Redacted for Privacy

Total Page:16

File Type:pdf, Size:1020Kb

Redacted for Privacy AN A S'JRACTOF THE THESIS OF Paul Robert Crowley for the degree of Master of Science in Radiation Health Physics presented on January l42OOO. Title: Behavior of 59Fe in a Marine Estuarine Environment: Uptake and Retention by the Pacific Basket-Coclde Clinocardium nuttallii. Redacted for Privacy Abstract approved: Kathryn A. Higley Iron-59 and its speciation in a cold model estuary were chosen as the focus for this study on the effects and behavior of radionuclides in the marine environment. Iron-59 is a common constituent of the reactor effluent water found on U. S. Naval, nuclear powered warships. It could provide useful data in assessing the radiological impact of shipborne reactor accident resulting in the release of radionuclides to the marine estuarine environment. As sedimentary filter feeders, bivalves act as excellent bioindicators for marine contamination. Clinocardium nuttallhi, Pacific basket-cockles, were maintained in a recirculating chilled-seawater aquarium. Mi specimens, seawater and sediment were extracted from Yaquina Bay in Newport, Oregon. After allowing the organisms to acclimate to the laboratory conditions, 1.0 mCi of59Fe was added to the system in aqueous form as iron (Ill)chloride and allowed to homogeneously distribute. Over a twenty-onc day period, or one half of one half- life for 59Fe, frequent water, sediment, and cockle samples were drawn, weighed and counted for activity in a sodium iodide, NaII(Tl), solid scintillation detector. All specific activity measurements were corrected for radioactive decay and plotted vs. time after iron introduction to determine the ironspeciation pathways within the system. At the end of the data collection period, five cockles removed fromthe system at various times during the experiment were dissected for a tissue distribution study. The results show that 59Fe rapidly binds to suspended particulate in the water column, and within a few days, most of the iron added to the system was associated with the bottom sediment layer. During the first few days, while suspended particles filtered down through the water column, the cockles fed actively and assimilated 59Fe at a fairly high rate. These results confirm previous bivalve studies suggesting filter-feeding as the primary means for radionuclide uptake. Laboratory and time constraints as well as sampling inconsistencies limited the ability of this experiment to satisfactorily meet all objectives. No convincing evidence was found for: (1) sediment-to-seawater transfer of59Fe; (2) retention of 59Fe by clinocardium nuttaiii; (3) tissue distribution patterns for59Fe in Clinocardium nuttallii. Future research is needed in these areas to more accurately establish and predicate the behavior of 59Fe under varying marine conditions; however, this experiment successfully establishes sedimentation patterns and uptake mechanisms for 59Fe in the marine estuarineenvironment. ©Copyright by Paul Robert Crowley January 14, 2000 All Rights Reserved Behavior of 59Fe in a Marine Estuarine Environment: Uptake and Retention by the Pacific Basket-Cockle, Clinocardiumnuttallii by Paul Robert Crowley A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Science Presented January 14, 2000 Commencement June 2000 Master of Science thesis of Paul Robert Crowley presented on January 14, 2000 APPROVED: Redacted for Privacy Major Professor, representing RadiatIon Health Physics Redacted for Privacy Chair o partment of Nuclear Engineering Redacted for Privacy I understand that my thesis will become part of the permanent collectionof Oregon State University libraries. My signature below authorizes release of my thesis to any reader upon request. Redacted for Privacy Paulobert Crowley, Author ACKNOWLEDGEMENTS The completion of this work would not have been possible without the assistance of the followmg people Capt Marvm Rice, USN(Ret) and Capt Thomas Daniels, USN, who convinced me of the importance of thisundertakmg and provided me the latitude and encouragement to see it through to the end,Larry Tyler, who designed and built a superb cold water marme aquariumwith which to conduct my experiments and provided