International Coordination of Lunar Polar Volatiles Exploration
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Flight Opportunities and Small Spacecraft Technology Program Updates NAC Technology, Innovation and Engineering Committee Meeting | March 19, 2020
Flight Opportunities and Small Spacecraft Technology Program Updates NAC Technology, Innovation and Engineering Committee Meeting | March 19, 2020 Christopher Baker NASA Space Technology Mission Directorate Flight Opportunities and Small Spacecraft Technology Program Executive National Aeronautics and Space Administration 1 CHANGING THE PACE OF SPACE Through Small Spacecraft Technology and Flight Opportunities, Space Tech is pursuing the rapid identification, development, and testing of capabilities that exploit agile spacecraft platforms and responsive launch capabilities to increase the pace of space exploration, discovery, and the expansion of space commerce. National Aeronautics and Space Administration 2 THROUGH SUBORBITAL FLIGHT The Flight Opportunities program facilitates rapid demonstration of promising technologies for space exploration, discovery, and the expansion of space commerce through suborbital testing with industry flight providers LEARN MORE: WWW.NASA.GOV/TECHNOLOGY Photo Credit: Blue Origin National Aeronautics and Space Administration 3 FLIGHT OPPORTUNITIES BY THE NUMBERS Between 2011 and today… In 2019 alone… Supported 195 successful fights Supported 15 successful fights Enabled 676 tests of payloads Enabled 47 tests of payloads 254 technologies in the portfolio 86 technologies in the portfolio 13 active commercial providers 9 active commercial providers National Aeronautics and Space Administration Numbers current as of March 1, 2020 4 TECHNOLOGY TESTED IN SUBORBITAL Lunar Payloads ISS SPACE IS GOING TO EARTH ORBIT, THE MOON, MARS, AND BEYOND Mars 2020 Commercial Critical Space Lunar Payload Exploration Services Solutions National Aeronautics and Space Administration 5 SUBORBITAL INFUSION HIGHLIGHT Commercial Lunar Payload Services Four companies selected as Commercial Lunar Payload Services (CPLS) providers leveraged Flight Opportunities-supported suborbital flights to test technologies that are incorporated into their landers and/or are testing lunar landing technologies under Flight Opportunities for others. -
Highlights in Space 2010
International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no. -
For Immediate Release: TWO GOOGLE LUNAR XPRIZE
Media Contact: Kyoko Yonezawa [email protected] For Immediate Release: TWO GOOGLE LUNAR XPRIZE TEAMS ANNOUNCE RIDESHARE PARTNERSHIP FOR MISSION TO THE MOON IN 2016 Team HAKUTO (Japan) and Team Astrobotic (U.S.) Plan Cooperative Launch in Pursuit of $30 Million Prize to Land a Private Spacecraft on the Lunar Surface TOKYO, Japan (February 24, 2015) – HAKUTO, the only Japanese team competing for the $30 million Google Lunar XPRIZE, has announced a contract with fellow competitor, Astrobotic, based in Pittsburgh, Pa., to carry a pair of rovers to the moon. Astrobotic plans to launch its Google Lunar XPRIZE mission on a SpaceX Falcon 9 rocket from Cape Canaveral, Fla., during the second half of 2016. HAKUTO’s twin rovers, Moonraker and Tetris, will piggyback on Astrobotic's Griffin lander to reach the lunar surface. Upon touchdown, the rovers will be released simultaneously with Astrobotic’s Andy rover, developed by Carnegie Mellon University, travel 500 meters on the moon’s surface and send high-definition images and video back to Earth, all in pursuit of the $20M Google Lunar XPRIZE Grand Prize. Last month, both teams were awarded Google Lunar XPRIZE Milestone Prizes: HAKUTO won $500,000 for technological advancements in the Mobility category, while Astrobotic, in partnership with Carnegie Mellon University, won a total of $1.75M for innovations in all three focus areas—Landing, Mobility and Imaging. Throughout the judging process, all three rovers, Moonraker, Tetris and Andy, demonstrated the ability to move 500 meters across the lunar surface and withstand the high radiation environment and extreme temperatures on the moon. -
NVIDIA Maximus Success Story NVIDIA Maximus Technology Helps Astrobotic Ignite New Era of Moon Exploration When the Google Luna
