Moehringia Lateriflora
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Appendix 1. Results for the Species Not in Database
Supporting information for: Pärtel, J., Pärtel, M. & Wäldchen, J. 2021. Plant image identification application demonstrates high accuracy in Northern Europe. AoB PLANTS. Appendix 1. Results for the species not in database Taxa not known to the machine learning model, i.e. those on which the classifier was not trained, could not be recognized. The model is unable to determine whether an image belongs to an unknown taxon it has never seen before and will wrongly identify a known taxon with the highest degree of similarity. Typically, the highest degree of similarity is still so low that no suggestions will be given for the user. Here we extracted the best match information directly from the Flora Incognita server but did not use these species in our analyses since the model’s prediction can only be interpreted in a meaningful way for taxa on which it was actually trained. The five unknown species were only found in the database study. Some of them were garden plants, or had a northern or eastern distribution. (1) Draba incana has an arcotmontane distribution which reach its SW border in Estonia, the most similar species in the Flora Incognita database was Arabis hirsuta. (2) Lychnis chalcedonica originates from continental Eurasia but is used as an ornamental garden plant. In Estonia it sometimes spreads to nature. Flora Incognita is focusing on European natural plants, even if many naturalized ones are included. The most similar species found was Phlox paniculata. (3) Moehringia lateriflora is distributed in Eurasia, reaching in its E border in Estonia. The most similar match was Cardamine californica. -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
Untangling Phylogenetic Patterns and Taxonomic Confusion in Tribe Caryophylleae (Caryophyllaceae) with Special Focus on Generic
TAXON 67 (1) • February 2018: 83–112 Madhani & al. • Phylogeny and taxonomy of Caryophylleae (Caryophyllaceae) Untangling phylogenetic patterns and taxonomic confusion in tribe Caryophylleae (Caryophyllaceae) with special focus on generic boundaries Hossein Madhani,1 Richard Rabeler,2 Atefeh Pirani,3 Bengt Oxelman,4 Guenther Heubl5 & Shahin Zarre1 1 Department of Plant Science, Center of Excellence in Phylogeny of Living Organisms, School of Biology, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran 2 University of Michigan Herbarium-EEB, 3600 Varsity Drive, Ann Arbor, Michigan 48108-2228, U.S.A. 3 Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, P.O. Box 91775-1436, Mashhad, Iran 4 Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530 Göteborg, Sweden 5 Biodiversity Research – Systematic Botany, Department of Biology I, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638 München, Germany; and GeoBio Center LMU Author for correspondence: Shahin Zarre, [email protected] DOI https://doi.org/10.12705/671.6 Abstract Assigning correct names to taxa is a challenging goal in the taxonomy of many groups within the Caryophyllaceae. This challenge is most serious in tribe Caryophylleae since the supposed genera seem to be highly artificial, and the available morphological evidence cannot effectively be used for delimitation and exact determination of taxa. The main goal of the present study was to re-assess the monophyly of the genera currently recognized in this tribe using molecular phylogenetic data. We used the sequences of nuclear ribosomal internal transcribed spacer (ITS) and the chloroplast gene rps16 for 135 and 94 accessions, respectively, representing all 16 genera currently recognized in the tribe Caryophylleae, with a rich sampling of Gypsophila as one of the most heterogeneous groups in the tribe. -
Desmodium Cuspidatum (Muhl.) Loudon Large-Bracted Tick-Trefoil
New England Plant Conservation Program Desmodium cuspidatum (Muhl.) Loudon Large-bracted Tick-trefoil Conservation and Research Plan for New England Prepared by: Lynn C. Harper Habitat Protection Specialist Massachusetts Natural Heritage and Endangered Species Program Westborough, Massachusetts For: New England Wild Flower Society 180 Hemenway Road Framingham, MA 01701 508/877-7630 e-mail: [email protected] • website: www.newfs.org Approved, Regional Advisory Council, 2002 SUMMARY Desmodium cuspidatum (Muhl.) Loudon (Fabaceae) is a tall, herbaceous, perennial legume that is regionally rare in New England. Found most often in dry, open, rocky woods over circumneutral to calcareous bedrock, it has been documented from 28 historic and eight current sites in the three states (Vermont, New Hampshire, and Massachusetts) where it is tracked by the Natural Heritage programs. The taxon has not been documented from Maine. In Connecticut and Rhode Island, the species is reported but not tracked by the Heritage programs. Two current sites in Connecticut are known from herbarium specimens. No current sites are known from Rhode Island. Although secure throughout most of its range in eastern and midwestern North America, D. cuspidatum is Endangered in Vermont, considered Historic in New Hampshire, and watch-listed in Massachusetts. It is ranked G5 globally. Very little is understood about the basic biology of this species. From work on congeners, it can be inferred that there are likely to be no problems with pollination, seed set, or germination. As for most legumes, rhizobial bacteria form nitrogen-fixing nodules on the roots of D. cuspidatum. It is unclear whether there have been any changes in the numbers or distribution of rhizobia capable of forming effective mutualisms with D. -
