Untangling Phylogenetic Patterns and Taxonomic Confusion in Tribe Caryophylleae (Caryophyllaceae) with Special Focus on Generic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Caryophyllales 2018 Instituto De Biología, UNAM September 17-23
Caryophyllales 2018 Instituto de Biología, UNAM September 17-23 LOCAL ORGANIZERS Hilda Flores-Olvera, Salvador Arias and Helga Ochoterena, IBUNAM ORGANIZING COMMITTEE Walter G. Berendsohn and Sabine von Mering, BGBM, Berlin, Germany Patricia Hernández-Ledesma, INECOL-Unidad Pátzcuaro, México Gilberto Ocampo, Universidad Autónoma de Aguascalientes, México Ivonne Sánchez del Pino, CICY, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México SCIENTIFIC COMMITTEE Thomas Borsch, BGBM, Germany Fernando O. Zuloaga, Instituto de Botánica Darwinion, Argentina Victor Sánchez Cordero, IBUNAM, México Cornelia Klak, Bolus Herbarium, Department of Biological Sciences, University of Cape Town, South Africa Hossein Akhani, Department of Plant Sciences, School of Biology, College of Science, University of Tehran, Iran Alexander P. Sukhorukov, Moscow State University, Russia Michael J. Moore, Oberlin College, USA Compilation: Helga Ochoterena / Graphic Design: Julio C. Montero, Diana Martínez GENERAL PROGRAM . 4 MONDAY Monday’s Program . 7 Monday’s Abstracts . 9 TUESDAY Tuesday ‘s Program . 16 Tuesday’s Abstracts . 19 WEDNESDAY Wednesday’s Program . 32 Wednesday’s Abstracs . 35 POSTERS Posters’ Abstracts . 47 WORKSHOPS Workshop 1 . 61 Workshop 2 . 62 PARTICIPANTS . 63 GENERAL INFORMATION . 66 4 Caryophyllales 2018 Caryophyllales General program Monday 17 Tuesday 18 Wednesday 19 Thursday 20 Friday 21 Saturday 22 Sunday 23 Workshop 1 Workshop 2 9:00-10:00 Key note talks Walter G. Michael J. Moore, Berendsohn, Sabine Ya Yang, Diego F. Registration -
Catalogue2013 Web.Pdf
bwfp British Wild Flower Plants www.wildflowers.co.uk Plants for Trade Plants for Home Specialist Species Wildflower Seed Green Roof Plants Over 350 species Scan here to of British native buy online plants 25th Anniversary Year Finding Us British Wild Flower Plants Burlingham Gardens 31 Main Road North Burlingham Norfolk NR13 4TA Phone / Fax: (01603) 716615 Email: [email protected] Website: http://www.wildflowers.co.uk Twitter: @WildflowersUK Nursery Opening Times Monday to Thursday: 10.00am - 4.00pm Friday: 10.00am - 2.30pm Please note that we are no longer open at weekends or Bank Holidays. Catalogue Contents Contact & Contents Page 02 About Us Page 03 Mixed Trays Pages 04-05 Reed Beds Page 06 Green Roofs Page 07 Wildflower Seeds Page 08 Planting Guide Pages 09-10 Attracting Wildlife Page 11 Rabbit-Proof Plants Page 12 List of Plants Pages 13-50 Scientific Name Look Up Pages 51-58 Terms & Conditions Page 59 www.wildflowers.co.uk 2 Tel/Fax:(01603)716615 About Us Welcome.... About Our Plants We are a family-run nursery, situated in Norfolk on a Our species are available most of the year in: six acre site. We currently stock over 350 species of 3 native plants and supply to all sectors of the industry Plugs: Young plants in 55cm cells with good rootstock. on a trade and retail basis. We are the largest grower of native plants in the UK and possibly Europe. Provenance Our species are drawn from either our own seed collections or from known provenance native sources. We comply with the Flora Locale Code of Practice. -
Phylogeny of Acanthophyllum S.L. Revisited: an Update on Generic Concept and Sectional Classification Atefeh Pirani,1,2 Hamid Moazzeni,2 Shahin Zarre,3 Richard K
