Advancing the Nordic Hydrogen Innovation Network
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Flexible Production of Hydrogen from Sun and Wind: Challenges and Experiences
Flexible Production of Hydrogen from Sun and Wind: Chal- lenges and Experiences H. J. Fell, P. Chladek, O. Wallevik, S. T. Briskeby This document appeared in Detlef Stolten, Thomas Grube (Eds.): 18th World Hydrogen Energy Conference 2010 - WHEC 2010 Parallel Sessions Book 3: Hydrogen Production Technologies - Part 2 Proceedings of the WHEC, May 16.-21. 2010, Essen Schriften des Forschungszentrums Jülich / Energy & Environment, Vol. 78-3 Institute of Energy Research - Fuel Cells (IEF-3) Forschungszentrum Jülich GmbH, Zentralbibliothek, Verlag, 2010 ISBN: 978-3-89336-653-8 Proceedings WHEC2010 113 Flexible Production of Hydrogen from Sun and Wind: Challenges and Experiences Hans Jörg Fell, Petr Chladek, Hydrogen Technologies, N-3908 Porsgrunn, Norway Oddmund Wallevik, Stein Trygve Briskeby, Statoil, Research Centre Porsgrunn, N-3908 Porsgrunn, Norway 1 Introduction With the looming threat of global climate change and progressing depletion of fossil fuels, renewable power sources, especially wind and solar, experienced an economic boom in the past decade [1, 2]. Both wind and sun supply significant amount of electrical power without generating any pollution during the operation. Unfortunately, both sources generate power of intermittent nature, regardless of the demand, which consequently stresses the existing electrical grid. To mitigate this drawback, renewable energy needs to be converted into a storable intermediate, which could be used in the times of electricity peaks or alternatively used as a fuel for vehicles. The energy carrier of choice is hydrogen produced by water electrolysis [3, 4]. Water electrolysis is a well-established method of producing hydrogen and an ideal candidate due to the general availability of water, scalability of the electrolysis plant and zero-emission production of hydrogen. -
Study on Early Business Cases for H2 in Energy Storage and More Broadly Power to H2 Applications
FUNDED BY STUDY ON EARLY BUSINESS CASES FOR H2 IN ENERGY STORAGE AND MORE BROADLY POWER TO H2 APPLICATIONS FINAL REPORT June 2017 A REPORT BY LEGAL NOTICELEGAL NOTICE This document has been prepared for the Fuel Cells and Hydrogen 2 Joint Undertaking, however This documentit reflects has been the prepared views offor the the Fuelauthors. Cells andNeither Hydrogen Fuel 2 JointCells Undertaking, and Hydrogen however 2 itJoint reflects Undertaking, the views of the nor authors. the Neither Fuel Cells Europeanand Hydrogen Commission 2 Joint Undertaking, or the nor Advisory the European Board Commission may be or held the Advisory responsibl Boarde may for be the held use responsible that may for bethe use that may be mademade of theof theinformation information contained contained in this publication. in this publication. © FCH 2 ©JU, FCH 2017 2 JU, 2017 Reproduction is allowed, provided the source is acknowledged. Reproduction is allowed, provided the source is acknowledged. TRACTEBEL ENGINEERING S.A. Avenue Ariane 7 1200 - Brussels - BELGIUM tel. +32 2 773 99 11 - fax +32 2 773 99 00 [email protected] tractebel-engie.com TECHNICAL DOCUMENT Our ref.: P2H-BC/4NT/0550274/000/03 TS: Imputation: P.009733/0004 PUBLIC Client: FCH-JU Project: EARLY BUSINESS CASES FOR H2 IN ENERGY STORAGE AND MORE BROADLY POWER TO H2 APPLICATIONS Subject: A study prepared for the FCH-JU by Tractebel and Hinicio Comments: 01 2017 06 16 FIN *C. Chardonnet (Tractebel) *V. Giordano (Tractebel) *S. Rapoport(Tractebel) *L. De Vos (Tractebel) *F. Genoese (Tractebel) *G. Roig (Tractebel) * F. Bart (Hinicio) *J-C. -
Statoil 2006 Sustainability Report
mastering challenges Statoil and sustainable development 2006 Our performance at a glance Financials1 2006 2005 2004 Total revenues 425,166 387,411 301,443 Income before financial items, other items, income taxes and minority interest 116,881 95,043 65,085 Net income 40,615 30,730 24,916 Cash flows used in investing activities 40,084 37,664 31,959 Return on average capital employed after tax 27.1% 27.6% 23.5% Operations Combined oil and gas production (thousand boe/d) 1,135 1,169 1,106 Proved oil and gas reserves (million boe) 4,185 4,295 4,289 Production cost (NOK/boe) 26.6 22.2 23.3 Reserve replacement ratio (three-year average) 0.94 1.02 1.01 Environment2 Oil spills (cubic metres) 156.7 442 186 Carbon dioxide emissions (million tonnes) 10.0 10.3 9.8 Nitrogen oxide emissions (tonnes) 31,600 34,700 31,100 Discharges of harmful chemicals (tonnes) 15 40 167 Energy consumption (TWh) 49.4 50.4 48.1 Waste recovery factor 0.73 0.76 0.76 Health and safety Total recordable injury frequency3 5.7 5.1 5.9 Serious incident frequency3 2.1 2.3 3.2 Sickness absence4 3.5 3.5 3.2 Fatalities3 0 2 3 Organisation Employee satisfaction5 4.6 4.6 4.6 Proportion of female managers6* 26% 25% 26% Union membership (per cent of workforce), Statoil ASA* 70 72 73 R&D expenditures7 1,225 1,066 1,027 1 Key figures given in NOK million 6 New reporting system implemented 2 Data cover Statoil-operated activities. -