valuable assistance on its mamtenanceand upkeep, Oleg Povetko, who shared his laboratory space and his knowledgeof laboratory procedures and mstrument calibration, without which Iwould still be cursing all thmgs electromc, Mark Treen, mylaboratory assistant, whose patience and computer skills proved vital durmg the experimental stage of this project,Dr Robert Collier, professor of chemical oceanography and my minor professor,who provided me with a reality check m the world of marme biochemistry and estuarme processes. A special thank you is extended to Sherry West, aquarist forthe Hatfield Marine Science Center. Her assistance and guidance in the collectionand maintenance of marine organisms was impressive. Braving the windsand wet winter cold to dig up cockles and worms went far beyond the call of duty. Iwill remain forever in your debt. A special note of appreciation must go to my major professorDr Kathryn Higley, who patiently saw me through the entire research and degree process.Her practical advice and encouragement helped steady me on the oft-wandering path I wove to completion of this project. She showed patiencein accommodating my undergraduate shortcomings and full-time employment and inspired me to think for myself instead of choosing the "easier" path. Special recognition, of course, must go to my wife Salome and to my family. Without their help, which ranged from accompanying me on clamdigging trips and water collection to proofreading rough drafts, I would havesuffered mightily in completing my work (thanks even to Moose and 011ie for keepingthose pesky seagulls from stealing our catch). Their support, patience, and encouragement, especially down the homestretch, were integralcontributions to the successful completion of this degree. TABLE OF CONTENTS Page INTRODUCTION I Iron 2 Sources of Radioactive Iron m the Marme Environment 3 Behavior of 59Fe m the Marme Environment 4 Bivalves as Biomdicators 5 The Pacific Basket - Cockle 6 Taxonomy 6 Filter Feedmg Mechamsms 10 Objectives of this Study 14 MATERIALS AND METHODS 17 Radioisotope 17 Countmg System 18 Marme Ecosystem 23 Sample Collection and Mamtenance 26 Laboratory Experiment 30 RESULTS 34 Sediment 34 Water 37 Bivalves 42 Tissue Distribution Study 48 TABLE OF CONTENTS (Continued) Page DISCUSSION 51 Iron Speciation Uptake and Retention by Clinocardium nuttallii 55 CONCLUSIONS 57 Summary 57 Recommendation for Future Research 58 BIBLIOGRAPHY 60 APPENDIX 64 LIST OF FIGURES Figure Page A cockle, Cardium sp., in its normal feeding position ..8 Lateral view and cross section view through the shell of a bivalve 8 Burrowing sequence of a cockle 9 Internal anatomy of a bivalve ...13 The digestive system of a suspension-feeding lamellibranch bivalve .15 A lamellibranch bivalve gill 15 Detector calibration PLOT - total counts vs. LLD setpoint .20 Optimum LLD Setting vs. gamma energy plot 21 Yaquina Bay, Oregon 24 Chilled-seawater aquarium schematic drawing 25 Photograph of Yaquina Bay tidal flats ...27 Sediment - specific count rate plot (activity decay corrected) .... 35 Sediment mean specific count rate plot (activity decay corrected) .... 36 Water specific count rate plot (activity decay corrected) .... 38 Water mean specific count rate plot (activity decay corrected) 39 Sump tank water specific count rate plot (activity decay corrected) 41 Cockle specific count rate plot 1 (activity decay corrected) 43 Cockle specific count rate plot 2 (activity decay corrected) ....44 Cockle specific count rate plot 3 (activity decay corrected) ...45 LIST OF FIGURES (Continued) Figure Page Cockle mean specific count rate plot (activity decay corrected) .....46 Tissue distribution sample count rate plot (activity decay corrected)49 LIST OF APPENDIX TABLES Table Page Sediment sample count rate data ...65 Surface water sample count rate data ..68 Deep water sample count rate data 70 Bottom (interstitial) water sample count rate data 72 Sump tank water sample count rate data ..74 Cockle (Clinocardium nuttallii) sample count rate data 75 Retention experiment sample data 79 Bent-nose clam (Macoma nasuta) sample count rate data ..80 Tissue distribution sample count rate data 81 Behavior of 59Fe in a Marine Estuarine Environment: Uptake and Retention by the Pacific Basket-Cockle, Clinocardium nuttallii INTRODUCTION Knowledge of the behavior of radionuclides in the marine environment is of considerable importance when attempting to assess the potential radiological impact of radionuclide releases The environmental presence of radioactive iron isotopes as a result of nuclear weapons testmg and the nuclear fuel cycle has been known for quite some time [NAS, 1971, Burton, 1975], despite this, surprismgly limited research has been undertaken to mvestigate its environmental and radiobiological impact Iron is of mterest m the study of marme ecosystems because it is such an important metabolic element and is not found m great quantities in the ocean. One specific isotope of iron, 59Fe, is of particular interest, due to its relative abundance m reactor effluent water and its rapid sorption on sediment and suspended particulate matter This study then, has been undertaken m order to add to the body of knowledge concermng the behavior of radioactive ironin the marine environment, specifically in the seawater-sediment interface of an estuarine ecosystem. 2
Recommended publications
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • List of Bivalve Molluscs from British Columbia, Canada
    List of Bivalve Molluscs from British Columbia, Canada Compiled by Robert G. Forsyth Research Associate, Invertebrate Zoology, Royal BC Museum, 675 Belleville Street, Victoria, BC V8W 9W2; [email protected] Rick M. Harbo Research Associate, Invertebrate Zoology, Royal BC Museum, 675 Belleville Street, Victoria BC V8W 9W2; [email protected] Last revised: 11 October 2013 INTRODUCTION Classification rankings are constantly under debate and review. The higher classification utilized here follows Bieler et al. (2010). Another useful resource is the online World Register of Marine Species (WoRMS; Gofas 2013) where the traditional ranking of Pteriomorphia, Palaeoheterodonta and Heterodonta as subclasses is used. This list includes 237 bivalve species from marine and freshwater habitats of British Columbia, Canada. Marine species (206) are mostly derived from Coan et al. (2000) and Carlton (2007). Freshwater species (31) are from Clarke (1981). Common names of marine bivalves are from Coan et al. (2000), who adopted most names from Turgeon et al. (1998); common names of freshwater species are from Turgeon et al. (1998). Changes to names or additions to the fauna since these two publications are marked with footnotes. Marine groups are in black type, freshwater taxa are in blue. Introduced (non-indigenous) species are marked with an asterisk (*). Marine intertidal species (n=84) are noted with a dagger (†). Quayle (1960) published a BC Provincial Museum handbook, The Intertidal Bivalves of British Columbia. Harbo (1997; 2011) provided illustrations and descriptions of many of the bivalves found in British Columbia, including an identification guide for bivalve siphons and “shows”. Lamb & Hanby (2005) also illustrated many species.
    [Show full text]
  • TREATISE ONLINE Number 48
    TREATISE ONLINE Number 48 Part N, Revised, Volume 1, Chapter 31: Illustrated Glossary of the Bivalvia Joseph G. Carter, Peter J. Harries, Nikolaus Malchus, André F. Sartori, Laurie C. Anderson, Rüdiger Bieler, Arthur E. Bogan, Eugene V. Coan, John C. W. Cope, Simon M. Cragg, José R. García-March, Jørgen Hylleberg, Patricia Kelley, Karl Kleemann, Jiří Kříž, Christopher McRoberts, Paula M. Mikkelsen, John Pojeta, Jr., Peter W. Skelton, Ilya Tëmkin, Thomas Yancey, and Alexandra Zieritz 2012 Lawrence, Kansas, USA ISSN 2153-4012 (online) paleo.ku.edu/treatiseonline PART N, REVISED, VOLUME 1, CHAPTER 31: ILLUSTRATED GLOSSARY OF THE BIVALVIA JOSEPH G. CARTER,1 PETER J. HARRIES,2 NIKOLAUS MALCHUS,3 ANDRÉ F. SARTORI,4 LAURIE C. ANDERSON,5 RÜDIGER BIELER,6 ARTHUR E. BOGAN,7 EUGENE V. COAN,8 JOHN C. W. COPE,9 SIMON M. CRAgg,10 JOSÉ R. GARCÍA-MARCH,11 JØRGEN HYLLEBERG,12 PATRICIA KELLEY,13 KARL KLEEMAnn,14 JIřÍ KřÍž,15 CHRISTOPHER MCROBERTS,16 PAULA M. MIKKELSEN,17 JOHN POJETA, JR.,18 PETER W. SKELTON,19 ILYA TËMKIN,20 THOMAS YAncEY,21 and ALEXANDRA ZIERITZ22 [1University of North Carolina, Chapel Hill, USA, [email protected]; 2University of South Florida, Tampa, USA, [email protected], [email protected]; 3Institut Català de Paleontologia (ICP), Catalunya, Spain, [email protected], [email protected]; 4Field Museum of Natural History, Chicago, USA, [email protected]; 5South Dakota School of Mines and Technology, Rapid City, [email protected]; 6Field Museum of Natural History, Chicago, USA, [email protected]; 7North