Pirani & al. • Phylogeny of Acanthophyllum s.l. revisited TAXON 69 (3) • June 2020: 500–514 SYSTEMATICS AND PHYLOGENY Phylogeny of Acanthophyllum s.l. revisited: An update on generic concept and sectional classification Atefeh Pirani,1,2 Hamid Moazzeni,2 Shahin Zarre,3 Richard K. Rabeler,4 Bengt Oxelman,5 Alexander V. Pavlenko6 & Andriy Kovalchuk7,8 1 Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, P.O. Box 91775-1436, Mashhad, Iran 2 Herbarium FUMH, Department of Botany, Research Center for Plant Sciences, Ferdowsi University of Mashhad, P.O. Box 91775-1436, Mashhad, Iran 3 Department of Plant Biology, Center of Excellence in Phylogeny of Living Organisms, School of Biology, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran 4 University of Michigan Herbarium – EEB, 3600 Varsity Drive, Ann Arbor, Michigan 48108-2228, U.S.A. 5 Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530 Göteborg, Sweden 6 Institute of Biology and Medicinal Plants, Academy of Sciences of Turkmenistan, Ashgabat, Turkmenistan 7 Department of Forest Sciences, P.O. Box 27, University of Helsinki, 00014 Helsinki, Finland 8 Present address: VTT Technical Research Centre of Finland Ltd, Tietotie 2, 02044 Espoo, Finland Address for correspondence: Atefeh Pirani, [email protected] DOI https://doi.org/10.1002/tax.12241 Abstract The generic boundary of the broadly defined Acanthophyllum s.l., the third-largest genus of the tribe Caryophylleae (Caryophyllaceae), has been a subject of taxonomic confusion. Acanthophyllum s.l. now includes five minor genera previously rec- ognized as independent. Among these small genera, the inclusion of Allochrusa, Ochotonophila, and Scleranthopsis within Acantho- phyllum s.l. -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
Local Adaptation for Life-History Traits in Silene Latifolia
Georgia Southern University Digital Commons@Georgia Southern Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of Spring 2006 Local Adaptation for Life-History Traits in Silene Latifolia Brandy May Penna Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd Recommended Citation Penna, Brandy May, "Local Adaptation for Life-History Traits in Silene Latifolia" (2006). Electronic Theses and Dissertations. 734. https://digitalcommons.georgiasouthern.edu/etd/734 This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. LOCAL ADAPTATION FOR LIFE-HISTORY TRAITS IN SILENE LATIFOLIA by BRANDY M. PENNA (Under the Direction of Lorne M. Wolfe) ABSTRACT A fundamental question in evolutionary ecology is how species adjust post colonization. The plant Silene latifolia was introduced to North America (NA) from Europe (EU) in the 1800s. The goal of this thesis was to test if Silene latifolia has become locally adapted across its range. My first experiment tested local adaptation of germination success to three temperatures across three latitudinal regions in a growth chamber using seeds from nine EU and NA populations. Germination success or speed was similar among latitudinal regions across continents. My second experiment examined local adaptation at a continental scale; I grew plants from 15 EU and NA populations in four common gardens across continents. Growth and survival for the first year revealed that plants grew larger in their respective continents. -
Echter's Nursery & Garden Center Flashing Light Maiden Pinks
5150 Garrison St. Echter's Nursery & Garden Center Arvada, CO, 80002 phone: 303-424-7979 [email protected] Flashing Light Maiden Pinks www.echters.com Flashing Light Maiden Pinks Dianthus deltoides 'Flashing Light' Plant Height: 6 inches Flower Height: 8 inches Spread: 18 inches Spacing: 14 inches Sunlight: Hardiness Zone: 2a Description: Vigorous and free flowering, this selection features lovely frilly crimson blooms with deep red center rings, spreading across a low growing mat of green foliage; drought tolerant and easy to grow, ideal for rock Flashing Light Maiden Pinks flowers gardens, borders or used as groundcover Photo courtesy of NetPS Plant Finder Ornamental Features Flashing Light Maiden Pinks has masses of beautiful fragrant crimson frilly flowers with a dark red ring at the ends of the stems from late spring to mid summer, which are most effective when planted in groupings. The flowers are excellent for cutting. Its attractive narrow leaves remain dark green in color throughout the year. The fruit is not ornamentally significant. Landscape Attributes Flashing Light Maiden Pinks is an herbaceous evergreen perennial with a mounded form. It brings an extremely fine and delicate