The Norwegian Hydrogen Highway
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Juelich Shared Electronic Resources HyNor – The Norwegian Hydrogen Highway B. Simonsen, A.M. Hansen This document appeared in Detlef Stolten, Thomas Grube (Eds.): 18th World Hydrogen Energy Conference 2010 - WHEC 2010 Parallel Sessions Book 6: Stationary Applications / Transportation Applications Proceedings of the WHEC, May 16.-21. 2010, Essen Schriften des Forschungszentrums Jülich / Energy & Environment, Vol. 78-6 Institute of Energy Research - Fuel Cells (IEF-3) Forschungszentrum Jülich GmbH, Zentralbibliothek, Verlag, 2010 ISBN: 978-3-89336-656-9 Proceedings WHEC2010 241 HyNor – The Norwegian Hydrogen Highway Bjørn Simonsen, Lillestrøm Centre of Expertise, Norway Anne Marit Hansen, Statoil, Norway 1 Introduction Hydrogen is one of the most promising energy carriers which can make the transport sector emission-free. The challenges related to hydrogen as an energy carrier are however not only technical. Due to the nature and purpose of transport, a number of refueling points or hydrogen stations are needed for it to be attractive as a fuel. The cliché “chicken and egg”- situation is often used to describe the dilemma of implementing new fuels such as hydrogen. Without hydrogen stations where people can refuel the cars, it is not profitable to produce the few cars that will be needed. Without many customers asking for hydrogen fuel and very few customers actually using the existing stations, the operators of the station will not want to build more stations due to the economical loss it presents. Hydrogen has many years been looked upon as an alternative to conventional fuels, either because of energy security and/or environmental reasons. -
Hydrogen Gets Things Moving
Hydrogen gets things moving 5 HYDROGEN – CLEAN ENERGY 7 THE MISSING LINK OF THE ENERGY TRANSITION 9 HYDROGEN – A PROVEN SOLUTION 11 FOCUS: INFRASTRUCTURE FOR GERMANY 13 THE INTERNATIONAL ROLL-OUT 14 AIR LIQUIDE H2 STATIONS – A WORLDWIDE PRESENCE 2 3 Number one in the Hydrogen periodic table Clean energy Hydrogen (H2) is element number one in the periodic table, Air Liquide is actively involved in setting up a hydrogen and for a good reason: In our universe, no other element is industry and allowing the widespread use of hydrogen as as plentiful as hydrogen. a clean energy. As the world leader in gases, technologies and services for Industry and Health, Air Liquide has built On Earth, hydrogen always exists in chemical compounds up unique expertise in managing the entire hydrogen such as water, hydrocarbons and other organic com- chain, covering not only production, distribution, and pounds, from which it can be extracted using energy. high-pressure storage but also hydrogen refuelling Hydrogen is a very light gas, which quickly mixes with the stations. surrounding air. The world of energy is in the midst of deep change and Used in the fuel cell, hydrogen combines with oxygen hydrogen is one of the solutions that offer a response to from the air to produce electricity, with water as the only the challenges of clean transportation: reducing green- byproduct. Hydrogen can be produced from a various house gases, pollution in our cities and dependency on range of energy sources, in particular from renewable oil-based fuels. ones. Hydrogen thus has great potential to provide clean energy and to substitute fossil fuels. -
State-Of-The-Art Hydrogen Production Cost Estimate Using Water Electrolysis
NREL/BK-6A1-46676 September 2009 Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis Independent Review Published for the U.S. Department of Energy Hydrogen Program National Renewable Energy Laboratory 1617 Cole Boulevard • Golden, Colorado 80401-3393 303-275-3000 • www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: mailto:[email protected] Available for sale to the public, in paper, from: U.S. -
Advanced Motor Fuels Annual Report 2013