Kenai National Wildlife Refuge Species List, Version 2018-07-24
Kenai National Wildlife Refuge Species List, version 2018-07-24 Kenai National Wildlife Refuge biology staff July 24, 2018 2 Cover image: map of 16,213 georeferenced occurrence records included in the checklist. Contents Contents 3 Introduction 5 Purpose............................................................ 5 About the list......................................................... 5 Acknowledgments....................................................... 5 Native species 7 Vertebrates .......................................................... 7 Invertebrates ......................................................... 55 Vascular Plants........................................................ 91 Bryophytes ..........................................................164 Other Plants .........................................................171 Chromista...........................................................171 Fungi .............................................................173 Protozoans ..........................................................186 Non-native species 187 Vertebrates ..........................................................187 Invertebrates .........................................................187 Vascular Plants........................................................190 Extirpated species 207 Vertebrates ..........................................................207 Vascular Plants........................................................207 Change log 211 References 213 Index 215 3 Introduction Purpose to avoid implying -
Emerald Network Rapport Engelsk.Indd
DN Report 2007 - 1b Emerald Network in Norway – Final Report from the Pilot Project 1 Emerald Network in Norway - Final Report from the Pilot Project Report 2007 – 1b ABSTRACT: Publisher: Emerald Network is a network of important sites for conservation Directorate for Nature of biodiversity in Europe under the Berne Convention. Norway is Management obligated to participate and to contribute to this network. The fi rst step is to carry out a pilot project where each country reports its specifi c obligations. Emerald Network can be seen as a parallel Date published: september 2007 network to Natura 2000 under the Habitat and Birds Directives in (English version) the European Union. Emerald Network builds upon the same conditions with focus on species and natural habitats. Antall sider: 58 In this report, the Directorate for Nature Management presents results and recommendations from the Norwegian Pilot Project. Keywords: The results show that Norway will contribute considerably with Ecological Networks, Bio- important sites for European biodiversity into this network. diversity, European Cooperation, Protected areas in Norway hold important qualities which are Bern Convention, Protected demanded in the Berne Convention, and a majority of the protected Areas areas satisfi es the criteria in Emerald Network. The Pilot Project forms the basis for the second phase, which is the Contact adress: implementation of the Network itself. In this phase, all the sites that Directorate for Nature meet the criteria should be nominated. Important areas for species Management and/or natural habitats that are not included in existing protected 7485 Trondheim areas should be considered. In Norway this will be coordinated Norway with the ongoing evaluation of our existing protected areas net- Phone: +47 73 58 05 00 work. -
Floristic Quality Assessment Report
FLORISTIC QUALITY ASSESSMENT IN INDIANA: THE CONCEPT, USE, AND DEVELOPMENT OF COEFFICIENTS OF CONSERVATISM Tulip poplar (Liriodendron tulipifera) the State tree of Indiana June 2004 Final Report for ARN A305-4-53 EPA Wetland Program Development Grant CD975586-01 Prepared by: Paul E. Rothrock, Ph.D. Taylor University Upland, IN 46989-1001 Introduction Since the early nineteenth century the Indiana landscape has undergone a massive transformation (Jackson 1997). In the pre-settlement period, Indiana was an almost unbroken blanket of forests, prairies, and wetlands. Much of the land was cleared, plowed, or drained for lumber, the raising of crops, and a range of urban and industrial activities. Indiana’s native biota is now restricted to relatively small and often isolated