texture to the garden composition and should be used to full effect. This plant will require occasional maintenance and upkeep, and is best cleaned up in early spring before it resumes active growth for the season. It is a good choice for attracting bees and butterflies to your yard, but is not particularly attractive to deer who tend to leave it alone in favor of tastier treats. Gardeners should be aware of the following characteristic(s) that may warrant special consideration; - Self-Seeding Flashing Light Maiden Pinks is recommended for the following landscape applications; - Mass Planting - Rock/Alpine Gardens - Border Edging - General Garden Use - Container Planting 5150 Garrison St. -
In Vitro Callus Culture of Dianthus Chinensis L. for Assessment of Flavonoid Related Gene Expression Pro Le
In Vitro Callus Culture of Dianthus Chinensis L. for Assessment of Flavonoid Related Gene Expression Prole R. Sreelekshmi University of Kerala Elenjikkal A Siril ( [email protected] ) University of Kerala https://orcid.org/0000-0002-4956-8428 Research Article Keywords: China pink, In vitro avonoid production, Friable callus, 2,4- D, Chalcone synthase Posted Date: March 17th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-320486/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/27 Abstract Dianthus chinensis L. is an edible, ornamental herb used to prepare the Dianthi Herba, a Chinese traditional rejuvenating medicine. Owing to the rapid proliferation of callus tissues, in vitro production of avonoids has their own specic importance. Callus cultures raised followed by auxin directed biosynthesis of avonoid through related transcript prole were carried out. Murashige and Skoog (MS) medium fortied with 2,4- Dichlorophenoxy acetic acid (2,4- D) or picloram induced formation of friable callus from internode derived cultures of D. chinensis. Culture medium containing 2,4- D (10 µM) produced the highest avonoid content, 4.44 mg quercetin equivalent per gram (QE g− 1) under incubation in continuous dark condition, while maximum dry weight yield (0.38 g/ culture) was obtained from 10 µM 2,4- D under 16 h light / 8 h dark condition (50 µmol m− 2 s− 1 irradiance) at 60 days of incubation. The callus raised in light condition in 10 µM 2,4- D selected to analyze avonoid related gene expression prole viz., chalcone synthase (CHS), chalcone isomerase (CHI), avanone-3-hydroxylase (F3H), and avonol synthase (FLS) at specic time intervals. -
Ex Situ Preservation in Medium-Term Culture of the Threathened Taxon Dianthus Nardiformis Janka
Copyright © 2021 University of Bucharest Rom Biotechnol Lett. 2021; 26(2): 2416-2422 Printed in Romania. All rights reserved doi: 10.25083/rbl/26.2/2416.2422 ISSN print: 1224-5984 ISSN online: 2248-3942 Received for publication, December, 20, 2019 Accepted, January, 27, 2020 Original paper Ex situ preservation in medium-term culture of the threathened taxon Dianthus nardiformis Janka IRINA HOLOBIUC1, RODICA CATANĂ1, FLORENȚA HELEPCIUC1, CARMEN MAXIMILIAN1, MONICA MITOI1, GINA COGĂLNICEANU1 1Institute of Biology, Romanian Academy, Bucharest, Romania Abstract Our aim was to elaborate an efficient and reproducible protocol for medium-term culture of the threatened taxon Dianthus nardiformis. To reduce the growth, sucrose, mannitol, polyethylene glycol, Abscisic acid and Jasmonic acid were tested. For assessing the in vitro response, the growth and regeneration were registered after different time intervals. Mannitol is the most effective for medium-term preservation viable cultures which can be maintained unlimited time through transfer at every 3 months. In its presence, somatic embryogenesis was induced and in vitro growth in the minimal cultures was reduced between 9 and 12 times comparing to the control. Antioxidant enzymes assay revealed qualitative and quantitative differences among the experimental variants, and also between different concentrations of the same compound in correlation with the growth reduction and regeneration. POX was the most suitable to detect the efficiency of different treatments to induce medium-term cultures. Keywords Medium-term, mannitol, somatic embryogenesis, antioxidant enzymes. To cite this article: HOLOBIUC I, CATANĂ R, HELEPCIUC F, MAXIMILIAN C, MITOI M, COGĂLNICEANU G. Ex situ preservation in medium-term culture of the threathened taxon Dianthus nardiformis Janka. -