NVIDIA Maximus Success Story NVIDIA Maximus Technology Helps Astrobotic Ignite New Era of Moon Exploration When the Google Lunar X PRIZE was announced in 2010, Astrobotic Technology was among the first to heed the call. The reward: a total of $30 million, the largest international incentive prize of all time, available to privately funded teams. The challenge: be the first to safely land a robot on the surface of the moon, control the robot to travel 500 meters over the lunar surface, and send high-definition (HD) video, images, and data back to earth. “Astrobotic is a bit like UPS, but for the moon,” said Jason Calaiaro, director of Information Systems for Astrobotic Technology. The company’s primary service is the delivery of payloads – scientific instruments, space agency exploration gear, data collection devices, etc. – to the lunar surface. The Lunar X PRIZE fit nicely with Astrobotic’s goals and business model and promises to provide some high-profile publicity to the company. To help keep its competitive dreams on track, Astrobotic needed to be able to do its complex robot design, structural and vibration analysis, and visualization more quickly and completely. The company upgraded its hardware to include NVIDIA® Maximus™ technology powering Dassault Systèmes SolidWorks, ANSYS, and MathWorks MATLAB software. Not only is this sophisticated technology helping position Astrobotic for Lunar X success, it is also helping to ramp up the company’s main commercial ventures. CHALLENGE Astrobotic was founded in 2008 as a spin-off from the Robotics Institute of Carnegie Mellon University in Pittsburgh, PA, with the mission to build robots able to explore and deliver payloads to the moon, Mars, and beyond. -
KPLO, ISECG, Et Al…
NationalNational Aeronautics Aeronautics and Space and Administration Space Administration KPLO, ISECG, et al… Ben Bussey Chief Exploration Scientist Human Exploration & Operations Mission Directorate, NASA HQ 1 Strategic Knowledge Gaps • SKGs define information that is useful/mandatory for designing human spaceflight architecture • Perception is that SKGs HAVE to be closed before we can go to a destination, i.e. they represent Requirements • In reality, there is very little information that is a MUST HAVE before we go somewhere with humans. What SKGs do is buy down risk, allowing you to design simpler/cheaper systems. • There are three flavors of SKGs 1. Have to have – Requirements 2. Buys down risk – LM foot pads 3. Mission enhancing – Resources • Four sets of SKGs – Moon, Phobos & Deimos, Mars, NEOs www.nasa.gov/exploration/library/skg.html 2 EM-1 Secondary Payloads 13 CUBESATS SELECTED TO FLY ON INTERIM EM-1 CRYOGENIC PROPULSION • Lunar Flashlight STAGE • Near Earth Asteroid Scout • Bio Sentinel • LunaH-MAP • CuSPP • Lunar IceCube • LunIR • EQUULEUS (JAXA) • OMOTENASHI (JAXA) • ArgoMoon (ESA) • STMD Centennial Challenge Winners 3 3 3 Lunar Flashlight Overview Looking for surface ice deposits and identifying favorable locations for in-situ utilization in lunar south pole cold traps Measurement Approach: • Lasers in 4 different near-IR bands illuminate the lunar surface with a 3° beam (1 km spot). Orbit: • Light reflected off the lunar • Elliptical: 20-9,000 km surface enters the spectrometer to • Orbit Period: 12 hrs distinguish water -
Analysis of Illumination Conditions at the Lunar South Pole Using Parallel Computing Techniques
Technische Universitat¨ Berlin Master Thesis Analysis of illumination conditions at the lunar south pole using parallel computing techniques Supervisors: Author: Dipl.-Ing. Philipp Glaser¨ Ramiro Marco figuera Prof. Dr. J¨urgen Oberst A thesis submitted in fulfilment of the requirements for the degree of Master of Science in the Planetary Geodesy Research Group Department of Geodesy and Geoinformation Science November 2014 Declaration of Authorship I, Ramiro Marco figuera, declare that this thesis titled, 'Analysis of illumination conditions at the lunar south pole using parallel computing techniques' and the work presented in it are my own. I confirm that: This work was done wholly or mainly while in candidature for a research degree at this University. Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated. Where I have consulted the published work of others, this is always clearly at- tributed. Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work. I have acknowledged all main sources of help. Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself. Signed: Date: i TECHNISCHE UNIVERSITAT¨ BERLIN Abstract Faculty VI Planning - Building - Environment Department of Geodesy and Geoinformation Science Master of Science Analysis of illumination conditions at the lunar south pole using parallel computing techniques by Ramiro Marco figuera In this Master Thesis an analysis of illumination conditions at the lunar south pole using parallel computing techniques is presented. -