DRAFT IEA Implementing Agreement for a Programme on Research and Demonstration on Advanced Motor Fuels Annual Report 2013 The AMF IA, also known as the Implementing Agreement for Advanced Motor Fuels, functions within a framework created by the International Energy Agency (IEA). Views, findings and publications of AMF IA do not necessarily represent the views or policies of the IEA Secretariat or of all its individual member countries. Rainbow Spine: The color of the spine of AMF Annual Reports follows the colors of the rainbow. This allows to easily distinguish yearly editions from one another. The 2010 edition of the AMF Annual Report had a blue cover, the 2011 edition a green cover, and the 2012 edition a very light green one. This year’s edition is yellow, and the 2014 cover will be red. The next working period of AMF, which will start in 2015, will then start again with the first color of the rainbow: violet. This year´s yellow color stands for [text to be added]. Cover Photo: Autonomie plug-and-play architecture supports the rapid evaluation of advanced vehicle technologies Credit: Argonne National Laboratory International Energy Agency Advanced Motor Fuels Annual Report 2013 [updated text pending] This Annual Report was produced by Kevin A. Brown (project coordination/management, editing), Linda Conlin (document production), Joe Harmon (editing), Patricia Hollopeter (editing), Marita Moniger (editing), Else Tennessen (editing), and Gary Weidner (printing) of Argonne National Laboratory. The cover was designed by Renee Carlson, -
Hydrogen Production from Biogas by Sorption-Enhanced Steam Methane Reforming (SE-SMR)
Hydrogen Production from Biogas by Sorption-Enhanced Steam Methane Reforming (SE-SMR) Demonstration of the Novel Process at the HyNor Lillestrøm Hydrogen Station Julien Meyer, Johann Mastin, Roger Smeets Institute for Energy Technology (IFE) Department of Environmental Technology www.ife.no; [email protected] TCCS-6, Trondheim, 14-16 june 2011 Outline • The HyNor project • The HyNor hydrogen station at the city of Lillestrøm • The Sorption-Enhanced Steam Methane Reforming process (SE-SMR) for hydrogen production with integrated CO2-capture • The SE-SMR pilot unit planned at the Hynor Lillestrøm station TCCS-6, Trondheim, 14-16 june 2011 The HyNor project The hydrogen “highway” in Norway www.hynor.no • Demonstration of hydrogen production technologies for the introduction of hydrogen as transportation fuel in Norway • Make possible driving between the cities of Oslo and Stavanger with hydrogen vehicles • Sweden, Danmark and Germany also have similar hydrogen road projects • Hydrogen Sweden • Hydrogen Link • Clean Energy Partnership (CEP) TCCS-6, Trondheim, 14-16 june 2011 The HyNor Lillestrøm project www.hynor.no/romerike http://hynor-lillestrom.no Lillestrøm • Hydrogen production based on renewable energy • From landfill gas produced at a nearby landfill and transported by pipe to the station • From electrolysis using power from the grid and from photovoltaic panels installed at the station • Hydrogen compression to 700 bar • Conventional mechanical compression • Demonstration of a metal hydride compressor delivering at 200 bar • On-site -
Hynor – Establishing a Hydrogen Infrastructureinfrastructure 2
Classification: Internal Status: Draft HyNor – establishing a hydrogen iinfrastructurenfrastructure 2 New energy portfolio Wind CCS Biofuel Hydrogen Tidal Energy systems Wave Kyoto CDM/JI 3 StatoilHyyydro delivers hydrogen solutions for Europe • ECTOS/HyFLEET:CUTE– Hydrogen station Reykjavik • CUTE/HyFLEET:CUTE – Hydrogen station Hamburg Reykjavik • CEP Berlin Hydrogen production Messedamm • Utsira Wind-Hydrogen plant Hamburg • HyNor – Grenland Hydrogen station Oslo, Drammen, Stavanger II Berlin 4 HyNor Objective • Established 2003 with the vision “In 2009 it shall be possible to drive hyygdrogen fuelled vehicles between Stavanger and Oslo ” • This is to be achieved by establishing local nodes along the 580 km long road – ”The hydrogen road of Norway” 5 The HyNor nodes Bergen Romerike Plans for Plans for station in station in phase II (2010) phase II (2010) H from 2 H2 from refinery by- electrolysis product Stavanger Oslo 2006: trucked-in Car station (2Q09) 2. station (3Q09) Bus station (4Q09) H2 from biogas H2 from reforming electrolysis (3Q09) Kristiansand Grenland Drammen 2007: Trucked-in TkTrucked in Pipeline hydrogen hydrogen supply (2Q09) By-product or H2 from by- H2 reformed electrolysis product from local landfill 6 EVS Vikinggy Rally 11-13 May 2009 • The Event A 570 km rallyyg starting in Oslo the 11th of May 2009 and arriving two days later in Stavanger at the opening day of the 24 th Electric, Fuel Cell and Hybrid Vehicle Syypmposium • www. Evs24.org • The rally is also the official opening of the HyNor – The hydrogen road of -