Species List For: Valley View Glades NA 418 Species
Species List for: Valley View Glades NA 418 Species Jefferson County Date Participants Location NA List NA Nomination and subsequent visits Jefferson County Glade Complex NA List from Gass, Wallace, Priddy, Chmielniak, T. Smith, Ladd & Glore, Bogler, MPF Hikes 9/24/80, 10/2/80, 7/10/85, 8/8/86, 6/2/87, 1986, and 5/92 WGNSS Lists Webster Groves Nature Study Society Fieldtrip Jefferson County Glade Complex Participants WGNSS Vascular Plant List maintained by Steve Turner Species Name (Synonym) Common Name Family COFC COFW Acalypha virginica Virginia copperleaf Euphorbiaceae 2 3 Acer rubrum var. undetermined red maple Sapindaceae 5 0 Acer saccharinum silver maple Sapindaceae 2 -3 Acer saccharum var. undetermined sugar maple Sapindaceae 5 3 Achillea millefolium yarrow Asteraceae/Anthemideae 1 3 Aesculus glabra var. undetermined Ohio buckeye Sapindaceae 5 -1 Agalinis skinneriana (Gerardia) midwestern gerardia Orobanchaceae 7 5 Agalinis tenuifolia (Gerardia, A. tenuifolia var. common gerardia Orobanchaceae 4 -3 macrophylla) Ageratina altissima var. altissima (Eupatorium rugosum) white snakeroot Asteraceae/Eupatorieae 2 3 Agrimonia pubescens downy agrimony Rosaceae 4 5 Agrimonia rostellata woodland agrimony Rosaceae 4 3 Allium canadense var. mobilense wild garlic Liliaceae 7 5 Allium canadense var. undetermined wild garlic Liliaceae 2 3 Allium cernuum wild onion Liliaceae 8 5 Allium stellatum wild onion Liliaceae 6 5 * Allium vineale field garlic Liliaceae 0 3 Ambrosia artemisiifolia common ragweed Asteraceae/Heliantheae 0 3 Ambrosia bidentata lanceleaf ragweed Asteraceae/Heliantheae 0 4 Ambrosia trifida giant ragweed Asteraceae/Heliantheae 0 -1 Amelanchier arborea var. arborea downy serviceberry Rosaceae 6 3 Amorpha canescens lead plant Fabaceae/Faboideae 8 5 Amphicarpaea bracteata hog peanut Fabaceae/Faboideae 4 0 Andropogon gerardii var. -
Missouriensis Volume 28 / 29
Missouriensis Volume 28/29 (2008) In this issue: Improved Status of Auriculate False Foxglove (Agalinis auriculata) in Missouri in 2007 Tim E. Smith, Tom Nagel, and Bruce Schuette ......................... 1 Current Status of Yellow False Mallow (Malvastrum hispidum) in Missouri Tim E. Smith.................................................................................... 5 Heliotropium europaeum (Heliotropiaceae) New to Missouri Jay A. Raveill and George Yatskievych ..................................... 10 Melica mutica (Poaceae) New for the Flora of Missouri Alan E. Brant ................................................................................. 18 Schoenoplectus californicus (Cyperaceae) New to Missouri Timothy E. Vogt and Paul M. McKenzie ................................. 22 Flora of Galloway Creek Nature Park, Howell County, Missouri Bill Summers .................................................................................. 27 Journal of the Missouri Native Plant Society Missouriensis, Volume 28/29 2008 1 IMPROVED STATUS OF AURICULATE FALSE FOXGLOVE (AGALINIS AURICULATA) IN MISSOURI IN 2007 Tim E. Smith Missouri Department of Conservation P.O. Box 180, Jefferson City, MO 65102-0180 Tom Nagel Missouri Department of Conservation 701 James McCarthy Drive St. Joseph, MO 64507-2194 Bruce Schuette Missouri Department of Natural Resources Cuivre River State Park 678 State Rt. 147 Troy, MO 63379 Populations of annual plant species are known to have periodic “boom” and “bust” years as well as years when plant numbers more closely approach long-term averages. In tracking populations of plant species of conservation concern (Missouri Natural Heritage Program, 2007), there are sometimes also boom years in the number of reports of new populations. Because of reports of five new populations and a surge in numbers of plants at some previously-known sites, 2007 provided encouraging news for the conservation of the auriculate false foxglove [Agalinis auriculata (Michx.) Blake] in Missouri. -
