legner 38 Painting with Pixels 4 The Archimedeans 30 How Electrons Spin Philipp Kleppmann, Corpus Christi Natasha Kudryashova, Darwin College Schrödinger was the first to explain electron 6 Annual Problems Drive spin using trembling, the Zitterbewegung. Mary Fortune and Jonathan Lee 34 News from the Beginning 10 Bayesian Bets of the World Andrew Pollard, Churchill College Sophie Dundovic, St John’s College What can Bayes tell us about the Monty What are Multiverses? And how can Hall Problem and similar games? they explain why we are alive? 14 Fractal Finance 38 Painting with Pixels Aidan Chan, Peterhouse College Martin Kleppmann, Corpus Christi Alumni Can you really model complex financial Alexander Hess, Universität Bonn markets using mathematical equations? These abstract computer images consist of millions of geometric shapes. 20 Mathematical Origami Philipp Legner, St John’s College 42 How to teach Physics to Trisecting the angle, doubling the cube – Mathematicians paper folding makes it possible! Zhou Min Lim, St John’s College An answer to the never-ending fight: 26 Quantum Entanglement theoretical abstraction or experiments. Elton Zhu, Queens’ College Will entangled quantum states ever 46 The Showroom make teleportation possible? Philipp Legner, St John’s College Smallest and only even prime number. Euler charac- 2 teristic of a polyhedron homeomorphic to a sphere. 14 Fractal Finance 20 Mathematical Origami 34 News from the Beginning of the World 52 The Liar Paradox 74 The Factors of Binomials Prof. Keith Devlin, Stanford Unievrsity Samin Riasat, Queens’ College Is “This sentence is a lie” true or false? Here is an ingenious method for finding Model Theory can help determining it. the prime factors of binomial coefficients. 56 When Logic Meets Geometry 76 Terrifying Transcendentals Tom Avery, St John’s College Aled Walker, Trinity College Zariski structures, linking Set Theory and The proof that e is transcendental has far Algebraic Geometry, have many applications. reaching consequences in mathematics… 60 Graphs, Groups and 80 Impossible Integrals Topology Damian Reding, Trinity College x2 Anja Komatar, Queens’ College Did you ever wonder why e has Graphs can be used to visualise many groups, no elementary antiderivative? and can be embedded in various surfaces. 84 Engage. Explore. Excite. 64 Using Finite Simple Groups Mathematical Collaboration Prof. Cheryl Praeger, U. o. W. Australia Dr Marj Batchelor, DPMMS Insights into one of the greatest discoveries It is the collaboration between scientists of the last century: the classification theorem. from different fields that drives research. 68 Sequences 88 Book and Movie Reviews Trevor Pinto, Queens’ College Forget square numbers and primes – here 92 Solutions are some curious, little-known sequences. 94 Copyrights Number of dimensions we can see. Number of generations of particles in the Standard Model. 3 The Archimedeans Philipp Kleppmann, President 2011 − 2012 he highlight of this year’s Archimedeans’ At the end of term we organised the annual prob- calendar was the black-tie Triennial Dinner. lems drive. The questions were set by last year’s Seventy-five members and guests attended winners, and people from as far away as Warwick Tthe champagne reception and excellent meal in took part in this light-hearted competition. The the Crowne Plaza Hotel to celebrate another step- questions can be seen on the following pages; ping stone in the long life of the society. points were also awarded for the funniest and most creative answers. We hosted several academic talks this year, start- ing with Prof. Siksek’s account of Diophantine The first event in Easter Term was a relaxing punt- equations, their history, and methods of solving ing trip immediately after the exams. A little later these deceptively simple-looking equations. Our we joined in the general madness of May Week main theme were the Millennium Prize Prob- with the Science Societies’ Garden Party. Novel- lems, with five engaging talks throughout the year. ties this year were live music and a cheese bar – These problems where set by the Clay Mathemat- both went down very well! ics Institute in 2000, and only one of them has since been resolved. The talk by Prof. Donaldson This has been a fantastic year, both for our mem- on the Poincaré Conjecture proved to be especial- bers and for the committee, and we are looking ly popular. Prof. Donaldson was on the Advisory forward to another interesting year. I would like Board that recommended Dr. Perelman as prize to thank the committee for their dedication, and winner, and is an expert in the area. the members and