The Annual Compendium of Commercial Space Transportation: 2017
Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY . -
3D Printered Structure of Lacus Mortis Pit Crater with Assumption of a Cave Underneath
2nd International Planetary Caves Conference (2015) 9015.pdf 3D PRINTERED STRUCTURE OF LACUS MORTIS PIT CRATER WITH ASSUMPTION OF A CAVE UNDERNEATH. Ik-Seon Hong1, Eunjin Cho1, Yu Yi1, Jaehyung Yu1, Junichi Haruyama2, 1Department of Astron- omy, Space Science and Geology, Chungnam National University, Daejeon 34134, South Korea; [email protected], 2Department of Solar System Sciences, Institute of Space and Aeronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa 252-5210, Japan. Introduction: Several places presumed to be the en- until the actual exploration on foot and the small shad- trances of caves were discovered in the Moon and ow in the northern side also indicates that there is a Mars [1][2][3][4][5][6]. Besides, about 200 pit-looking ramp alongside the wall of the pit, it is considered that places, which are known as pit craters (abbreviated to this ramp could be an entrance to the inside of the pit. pits), have been discovered and these can be candidates Also, since the collapsed ceiling materials covered the of caves. The pits are found in the regions of the lunar floor of the pit, it is assumed that the entrance of the mare and in places that experienced melting due to cave was buried or the size of the entrance is much meteorite impact [7][8]. Other study showed that those smaller compared to the thickness of ceiling. Thus, the pits could be entrances of caves through comparing entrance is set to have a small size. Moreover, the big those pits to the actual cave entrance of the Earth [9]. -
Private Sector Lunar Exploration Hearing
PRIVATE SECTOR LUNAR EXPLORATION HEARING BEFORE THE SUBCOMMITTEE ON SPACE COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HOUSE OF REPRESENTATIVES ONE HUNDRED FIFTEENTH CONGRESS FIRST SESSION SEPTEMBER 7, 2017 Serial No. 115–27 Printed for the use of the Committee on Science, Space, and Technology ( Available via the World Wide Web: http://science.house.gov U.S. GOVERNMENT PUBLISHING OFFICE 27–174PDF WASHINGTON : 2017 For sale by the Superintendent of Documents, U.S. Government Publishing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HON. LAMAR S. SMITH, Texas, Chair FRANK D. LUCAS, Oklahoma EDDIE BERNICE JOHNSON, Texas DANA ROHRABACHER, California ZOE LOFGREN, California MO BROOKS, Alabama DANIEL LIPINSKI, Illinois RANDY HULTGREN, Illinois SUZANNE BONAMICI, Oregon BILL POSEY, Florida ALAN GRAYSON, Florida THOMAS MASSIE, Kentucky AMI BERA, California JIM BRIDENSTINE, Oklahoma ELIZABETH H. ESTY, Connecticut RANDY K. WEBER, Texas MARC A. VEASEY, Texas STEPHEN KNIGHT, California DONALD S. BEYER, JR., Virginia BRIAN BABIN, Texas JACKY ROSEN, Nevada BARBARA COMSTOCK, Virginia JERRY MCNERNEY, California BARRY LOUDERMILK, Georgia ED PERLMUTTER, Colorado RALPH LEE ABRAHAM, Louisiana PAUL TONKO, New York DRAIN LAHOOD, Illinois BILL FOSTER, Illinois DANIEL WEBSTER, Florida MARK TAKANO, California JIM BANKS, Indiana COLLEEN HANABUSA, Hawaii ANDY BIGGS, Arizona CHARLIE CRIST, Florida ROGER W. MARSHALL, Kansas NEAL P. DUNN, Florida CLAY HIGGINS, Louisiana RALPH NORMAN, South Carolina SUBCOMMITTEE ON SPACE HON. BRIAN BABIN, Texas, Chair DANA ROHRABACHER, California AMI BERA, California, Ranking Member FRANK D. LUCAS, Oklahoma ZOE LOFGREN, California MO BROOKS, Alabama DONALD S. -
Espinsights the Global Space Activity Monitor