    [Show full text]
  • 1 Metagenetic Analysis of 2018 and 2019 Plankton Samples from Prince
    Metagenetic Analysis of 2018 and 2019 Plankton Samples from Prince William Sound, Alaska. Report to Prince William Sound Regional Citizens’ Advisory Council (PWSRCAC) From Molecular Ecology Laboratory Moss Landing Marine Laboratory Dr. Jonathan Geller Melinda Wheelock Martin Guo Any opinions expressed in this PWSRCAC-commissioned report are not necessarily those of PWSRCAC. April 13, 2020 ABSTRACT This report describes the methods and findings of the metagenetic analysis of plankton samples from the waters of Prince William Sound (PWS), Alaska, taken in May of 2018 and 2019. The study was done to identify zooplankton, in particular the larvae of benthic non-indigenous species (NIS). Plankton samples, collected by the Prince William Sound Science Center (PWSSC), were analyzed by the Molecular Ecology Laboratory at the Moss Landing Marine Laboratories. The samples were taken from five stations in Port Valdez and nearby in PWS. DNA was extracted from bulk plankton and a portion of the mitochondrial Cytochrome c oxidase subunit 1 gene (the most commonly used DNA barcode for animals) was amplified by polymerase chain reaction (PCR). Products of PCR were sequenced using Illumina reagents and MiSeq instrument. In 2018, 257 operational taxonomic units (OTU; an approximation of biological species) were found and 60 were identified to species. In 2019, 523 OTU were found and 126 were identified to species. Most OTU had no reference sequence and therefore could not be identified. Most identified species were crustaceans and mollusks, and none were non-native. Certain species typical of fouling communities, such as Porifera (sponges) and Bryozoa (moss animals) were scarce. Larvae of many species in these phyla are poorly dispersing, such that they will be found in abundance only in close proximity to adult populations.
    [Show full text]
  • Reproduction and Ecology of the Hermaphroditic Cockle Clinocardium Nuttallii (Bivalvia: Cardiidae) in Garrison Bay*
    Vol. 7: 137-145, 1982 MARINE ECOLOGY - PROGRESS SERIES Published February 15 Mar. Ecol. Prog. Ser. Reproduction and Ecology of the Hermaphroditic Cockle Clinocardium nuttallii (Bivalvia: Cardiidae) in Garrison Bay* V. F. Galluccil" and B. B. Gallucci2 ' School of Fisheries and Center for Quantitative Science in Forestry, Fisheries, and Wildlife. University of Washington, Seattle. Washington 98195, USA Department of Physiological Nursing, University of Washington, Seattle, Washington 98195, and Pathology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98101, USA ABSTRACT: In this first description of the hermaphroditic reproductive cycle of the cockle Clinocar- djum nutlallii, male and female follicles are shown to develop in phase with each other The gametes of both sexes are spawned about the same time. The cockles In Garrison Bay spawn from Aprll to November, usually in the second year, but for a small segment of the stock there is the potent~alto spawn in the first year of life. Density, growth rate, patterns of mortality and other ecological factors are discussed in relation to the evolution of bisexual reproduction. The central driving forces toward bisexual reproduction are the combination of environmental unpredictability and predatory pressure. where no refuge in slze exists to guide the allocation of energy between reproduction and growth INTRODUCTION (about -2.0 ft [-0.61 m] to i3.0 ft [0.92 m]) of the intertidal region and in sediment varying from silt/clay Recent reviews have summarized the possible selec- (closed end of bay) to coarse sand (open end of bay) tive advantages of hermaphroditism (Ghiselin, 1969; (Fig. 1).The clam lives generally at the surface or just Bawa, 1980) but its role in the structure of benthic below the surface of the sediment.