subscribers of Eureka for their continued support. The Committee 2011 – 2012 President Treasurer Philipp Kleppmann (Corpus Christi) Lovkush Agarwal (Corpus Christi) Vice-President Events Managers Fangzhou Liu (Sidney Sussex) Pawel Rzemieniecki (Fitzwilliam) Corporate Officer Dana Ma (Newnham) Sean Moss (Trinity) Publicity Officer Internal Secretary Yuhan Gao (Trinity) Colin Egan (Gonville and Caius) Webmaster External Secretary Katarzyna Kowal (Churchill) Laura Irvine (Murray Edwards) Maximum number of colours needed to 4 colour any map in the Euclidean plane. Archimedeans Garden Party 2011 Talk by Prof. Béla Bollobás Party after Prof. Archimedeans Bollobás’ Talk Garden Party 2011 Post-Exams Punting 2011 Fundamental Post-Exams Theorem of Comedy Punting 2011 Number of Platonic solids. Number of vertices of a pyramid. 5 Archimedeans Problems Drive 2011 by Mary Fortune and Jonathan Lee 1 Attitude Adjuster 2 Funny, It Worked Last A velociraptor spots you 40 meters away and Time… attacks, accelerating at 4 m/s2 from a stand You are in the kitchen below. Half black start, up to its top speed of 25 m/s. When it squares are mirrored surfaces, and raptors spots you, you begin to flee, quickly reaching may run on clear areas. If a raptor sees your top speed of 6 m/s. How far can you get you in the corner of its eye, it will turn and before you’re caught and devoured? give chase. Otherwise it will run forward. Raptors are intelligent and do not run into walls. If there is a choice they turn left. There are a number of bear traps scattered in the kitchen. If a raptor runs into any- What Are The Civilian thing, they’re incapacitated and become 3 Applications? someone else’s problem. Do you survive? Microraptors are quite like Raptors physi- cally, except that they are smaller and less cantankerous (and are satisfied with Tuna). Being cheap to hire, they can improve a firm’s profit margin, and are being rolled out in accountancy firms across the country. It is hoped that no one will notice. Their limit- ing factor is that they cannot use computers, and instead use the abacus, making use of a wall chart of all possible multiplications of the numbers from 1 to 10 (an old fashioned multiplication table). A Cambridge mathmo visited the office one day, and remarked that the sum of the entries in the table was a per- fect square (which was true) and that the sum was 2420. Make a conjecture about the anatomy of Microraptors. Smallest perfect number. Order of the smallest 6 non-abelian group. Number of distinct Quarks. The Precise Nature of the Another Victim Of The 4 Catastrophe 5 Ambient Morality There has been a Zombie outbreak on the You and a law student are in the CMS. In Pirate island. Each Zombie infects 1 Pirate front of you are two choices - one of the per day, and are invulnerable to Pirates. rooms contains the answers to Examples The Pirates have some caged Raptors.
Recommended publications
  • Further Generalizations of Happy Numbers
    Further Generalizations of Happy Numbers E. S. Williams June 15, 2016 Abstract In this paper we generalize the concept of happy numbers in several ways. First we confirm known results of Grundman and Teeple in [2] and establish further results, not given in that work. Then we construct a similar function expanding the definition of happy numbers to negative integers. Using this function, we compute and prove results extending those regarding higher powers and sequences of consecutive happy numbers that El-Sidy and Siksek and Grundman and Teeple proved in [1], [2] and [3] to negative integers. Finally, we consider a variety of special cases, in which the existence of certain fixed points and cycles of infinite families of generalized happy functions can be proven. 1 Introduction Happy numbers have been studied for many years, although the origin of the concept is unclear. Consider the sum of the square of the digits of an arbitrary positive integer. If repeating the process of taking the sums of the squares of the digits of an integer eventually gets us 1, then that integer is happy. This paper first provides a brief overview of traditional happy numbers, then describes existing work on generalizations of the concept to other bases and higher powers. We extend some earlier results for the cubic case to the quartic case. We then extend the happy function S to negative integers, constructing a function Q : Z ! Z which agrees with S over Z+ for this purpose. We then generalize Q to various bases and higher powers. As is traditional in 1 the study of special numbers, we consider consecutive sequences of happy numbers, and generalize this study to Q.