Microevolution on Anthropogenically Changed Areas on the Example of Biscutella Laevigata Plants from Calamine Waste Heap in Pola
ntal & A me na n ly o t ir ic Wierzbicka et al., J Environ Anal Toxicol 2017, 7:4 v a n l T E o Journal of f x DOI: 10.4172/2161-0525.1000479 o i l c o a n l o r g u y o J Environmental & Analytical Toxicology ISSN: 2161-0525 ResearchResearch Article Article Open Accesss Microevolution on Anthropogenically Changed Areas on the Example of Biscutella laevigata Plants from Calamine Waste Heap in Poland Małgorzata Wierzbicka1*, Maria Pielichowska2, Olga Bemowska-Kałabun1 and Paweł Wąsowicz3 1Faculty of Biology, University of Warsaw, I Miecznikowa 1, 02-09 Warsaw, Poland 2The Maria Grzegorzewska Academy of Special Education, Szczęśliwicka 40, 02-353 Warsaw, Poland 3Icelandic Institute of Natural History, Borgir við Norðurslóð, PO Box 180, IS-602 Akureyri, Iceland Abstract In the era of increasing environmental pollution, microevolutionary processes occurring in plants inhabiting anthropogenic areas play a special role. With time, these processes may lead to formation of new plant species. A good example of occurrence of microevolutionary processes on anthropogenically altered areas is the metallophyte Biscutella laevigata L. The studies have shown the existence of significant morphological, anatomical and physiological differences between two groups of the B. laevigata populations occurring in Poland – the population of calamine waste heaps in Bolesław near Olkusz (Silesian Upland) and the population inhabiting the Tatra Mountains (Western Carpathians). The demonstrated differences are the adaptation (hereditary characteristics) of the plants to the unfavorable conditions of the calamine waste heap, i. a. high concentration of heavy metals in the soil. The research has also shown theexistence of significant differences between these two groups of populations – both at the genetic and morphological levels (a clonal form of vegetative propagation, removal of heavy metals by the oldest and drying leaves, a zinc tolerant species, trichomes accumulating metals, metal detoxification at the cellular level). -
Saponaria Bargyliana Gombault (Caryophyllaceae)
TurkJBot 30(2006)63-70 ©TÜB‹TAK ResearchArticle Saponariabargyliana Gombault(Caryophyllaceae):ANewRecord forTurkeyandAnalysisofItsMorphologicalCharacterswith RelatedSpecies BirolMUTLU* ‹nönüUniversity,FacultyofScienceandArts,DepartmentofBiology,44280Malatya-TURKEY Received:18.10.2004 Accepted:05.12.2005 Abstract: Previously, Saponariabargyliana Gombaultwasknownonlyfromitstypelocality,thenorthofSyriaintheNosaïris mountains,whichwaspublishedbyGombaultin1962.DuringafieldtripinJune2002toErzin(Hatay)district,thespecieswas collectedforthesecondtimefromanewlocalityfarfromits locusclassicus.Thus,thisspecieswasdescribedasanewrecordfor thefloraofTurkey.Thedescriptionofthisspecieswasexpandedanditsgeographicaldistribution,habitat,floweringtimean d conservationstatusarediscussed.Quantitativeandqualitativeanalysisof Saponariabargyliana andcloselyrelatedspeciesis discussed.Elevenquantitativecharacterswereusedinalineardiscriminantanalysis.Inthediscriminantanalysis,themostu seful charactersforseparatingparticularspecieswereselected:seednumber,calyxnervenumber,coronalscalelength,calyxteethlength andpetalwidth.Withthese5mostimportantcharacters,100%ofplantswerecorrectlyclassifiedintothedesignatedgroups.T he analysisshowedthat S.bargyliana,S.officinalis L.and S.glutinosa M.Bieb.aredistinguishedbythequantitativemorphological characters.Calyxhairarrangementandtheconditionofthepedicelhairsarethemostimportantqualitativecharactersinthe identificationofthesespecies. KeyWords: Caryophyllaceae,Saponaria,newrecord,morphology,lineardiscriminantanalysis Saponariabargyliana