Iea-Advanced Motor Fuels Annual Report 2012
IEA Implementing Agreement for Advanced Motor Fuels Annual Report 2012 The AMF IA, also known as the Implementing Agreement for Advanced Motor Fuels, functions within a framework created by the International Energy Agency (IEA). Views, findings and publications of AMF IA do not necessarily represent the views or policies of the IEA Secretariat or of all its individual member countries. Rainbow Spine: The color of the spine of AMF Annual Reports follows the colors of the rainbow. This allows to easily distinguish yearly editions from one another. The 2010 edition of the AMF Annual Report had a blue cover, the 2011 edition a green one. This year´s edition uses a very light green and will be followed by a yellow and a red edition for 2013 and 2014. The next working period of AMF, which will start in 2015, will then start again with the first color of the rainbow: violet. This year´s light green color stands for the environment, which AMF wishes to protect by avoiding GHG emissions and local pollutants through the use of advanced motor fuels in modern engines. Cover Photo: Triple biofuels dispenser at Baca Street Biofuels Stations Credit: Charles Bensinger, NREL (http://images.nrel.gov/search.php?searchField=ALL&searchstring=biofuels+dispenser) International Energy Agency Advanced Motor Fuels Annual Report 2012 This Annual Report was produced by Kevin A. Brown (project coordination/management, editing), Linda Conlin (document production), Florence Henning (editing), Patricia Hollopeter (editing), Andrea Manning (editing), Marita Moniger (editing), and Gary Weidner (printing) of Argonne National Laboratory. The cover was designed by Sana Sandler, also of Argonne National Laboratory. -
Cost, Well-To-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production
Technical Report Hydrogen Pathways: Cost, NREL/TP-6A1-46612 Well-to-Wheels Energy Use, September 2009 and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios Mark Ruth National Renewable Energy Laboratory Melissa Laffen and Thomas A. Timbario Alliance Technical Services, Inc. Technical Report Hydrogen Pathways: Cost, NREL/TP-6A1-46612 Well-to-Wheels Energy Use, September 2009 and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios Mark Ruth National Renewable Energy Laboratory Melissa Laffen and Thomas A. Timbario Alliance Technical Services, Inc. Prepared under Task No. HS07.1002 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 • www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. -
Impact of Plug-In Hybrid Electric Vehicles on the Local Electric Grid
Impact of Plug-in Hybrid Electric Vehicles on the Local Electric Grid An Interactive/Major Qualifying Project Report Submitted to the faculty of WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for the Degree of Bachelor of Science By Syed Kazim Naqvi [email protected] Timothy Yee [email protected] Date of Submission: 29th April 2008 Approved: Professor Khalid Saeed Professor Alexander Emanuel [email protected] [email protected] 1 Abstract The following document has been prepared in partial fulfillment of the requirements as a Bachelor of Science at Worcester Polytechnic Institute. The authors, Kazim Naqvi and Timothy Yee, are submitting this document as an Interactive Qualifying Project/Major Qualifying Project in lieu of the above mentioned requirements. Kazim Naqvi is a Mechanical Engineering Student at WPI belonging to the class of 2010. Timothy Yee is a student at WPI majoring in System Dynamics and belonging to the class of 2008. The authors will be trying the address the possible impact of the advent of Plug-In Hybrid Vehicles (PHEVs) in Massachusetts. With National Grid as a sponsor, the authors will aim to address the impact on the electricity distribution sector and National Grid as a whole. In order to do this, the authors will study the time variation of daily electric demand for Massachusetts, which has been provided by National Grid. According to this data, the authors decided to implement policies that only permit the charging of PHEVs during periods of low electric demand. This has two advantages: firstly, it puts fewer loads on the local electric grid and does not require investment in additional electricity generation or distribution; and secondly, the electricity used for PHEVs’ charging will then come from cleaner and renewable energy sources such as nuclear and hydro-electric power generators.