    [Show full text]
  • M-Gonal Number± N = Nasty Number, N =
    International Journal of Research in Advent Technology, Vol.6, No.11, November 2018 E-ISSN: 2321-9637 Available online at www.ijrat.org M-Gonal number n = Nasty number, n = 1,2 Dr.K.Geetha Assistant Professor, Department of Mathematics, Dr.Umayal Ramanathan College for Women, Karaikudi. [email protected] Abstract: This paper concerns with study of obtaining the ranks of M-gonal numbers along with their recurrence relation such that M-gonal number n = Nasty number where n = 1,2. Key Words: Triangular number, Pentagonal number, Hexagonal number, Octagonal number and Dodecagonal number 1. INTRODUCTION may refer [3-7]. In this communication an attempt is Numbers exhibit fascinating properties, they form made to obtain the ranks of M-gonal numbers like patterns and so on [1]. In [3] the ranks of Triangular, Triangular, Pentagonal, Hexagonal, Octagonal and Pentagonal, Heptagonal, Nanogonal and Tridecagonal Dodecagonal numbers such that each of these M-gonal numbers such that each of these M-gonal number - number n = Nasty number, n = 1,2. Also the 2 = a perfect square and the ranks of Pentagonal and recurrence relations satisfied by the ranks of each of Heptagonal such that each of these M-gonal number + these M-gonal numbers are presented. 2= a perfect square are obtained. In this context one 2. METHOD OF ANALYSIS 2.1.Pattern 1: Let the rank of the nth Triangular number be A, then the identity 2 Triangular number – 2 = 6 x (1) is written as y22 48x 9 (2) where y 2A 1 (3) whose initial solution is x30 , y0 21 (4) Let xyss, be the general solution of the Pellian 22 yx48 1 (5) 1 ss11 where xs 7 48 7 48 2 48 1 ss11 ys 7 48 7 48 , s 0,1,...
    [Show full text]
  • [Math.NT] 10 May 2005
    Journal de Th´eorie des Nombres de Bordeaux 00 (XXXX), 000–000 Restriction theory of the Selberg sieve, with applications par Ben GREEN et Terence TAO Resum´ e.´ Le crible de Selberg fournit des majorants pour cer- taines suites arithm´etiques, comme les nombres premiers et les nombres premiers jumeaux. Nous demontrons un th´eor`eme de restriction L2-Lp pour les majorants de ce type. Comme ap- plication imm´ediate, nous consid´erons l’estimation des sommes exponentielles sur les k-uplets premiers. Soient les entiers posi- tifs a1,...,ak et b1,...,bk. Ecrit h(θ) := n∈X e(nθ), ou X est l’ensemble de tous n 6 N tel que tousP les nombres a1n + b1,...,akn+bk sont premiers. Nous obtenons les bornes sup´erieures pour h p T , p > 2, qui sont (en supposant la v´erit´ede la con- k kL ( ) jecture de Hardy et Littlewood sur les k-uplets premiers) d’ordre de magnitude correct. Une autre application est la suivante. En utilisant les th´eor`emes de Chen et de Roth et un «principe de transf´erence », nous demontrons qu’il existe une infinit´ede suites arithm´etiques p1 < p2 < p3 de nombres premiers, telles que cha- cun pi + 2 est premier ou un produit de deux nombres premier. Abstract. The Selberg sieve provides majorants for certain arith- metic sequences, such as the primes and the twin primes. We prove an L2–Lp restriction theorem for majorants of this type. An im- mediate application is to the estimation of exponential sums over prime k-tuples.
    [Show full text]
  • A Member of the Order of Minims, Was a Philosopher, Mathematician, and Scientist Who Wrote on Music, Mechanics, and Optics
    ON THE FORM OF MERSENNE NUMBERS PREDRAG TERZICH Abstract. We present a theorem concerning the form of Mersenne p numbers , Mp = 2 − 1 , where p > 3 . We also discuss a closed form expression which links prime numbers and natural logarithms . 1. Introduction. The friar Marin Mersenne (1588 − 1648), a member of the order of Minims, was a philosopher, mathematician, and scientist who wrote on music, mechanics, and optics . A Mersenne number is a number of p the form Mp = 2 − 1 where p is an integer , however many authors prefer to define a Mersenne number as a number of the above form but with p restricted to prime values . In this paper we shall use the second definition . Because the tests for Mersenne primes are relatively simple, the record largest known prime number has almost always been a Mersenne prime . 2. A theorem and closed form expression Theorem 2.1. Every Mersenne number Mp , (p > 3) is a number of the form 6 · k · p + 1 for some odd possitive integer k . Proof. In order to prove this we shall use following theorems : Theorem 2.2. The simultaneous congruences n ≡ n1 (mod m1) , n ≡ n2 (mod m2), .... ,n ≡ nk (mod mk) are only solvable when ni = nj (mod gcd(mi; mj)) , for all i and j . i 6= j . The solution is unique modulo lcm(m1; m2; ··· ; mk) . Proof. For proof see [1] Theorem 2.3. If p is a prime number, then for any integer a : ap ≡ a (mod p) . Date: January 4 , 2012. 1 2 PREDRAG TERZICH Proof.