    [Show full text]
  • 2005 Annual Monitoring Report
    City of Morro Bay and Cayucos Sanitary District OMFFSHORE ONITORING ANDRP EPORTING ROGRAM 2005 ANNUAL REPORT Pt. Piedras Blancas Pt. BuchonPt. Piedras 19°C Blancas 18 17 Estero Bay 16 15 Estero Bay Sea Surface 14 Pt. BuchonTemperature 13 15 April 2004 12 11:32:06 PDT 11 ace Sea Surface ture Temperature 003 4 October 2005 PDT 11:25:10 PDT Marine Research Specialists 3140 Telegraph Rd., Suite A Ventura, California 93003 Report to City of Morro Bay and Cayucos Sanitary District 955 Shasta Avenue Morro Bay, California 93442 (805) 772-6272 OMFFSHORE ONITORING AND RPEPORTING ROGRAM 2005 ANNUAL R EPORT Prepared by Douglas A. Coats and Bonnie Luke ()Marine Research Specialists and Bruce Keogh ()Morro Bay/Cayucos Wastewater Treatment Plant Submitted by Marine Research Specialists 3140 Telegraph Rd., Suite A Ventura, California 93003 Telephone: (805) 644-1180 Telefax: (805) 289-3935 E-mail: [email protected] February 2006 marine research specialists 3140 Telegraph Rd., Suite A • Ventura, CA 93003 • (805) 644-1180 Mr. Bruce Keogh 15 February 2006 Wastewater Division Manager City of Morro Bay 955 Shasta Avenue Morro Bay, CA 93442 Reference: 2005 Annual Monitoring Report Dear Mr. Keogh: Enclosed is the referenced report. It documents the continued effectiveness of the treatment process, the absence of marine impacts, and compliance with the discharge limitations and reporting requirements specified in the NPDES discharge permit. Please contact the undersigned if you have any questions regarding this report. Sincerely, Douglas A. Coats, Ph.D. Project Manager Enclosure (Seven Copies) I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted.
    [Show full text]
  • The Evolution of Extreme Longevity in Modern and Fossil Bivalves
    Syracuse University SURFACE Dissertations - ALL SURFACE August 2016 The evolution of extreme longevity in modern and fossil bivalves David Kelton Moss Syracuse University Follow this and additional works at: https://surface.syr.edu/etd Part of the Physical Sciences and Mathematics Commons Recommended Citation Moss, David Kelton, "The evolution of extreme longevity in modern and fossil bivalves" (2016). Dissertations - ALL. 662. https://surface.syr.edu/etd/662 This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact [email protected]. Abstract: The factors involved in promoting long life are extremely intriguing from a human perspective. In part by confronting our own mortality, we have a desire to understand why some organisms live for centuries and others only a matter of days or weeks. What are the factors involved in promoting long life? Not only are questions of lifespan significant from a human perspective, but they are also important from a paleontological one. Most studies of evolution in the fossil record examine changes in the size and the shape of organisms through time. Size and shape are in part a function of life history parameters like lifespan and growth rate, but so far little work has been done on either in the fossil record. The shells of bivavled mollusks may provide an avenue to do just that. Bivalves, much like trees, record their size at each year of life in their shells. In other words, bivalve shells record not only lifespan, but also growth rate.