ESPInsights The Global Space Activity Monitor Issue 3 July–September 2019 CONTENTS FOCUS ..................................................................................................................... 1 A new European Commission DG for Defence Industry and Space .............................................. 1 SPACE POLICY AND PROGRAMMES .................................................................................... 2 EUROPE ................................................................................................................. 2 EEAS announces 3SOS initiative building on COPUOS sustainability guidelines ............................ 2 Europe is a step closer to Mars’ surface ......................................................................... 2 ESA lunar exploration project PROSPECT finds new contributor ............................................. 2 ESA announces new EO mission and Third Party Missions under evaluation ................................ 2 ESA advances space science and exploration projects ........................................................ 3 ESA performs collision-avoidance manoeuvre for the first time ............................................. 3 Galileo's milestones amidst continued development .......................................................... 3 France strengthens its posture on space defence strategy ................................................... 3 Germany reveals promising results of EDEN ISS project ....................................................... 4 ASI strengthens -
Advanced Exploration Systems
National Aeronautics and Space Administration National Aeronautics and Space Administration Advanced Exploration Systems 10 October 2017 JASON CRUSAN Director, Advanced Exploration Systems NASA Headquarters 1 2 PHASE 1 Deep Space Gateway (DSG) Concept Phase 2: Deep Space Transport Orion PHASE 2 Deep Space Gateway HABITATION CAPABILITY Systems to enable crews to live and work safely in deep space. Capabilities and systems will be used in conjunction with Orion and SLS on exploration missions in cislunar space and beyond. 5 DEEP SPACE HABITATION SYSTEMS TODAY FUTURE Habitation Systems Elements Space Station Deep Space LIFE SUPPORT Excursions from Earth are possible with artificially produced breathing air, drinking water and other conditions for survival. 42% O Recovery from CO 2 2 75%+ O2 Recovery from CO2 90% H O Recovery 2 98%+ H2O Recovery Atmosphere Waste Management Management < 6 mo mean time before failure >30 mo mean time before Water (for some components) failure Management ENVIRONMENTAL MONITORING NASA living spaces are designed with controls and integrity that ensure the comfort and safety of inhabitants. Limited, crew-intensive On-board analysis capability on-board capability with no sample return Identify and quantify species Pressure Particles Chemicals Reliance on sample return to and organisms in air & water O & N Earth for analysis 2 2 Moisture Microbes Sound CREW HEALTH Astronauts are provided tools to perform successfully while preserving their well-being and long-term health. Bulky fitness equipment Smaller, efficient equipment Limited medical capability Onboard medical capability Monitoring Diagnostics Food Storage & Management Frequent food system resupply Long-duration food system Exercise Treatment EVA: EXTRA- Long-term exploration depends on the ability to physically investigate the unknown for VEHICULAR ACTIVITY resources and knowledge. -
Team Puli Reserves a Ride to the Moon
For Immediate Release Contact for Astrobotic: Mandy Fleeger [email protected] Contact for Puli Space Technologies: Dr. Tibor Pacher [email protected] Team Puli Space is the Third Google Lunar XPRIZE Team to Reserve a Ride to the Moon with Astrobotic Hungarian Company, Seventh Nation on Astrobotic’s Maiden Voyage to the Moon, is to Send a “Memory of Mankind” Time Capsule August 31, 2016 Tel Aviv / Pittsburgh / Budapest– Astrobotic Technology, Inc. and Puli Space Technologies Ltd. announced today at the Google Lunar XPRIZE (GLXP) Summit in Tel Aviv, Israel that they have signed an agreement to fly the first Hungarian payload to the Moon on Astrobotic’s upcoming first mission. The Hungarian team, Puli Space, joins fellow GLXP Teams HAKUTO from Japan, and AngelicvM from Chile, in reserving a ride to the surface of the Moon on Astrobotic’s Peregrine lander with a “Memory of Mankind (MoM) on the Moon” time capsule and an option to add their rover. This new partnership with Team Puli further extends Astrobotic’s mission of making the Moon accessible to the world by adding a seventh nation to be represented on their inaugural flight. With this payload reservation, Puli Space will send a unique time capsule for the MoM on the Moon project. The capsule will hold ceramic tablets containing archival imagery and texts of up to 5 million characters per tablet, readable with a 10x magnifier. "To fly with Astrobotic to the Moon is a unique opportunity for our team to set another exceptional mark in the long success story of Hungarian scientific and technical achievements," explained Dr.