    [Show full text]
  • The Pseudoprimes to 25 • 109
    MATHEMATICS OF COMPUTATION, VOLUME 35, NUMBER 151 JULY 1980, PAGES 1003-1026 The Pseudoprimes to 25 • 109 By Carl Pomerance, J. L. Selfridge and Samuel S. Wagstaff, Jr. Abstract. The odd composite n < 25 • 10 such that 2n_1 = 1 (mod n) have been determined and their distribution tabulated. We investigate the properties of three special types of pseudoprimes: Euler pseudoprimes, strong pseudoprimes, and Car- michael numbers. The theoretical upper bound and the heuristic lower bound due to Erdös for the counting function of the Carmichael numbers are both sharpened. Several new quick tests for primality are proposed, including some which combine pseudoprimes with Lucas sequences. 1. Introduction. According to Fermat's "Little Theorem", if p is prime and (a, p) = 1, then ap~1 = 1 (mod p). This theorem provides a "test" for primality which is very often correct: Given a large odd integer p, choose some a satisfying 1 <a <p - 1 and compute ap~1 (mod p). If ap~1 pi (mod p), then p is certainly composite. If ap~l = 1 (mod p), then p is probably prime. Odd composite numbers n for which (1) a"_1 = l (mod«) are called pseudoprimes to base a (psp(a)). (For simplicity, a can be any positive in- teger in this definition. We could let a be negative with little additional work. In the last 15 years, some authors have used pseudoprime (base a) to mean any number n > 1 satisfying (1), whether composite or prime.) It is well known that for each base a, there are infinitely many pseudoprimes to base a.
    [Show full text]
  • Input for Carnival of Math: Number 115, October 2014
    Input for Carnival of Math: Number 115, October 2014 I visited Singapore in 1996 and the people were very kind to me. So I though this might be a little payback for their kindness. Good Luck. David Brooks The “Mathematical Association of America” (http://maanumberaday.blogspot.com/2009/11/115.html ) notes that: 115 = 5 x 23. 115 = 23 x (2 + 3). 115 has a unique representation as a sum of three squares: 3 2 + 5 2 + 9 2 = 115. 115 is the smallest three-digit integer, abc , such that ( abc )/( a*b*c) is prime : 115/5 = 23. STS-115 was a space shuttle mission to the International Space Station flown by the space shuttle Atlantis on Sept. 9, 2006. The “Online Encyclopedia of Integer Sequences” (http://www.oeis.org) notes that 115 is a tridecagonal (or 13-gonal) number. Also, 115 is the number of rooted trees with 8 vertices (or nodes). If you do a search for 115 on the OEIS website you will find out that there are 7,041 integer sequences that contain the number 115. The website “Positive Integers” (http://www.positiveintegers.org/115) notes that 115 is a palindromic and repdigit number when written in base 22 (5522). The website “Number Gossip” (http://www.numbergossip.com) notes that: 115 is the smallest three-digit integer, abc, such that (abc)/(a*b*c) is prime. It also notes that 115 is a composite, deficient, lucky, odd odious and square-free number. The website “Numbers Aplenty” (http://www.numbersaplenty.com/115) notes that: It has 4 divisors, whose sum is σ = 144.