    [Show full text]
  • Akut76004.Pdf
    Institute of Marine Science University of Alaska Fairbanks, Alaska 99701 CLAN, MUSSEL, AND OYSTER RESOURCES OF ALASKA by A. J. Paul and Howard M. Feder NATIONALgg~C".~I'! t DEPOSITOR PELLLIBIiARY HUILQI'tlG URI,NAP,RAGAH4'.i l Bkf CAMPIJS NARRAGANSGT,Ri 02S82 IMS Report No. 76-4 D. W. Hood Sea Grant Report No. 76-6 Director April 1976 TABLE OF CONTENTS Preface Acknowledgement Sunnnary INTRODUCTION Factors Affecting Clam Densities Governmental Regulations Demand for Clara Products RAZORCLAM Siliqua pa&la! BUTTERCLAM Sazidomus gipantea! 16 BASKET COCKLE CLinocardium nuttal.lii! 19 LITTI.ENEGK cLAM Prot0thaca staminea! 21 SOFT-SHELLCLAM Ãpa az'encomia! 25 Hpa priapus! 28 THE TRUNCATE SOFT-SHELL Ãya tmncata! 29 PINKNECKCLAM +isu2a polymyma! 29 BUTTERFLY TELLIN Tsarina lactea! 32 ADDITIONAL CLAM SPECIES 32 BLUE MUSSEL Pfytilus eduHs! 33 OYSTERS 34 LITERATURE CITED 37 APPENDIX I. Classification of common Alaskan bivalves discussed in this report 40 APPENDIX I I Metric conversion values PREFACE This report is a compilation of data gathered in the course of a University of Alaska Sea Grant project, The BioZogg of FconomicaZLy Important BivaZves and Other MoZZuscs. This project concentrated on the study of hard shell clams and was designed to complement on-going Alaska Department of Fish and Game razor clam research. The primary purpose of this report is to provide the public with existing biological information on the clam, mussel, and oyster resources of the state. lt is intended to be supplementary to a previous report The AZaska CZarnFishery: A sue'ver and anaZgsis of economic potentcaZ, lMS Report No. R75-3, Sea Grant No.
    [Show full text]
  • Southern Sea Otter
    Southern Sea Otter (Enhydra lutris nereis) Population Biology at Big Sur and Monterey, California—Investigating the Consequences of Resource Abundance and Anthropogenic Stressors for Sea Otter Recovery Open-File Report 2019–1022 U.S. Department of the Interior U.S. Geological Survey Cover: Photographs showing rugged and sparsely populated Big Sur Coast (top), tagged sea otter feeding on sand dollars in Monterey (middle), and the Monterey Peninsula with a high degree of coastal development and use (bottom). Photographs by Joseph Tomoleoni, U.S. Geological Survey, March 8, 2010 (top), February 28, 2018 (middle), and March 31, 2010 (bottom). Southern Sea Otter (Enhydra lutris nereis) Population Biology at Big Sur and Monterey, California—Investigating the Consequences of Resource Abundance and Anthropogenic Stressors for Sea Otter Recovery By M. Tim Tinker, Joseph A. Tomoleoni, Benjamin P. Weitzman, Michelle Staedler, Dave Jessup, Michael J. Murray, Melissa Miller, Tristan Burgess, Lizabeth Bowen, A. Keith Miles, Nicole Thometz, Lily Tarjan, Emily Golson, Francesca Batac, Erin Dodd, Eva Berberich, Jessica Kunz, Gena Bentall, Jessica Fujii, Teri Nicholson, Seth Newsome, Ann Melli, Nicole LaRoche, Holly MacCormick, Andy Johnson, Laird Henkel, Chris Kreuder-Johnson, and Pat Conrad Open-File Report 2019–1022 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DAVID BERNHARDT, Acting Secretary U.S. Geological Survey James F. Reilly II, Director U.S. Geological Survey, Reston, Virginia: 2019 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov/ or call 1–888–ASK–USGS.
    [Show full text]
  • Alaska Final Report
    Final Report Chugach Regional Resources Commission Bivalve Enhancement Program Bivalve inventories and native littleneck clam (Protothaca staminea) culture studies Exxon Valdez Oil Spill Trustee Council Project Number 95131 Produced by: Dr. Kenneth M. Brooks Aquatic Environmental Sciences 644 Old Eaglemount Road Port Townsend, Washington 98368 February 2, 2001 Chugach Regional Resources Commission Bivalve Enhancement Program – Bivalve Inventories and native littleneck clam (Protothaca staminea) culture studies Table of contents Page Introduction 1 1.0. Background information 2 1.1. Littleneck clam life history 2 1.1.1. Reproduction 3 1.1.2. Distribution as a function of tidal elevation. 3 1.1.3. Substrate preferences 3 1.1.4. Habitat Suitability Index (HIS) for native littleneck clams. 3 1.2. Marking clams and other bivalves 5 1.3. Aging of bivalves 6 1.4. Length at age for native littleneck clams in Alaska 8 1.5. Bivalve predators 8 1.6. Bivalve culture 9 1.7. Clam culture techniques 10 1.7.1. Predator control 11 1.7.2. Supplemental seeding 11 1.7.3. Substrate modification. 11 1.7.4. Plastic netting 11 1.7.5. Plastic clam bags 12 1.8. Commercial clam harvest management in Alaska 12 1.9. Environmental effects associated with bivalve culture 13 1.10. Background summary 15 1.11. Purpose of this study 15 2.0. Materials, methods and results for the bivalve inventories conducted in 1995 and 1996 at Port Graham, Nanwalek, Tatitlek, Chenega and Ouzinke. 17 2.1. 1995-96 bivalve inventory sampling design. 17 2.2. Clam sample processing. 18 2.3.