tracts across the State. This fragmentation and reduction of the State’s biological diversity has challenged Hoosiers to look carefully at how to monitor further changes within our remnant natural communities and how to effectively conserve and even restore many of these valuable places within our State. To meet this monitoring, conservation, and restoration challenge, one needs to develop a variety of appropriate analytical tools. Ideally these techniques should be simple to learn and apply, give consistent results between different observers, and be repeatable. Floristic Assessment, which includes metrics such as the Floristic Quality Index (FQI) and Mean C values, has gained wide acceptance among environmental scientists and decision-makers, land stewards, and restoration ecologists in Indiana’s neighboring states and regions: Illinois (Taft et al. 1997), Michigan (Herman et al. 1996), Missouri (Ladd 1996), and Wisconsin (Bernthal 2003) as well as northern Ohio (Andreas 1993) and southern Ontario (Oldham et al. -
Species Using RAPD Markers
İ. ERÖZ POYRAZ, E. SÖZEN, E. ATAŞLAR, İ. POYRAZ Turk J Biol 36 (2012) 293-302 © TÜBİTAK doi:10.3906/biy-1012-177 Determination of genetic relationships among Velezia L. (Caryophyllaceae) species using RAPD markers İlham ERÖZ POYRAZ1, Emel SÖZEN2, Ebru ATAŞLAR3, İsmail POYRAZ4 1Department of Pharmaceutical Botany, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir - TURKEY 2Department of Biology, Faculty of Sciences, Anadolu University, 26470 Eskişehir - TURKEY 3Department of Biology, Faculty of Science and Literature, Eskişehir Osmangazi University, 26480 Eskişehir - TURKEY 4Department of Molecular Biology and Genetics, Faculty of Science and Letters, Bilecik University, 11210 Gülümbe, Bilecik - TURKEY Received: 24.12.2010 Abstract: Random amplifi ed polymorphic DNA (RAPD) markers were used to determine genetic relationships among Velezia L. species from Turkey. A total of 432 amplifi ed bands were obtained using 14 RAPD primers. Th e polymorphism in RAPD markers was high (98.61%) and was suffi cient to distinguish each species. Th e degree of band-sharing was used for evaluating the genetic similarity between species and for constructing a dendrogram by the unweighted pair group method with arithmetic mean (UPGMA). Genetic relationships among the species were found to be fully consistent with those obtained by the use of morphological characters. Data obtained from our study demonstrated that the RAPD technique could be successfully used for the determination of genetic relationships among Velezia species and for species identifi cation. Furthermore, it can be effi ciently employed in future studies to provide preliminary data for conservation of endangered Velezia species. Key words: Genetic relationships, RAPD-PCR, Velezia L., Turkey RAPD markörleri kullanılarak Velezia L. -
Flora-Lab-Manual.Pdf
LabLab MManualanual ttoo tthehe Jane Mygatt Juliana Medeiros Flora of New Mexico Lab Manual to the Flora of New Mexico Jane Mygatt Juliana Medeiros University of New Mexico Herbarium Museum of Southwestern Biology MSC03 2020 1 University of New Mexico Albuquerque, NM, USA 87131-0001 October 2009 Contents page Introduction VI Acknowledgments VI Seed Plant Phylogeny 1 Timeline for the Evolution of Seed Plants 2 Non-fl owering Seed Plants 3 Order Gnetales Ephedraceae 4 Order (ungrouped) The Conifers Cupressaceae 5 Pinaceae 8 Field Trips 13 Sandia Crest 14 Las Huertas Canyon 20 Sevilleta 24 West Mesa 30 Rio Grande Bosque 34 Flowering Seed Plants- The Monocots 40 Order Alistmatales Lemnaceae 41 Order Asparagales Iridaceae 42 Orchidaceae 43 Order Commelinales Commelinaceae 45 Order Liliales Liliaceae 46 Order Poales Cyperaceae 47 Juncaceae 49 Poaceae 50 Typhaceae 53 Flowering Seed Plants- The Eudicots 54 Order (ungrouped) Nymphaeaceae 55 Order Proteales Platanaceae 56 Order Ranunculales Berberidaceae 57 Papaveraceae 58 Ranunculaceae 59 III page Core Eudicots 61 Saxifragales Crassulaceae 62 Saxifragaceae 63 Rosids Order Zygophyllales Zygophyllaceae 64 Rosid I Order Cucurbitales Cucurbitaceae 65 Order Fabales Fabaceae 66 Order Fagales Betulaceae 69 Fagaceae 70 Juglandaceae 71 Order Malpighiales Euphorbiaceae 72 Linaceae 73 Salicaceae 74 Violaceae 75 Order Rosales Elaeagnaceae 76 Rosaceae 77 Ulmaceae 81 Rosid II Order Brassicales Brassicaceae 82 Capparaceae 84 Order Geraniales Geraniaceae 85 Order Malvales Malvaceae 86 Order Myrtales Onagraceae -
Waterton Lakes National Park • Common Name(Order Family Genus Species)