    [Show full text]
  • On Sufficient Conditions for the Existence of Twin Values in Sieves
    On Sufficient Conditions for the Existence of Twin Values in Sieves over the Natural Numbers by Luke Szramowski Submitted in Partial Fulfillment of the Requirements For the Degree of Masters of Science in the Mathematics Program Youngstown State University May, 2020 On Sufficient Conditions for the Existence of Twin Values in Sieves over the Natural Numbers Luke Szramowski I hereby release this thesis to the public. I understand that this thesis will be made available from the OhioLINK ETD Center and the Maag Library Circulation Desk for public access. I also authorize the University or other individuals to make copies of this thesis as needed for scholarly research. Signature: Luke Szramowski, Student Date Approvals: Dr. Eric Wingler, Thesis Advisor Date Dr. Thomas Wakefield, Committee Member Date Dr. Thomas Madsen, Committee Member Date Dr. Salvador A. Sanders, Dean of Graduate Studies Date Abstract For many years, a major question in sieve theory has been determining whether or not a sieve produces infinitely many values which are exactly two apart. In this paper, we will discuss a new result in sieve theory, which will give sufficient conditions for the existence of values which are exactly two apart. We will also show a direct application of this theorem on an existing sieve as well as detailing attempts to apply the theorem to the Sieve of Eratosthenes. iii Contents 1 Introduction 1 2 Preliminary Material 1 3 Sieves 5 3.1 The Sieve of Eratosthenes . 5 3.2 The Block Sieve . 9 3.3 The Finite Block Sieve . 12 3.4 The Sieve of Joseph Flavius .
    [Show full text]
  • Simple Rules for Incorporating Design Art Into Penrose and Fractal Tiles
    Bridges 2012: Mathematics, Music, Art, Architecture, Culture Simple Rules for Incorporating Design Art into Penrose and Fractal Tiles San Le SLFFEA.com [email protected] Abstract Incorporating designs into the tiles that form tessellations presents an interesting challenge for artists. Creating a viable M.C. Escher-like image that works esthetically as well as functionally requires resolving incongruencies at a tile’s edge while constrained by its shape. Escher was the most well known practitioner in this style of mathematical visualization, but there are significant mathematical objects to which he never applied his artistry including Penrose Tilings and fractals. In this paper, we show that the rules of creating a traditional tile extend to these objects as well. To illustrate the versatility of tiling art, images were created with multiple figures and negative space leading to patterns distinct from the work of others. 1 1 Introduction M.C. Escher was the most prominent artist working with tessellations and space filling. Forty years after his death, his creations are still foremost in people’s minds in the field of tiling art. One of the reasons Escher continues to hold such a monopoly in this specialty are the unique challenges that come with creating Escher type designs inside a tessellation[15]. When an image is drawn into a tile and extends to the tile’s edge, it introduces incongruencies which are resolved by continuously aligning and refining the image. This is particularly true when the image consists of the lizards, fish, angels, etc. which populated Escher’s tilings because they do not have the 4-fold rotational symmetry that would make it possible to arbitrarily rotate the image ± 90, 180 degrees and have all the pieces fit[9].
    [Show full text]
  • 1. Introduction
    Journal of Combinatorics and Number Theory ISSN 1942-5600 Volume 2, Issue 3, pp. 65-77 c 2010 Nova Science Publishers, Inc. CYCLES AND FIXED POINTS OF HAPPY FUNCTIONS Kathryn Hargreaves∗ and Samir Sikseky Mathematics Institute, University of Warwick Coventry, CV4 7AL, United Kingdom Received October 8, 2009; Accepted September 22, 2010 Abstract Let N = f1; 2; 3; · · · g denote the natural numbers. Given integers e ≥ 1 and Pn i b ≥ 2, let x = i=0 aib with 0 ≤ ai ≤ b − 1 (thus ai are the digits of x in base b). We define the happy function Se;b : N −! N by n X e Se;b(x) = ai : i=0 r A positive integer x is then said to be (e; b)-happy if Se;b(x) = 1 for some r ≥ 0, otherwise we say it is (e; b)-unhappy. In this paper we investigate the cycles and fixed points of the happy functions Se;b. We give an upper bound for the size of elements belonging to the cycles of Se;b. We also prove that the number of fixed points of S2;b is ( b2+1 2 τ 2 − 1 if b is odd, τ(b2 + 1) − 1 if b is even, where τ(m) denotes the number of positive divisors of m. We use our results to determine the densities of happy numbers in a small handful of cases. 2000 Mathematics Subject Classification: Primary 11A63; Secondary 11B05. 1. Introduction Guy [G] introduces Problem E34 Happy numbers as follows: Reg. Allenby’s daughter came home from school in Britain with the concept of happy numbers.