    [Show full text]
  • CRRC Bivalve and Littleneck Clam Culture Studies
    5.0. Development of hatchery, nursery and growout methods for Nuttall’s cockle (Clinocardium nuttallii). During the 1995 shellfish surveys at the Alaskan Native villages of Tatitlek, Port Graham and Nanwalek, villagers repeatedly expressed a preference for cockles (Clinocardium nuttallii). Residents of Port Graham reported that cockles were common in the 1970’s and early 1980’s, but virtually disappeared several years before the Exxon Valdez oil spill. Very few cockles were observed in any of the quantitative or qualitative surveys conducted at Port Graham, Tatitlek, or Nanwalek. Excellent cockle habitat was observed in qualitative shellfish surveys at Port Graham and Tatitlek. The common cockle from the Eastern Atlantic (Cerastoderma edule) is prized in some areas of Europe and blood cockles of the genus Anadara are grown and marketed in Asia. However, Nuttall’s cockle, common in sandy intertidal areas of the eastern Pacific, is not cultivated and is not commonly harvested commercially. In part, that is because this bivalve does not keep well under refrigeration (author’s personal experience) and therefore has a limited commercial shelf-life. The result is that little work has been accomplished with respect to developing hatchery techniques for propagating this animal. A search of the ASFA and BIOSYS bibliographic databases revealed few citations dealing with the genus Clinocardium. All of those identified in the search were obtained from the University of Washington library system together with many of the references pertaining to other cockle species. 5.1. Background. In addition to being a favored food of Alaskan Natives, cockles appear to grow rapidly in Washington State.
    [Show full text]
  • Sea Ice Cover Affects Inter-Annual and Geographic Variation in Growth of the Arctic Cockle Clinocardium Ciliatum (Bivalvia) in Greenland
    Vol. 389: 149–158, 2009 MARINE ECOLOGY PROGRESS SERIES Published September 4 doi: 10.3354/meps08200 Mar Ecol Prog Ser Sea ice cover affects inter-annual and geographic variation in growth of the Arctic cockle Clinocardium ciliatum (Bivalvia) in Greenland Mikael Kristian Sejr1,*, Martin Emil Blicher1, 2, Søren Rysgaard2 1National Environmental Research Institute, Department of Marine Ecology, University of Aarhus, Vejlsøvej 25, 8600 Silkeborg, Denmark 2Greenland Institute of Natural Resources, Kivioq 2, PO Box 570, 3900 Nuuk, Greenland ABSTRACT: Sea ice exerts a strong influence on Arctic marine primary production, thereby influen- cing food availability for secondary producers. Food availability is recognized as one of the primary constraints on macrobenthic growth and production. Thus, it may be expected that spatial and tem- poral variability in Arctic sea ice cover influencing primary productivity could translate to the next trophic level: the benthic secondary producers. To test whether sea ice cover is coupled to the annual production of Arctic benthos, we measured annual growth increments in the shell of the bivalve Clinocardium ciliatum to (1) compare average individual growth rates along a climate gradient from sub-Arctic to high-Arctic Greenland, and (2) produce time series of inter-annual variation in bivalve growth at sites with different sea ice conditions. A significant difference between average individual growth rates between the different sites was found. This geographic variation in growth performance was correlated to the average productive open-water (ice-free) period estimated from sea ice data obtained from satellites between 1979 and 2003. At locations with low to moderate sea ice cover, growth rates ranged from 80 to 100% of the fastest growing sites.
    [Show full text]