Waterton Lakes National Park Flora • Common Name(Order Family Genus species) Monocotyledons • Arrow-grass, Marsh (Najadales Juncaginaceae Triglochin palustris) • Arrow-grass, Seaside (Najadales Juncaginaceae Triglochin maritima) • Arrowhead, Northern (Alismatales Alismataceae Sagittaria cuneata) • Asphodel, Sticky False (Liliales Liliaceae Triantha glutinosa) • Barley, Foxtail (Poales Poaceae/Gramineae Hordeum jubatum) • Bear-grass (Liliales Liliaceae Xerophyllum tenax) • Bentgrass, Alpine (Poales Poaceae/Gramineae Podagrostis humilis) • Bentgrass, Creeping (Poales Poaceae/Gramineae Agrostis stolonifera) • Bentgrass, Green (Poales Poaceae/Gramineae Calamagrostis stricta) • Bentgrass, Spike (Poales Poaceae/Gramineae Agrostis exarata) • Bluegrass, Alpine (Poales Poaceae/Gramineae Poa alpina) • Bluegrass, Annual (Poales Poaceae/Gramineae Poa annua) • Bluegrass, Arctic (Poales Poaceae/Gramineae Poa arctica) • Bluegrass, Plains (Poales Poaceae/Gramineae Poa arida) • Bluegrass, Bulbous (Poales Poaceae/Gramineae Poa bulbosa) • Bluegrass, Canada (Poales Poaceae/Gramineae Poa compressa) • Bluegrass, Cusick's (Poales Poaceae/Gramineae Poa cusickii) • Bluegrass, Fendler's (Poales Poaceae/Gramineae Poa fendleriana) • Bluegrass, Glaucous (Poales Poaceae/Gramineae Poa glauca) • Bluegrass, Inland (Poales Poaceae/Gramineae Poa interior) • Bluegrass, Fowl (Poales Poaceae/Gramineae Poa palustris) • Bluegrass, Patterson's (Poales Poaceae/Gramineae Poa pattersonii) • Bluegrass, Kentucky (Poales Poaceae/Gramineae Poa pratensis) • Bluegrass, Sandberg's (Poales -
Rethinking Phylogenetics Using Caryophyllales (Angiosperms), Matk Gene and Trnk Intron As Experimental Platform
Rethinking phylogenetics using Caryophyllales (angiosperms), matK gene and trnK intron as experimental platform Sunny Sheliese Crawley Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Biological Sciences Khidir W. Hilu Eric P. Beers Carla V. Finkielstein Jill C. Sible December 2, 2011 Blacksburg, Virginia Keywords: (phylogeny, missing data, caryophyllids, trnK intron, matK, RNA editing, gnetophytes) Copyright 2011, Sunny Sheliese Crawley Rethinking phylogenetics using Caryophyllales (angiosperms), matK gene and trnK intron as experimental platform Sunny Sheliese Crawley ABSTRACT The recent call to reconstruct a detailed picture of the tree of life for all organisms has forever changed the field of molecular phylogenetics. Sequencing technology has improved to the point that scientists can now routinely sequence complete plastid/mitochondrial genomes and thus, vast amounts of data can be used to reconstruct phylogenies. These data are accumulating in DNA sequence repositories, such as GenBank, where everyone can benefit from the vast growth of information. The trend of generating genomic-region rich datasets has far outpaced the expasion of datasets by sampling a broader array of taxa. We show here that expanding a dataset both by increasing genomic regions and species sampled using GenBank data, despite the inherent missing DNA that comes with GenBank data, can provide a robust phylogeny for the plant order Caryophyllales (angiosperms). We also investigate the utility of trnK intron in phylogeny reconstruction at relativley deep evolutionary history (the caryophyllid order) by comparing it with rapidly evolving matK. We show that trnK intron is comparable to matK in terms of the proportion of variable sites, parsimony informative sites, the distribution of those sites among rate classes, and phylogenetic informativness across the history of the order. -
Vascular Plants of the Forest River Bi- Ology Station, North Dakota
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln The Prairie Naturalist Great Plains Natural Science Society 6-2015 VASCULAR PLANTS OF THE FOREST RIVER BI- OLOGY STATION, NORTH DAKOTA Alexey Shipunov Kathryn A. Yurkonis John C. La Duke Vera L. Facey Follow this and additional works at: https://digitalcommons.unl.edu/tpn Part of the Biodiversity Commons, Botany Commons, Ecology and Evolutionary Biology Commons, Natural Resources and Conservation Commons, Systems Biology Commons, and the Weed Science Commons This Article is brought to you for free and open access by the Great Plains Natural Science Society at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in The Prairie Naturalist by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. The Prairie Naturalist 47:29–35; 2015 VASCULAR PLANTS OF THE FOREST RIVER BI- known to occur at the site. Despite this effort, 88 species OLOGY STATION, NORTH DAKOTA—During sum- in La Duke et al. (unpublished data) are not yet supported mer 2013 we completed a listing of the plant species of the with collections, but have been included with this list. No- joint University of North Dakota (UND) Forest River Biol- menclature and taxon concepts are given in the accordance ogy Station and North Dakota Game and Fish Department with USDA PLANTS database (United States Department of Wildlife Management Area (FRBS).The FRBS is a 65 ha Agriculture 2013), and the Flora of North America (Flora of tract of land that encompasses the south half of the SW ¼ of North America Editorial Committee 1993). section 11 (acquired by UND in 1952) and the north half of We recorded 498 plant species from 77 families in the the NW ¼ of section 14 (acquired by UND in 1954) in Ink- FRBS (Appendix A), which is greater than the number of ster Township (T154N, R55W).