    [Show full text]
  • Monthly Science and Maths Magazine 01
    1 GYAN BHARATI SCHOOL QUEST….. Monthly Science and Mathematics magazine Edition: DECEMBER,2019 COMPILED BY DR. KIRAN VARSHA AND MR. SUDHIR SAXENA 2 IDENTIFY THE SCIENTIST She was an English chemist and X-ray crystallographer who made contributions to the understanding of the molecular structures of DNA , RNA, viruses, coal, and graphite. She was never nominated for a Nobel Prize. Her work was a crucial part in the discovery of DNA, for which Francis Crick, James Watson, and Maurice Wilkins were awarded a Nobel Prize in 1962. She died in 1958, and during her lifetime the DNA structure was not considered as fully proven. It took Wilkins and his colleagues about seven years to collect enough data to prove and refine the proposed DNA structure. RIDDLE TIME You measure my life in hours and I serve you by expiring. I’m quick when I’m thin and slow when I’m fat. The wind is my enemy. Hard riddles want to trip you up, and this one works by hitting you with details from every angle. The big hint comes at the end with the wind. What does wind threaten most? I have cities, but no houses. I have mountains, but no trees. I have water, but no fish. What am I? This riddle aims to confuse you and get you to focus on the things that are missing: the houses, trees, and fish. 3 WHY ARE AEROPLANES USUALLY WHITE? The Aeroplanes might be having different logos and decorations. But the colour of the aeroplane is usually white.Painting the aeroplane white is most practical and economical.
    [Show full text]
  • WGLT Program Guide, March-April, 2012
    Illinois State University ISU ReD: Research and eData WGLT Program Guides Arts and Sciences Spring 3-1-2012 WGLT Program Guide, March-April, 2012 Illinois State University Follow this and additional works at: https://ir.library.illinoisstate.edu/wgltpg Recommended Citation Illinois State University, "WGLT Program Guide, March-April, 2012" (2012). WGLT Program Guides. 241. https://ir.library.illinoisstate.edu/wgltpg/241 This Book is brought to you for free and open access by the Arts and Sciences at ISU ReD: Research and eData. It has been accepted for inclusion in WGLT Program Guides by an authorized administrator of ISU ReD: Research and eData. For more information, please contact [email protected]. You'll be able to count on GLT's own award-winning news team because we will Seven is a not only a prime number but also a double Mersenne prime, have the resources they need to continue a Newman-Shanks-Williams prime, a Woodall prime, a factorial prime, providing you with top quality local a lucky prime, a safe prime (the only Mersenne safe prime) and a "happy and regional news. prime," or happy number. Whether you love our top shelf jazz According to Sir Isaac Newton, a rainbow has seven colors. service or great weekend blues - or both - There are seven deadly sins, seven dwarves, seven continents, seven you'll get what you want when you tune in ancient wonders of the world, seven chakras and seven days in the week. because we'll have the tools and the talent to bring you the music you love.
    [Show full text]
  • Single Digits
    ...................................single digits ...................................single digits In Praise of Small Numbers MARC CHAMBERLAND Princeton University Press Princeton & Oxford Copyright c 2015 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW press.princeton.edu All Rights Reserved The second epigraph by Paul McCartney on page 111 is taken from The Beatles and is reproduced with permission of Curtis Brown Group Ltd., London on behalf of The Beneficiaries of the Estate of Hunter Davies. Copyright c Hunter Davies 2009. The epigraph on page 170 is taken from Harry Potter and the Half Blood Prince:Copyrightc J.K. Rowling 2005 The epigraphs on page 205 are reprinted wiht the permission of the Free Press, a Division of Simon & Schuster, Inc., from Born on a Blue Day: Inside the Extraordinary Mind of an Austistic Savant by Daniel Tammet. Copyright c 2006 by Daniel Tammet. Originally published in Great Britain in 2006 by Hodder & Stoughton. All rights reserved. Library of Congress Cataloging-in-Publication Data Chamberland, Marc, 1964– Single digits : in praise of small numbers / Marc Chamberland. pages cm Includes bibliographical references and index. ISBN 978-0-691-16114-3 (hardcover : alk. paper) 1. Mathematical analysis. 2. Sequences (Mathematics) 3. Combinatorial analysis. 4. Mathematics–Miscellanea. I. Title. QA300.C4412 2015 510—dc23 2014047680 British Library
    [Show full text]