Sucrose Thresholds and Genetic Polymorphisms of Sweet and Bitter Taste Receptor Genes in Children

Total Page:16

File Type:pdf, Size:1020Kb

Sucrose Thresholds and Genetic Polymorphisms of Sweet and Bitter Taste Receptor Genes in Children University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2015 Sucrose Thresholds and Genetic Polymorphisms of Sweet and Bitter Taste Receptor Genes in Children Paule Valery Joseph University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Genetics Commons, Human and Clinical Nutrition Commons, and the Nursing Commons Recommended Citation Joseph, Paule Valery, "Sucrose Thresholds and Genetic Polymorphisms of Sweet and Bitter Taste Receptor Genes in Children" (2015). Publicly Accessible Penn Dissertations. 1793. https://repository.upenn.edu/edissertations/1793 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1793 For more information, please contact [email protected]. Sucrose Thresholds and Genetic Polymorphisms of Sweet and Bitter Taste Receptor Genes in Children Abstract SUCROSE THRESHOLDS AND GENETIC POLYMORPHISMS OF SWEET AND BITTER TASTE RECEPTOR GENES IN CHILDREN Paule Valery Joseph Charlene Compher, PhD, RD Background: Many illnesses of modern society are due to poor food choices. Excess consumption of sugars has been associated with obesity and diabetes. Children, due to their basic biology, are more vulnerable than adults to overeat foods rich in sugars. Little research has focused on whether there are individual differences among children in their sensitivity to sweet taste and if so the biological correlates of such differences. Aims: The goal of this study was to determine whether variations in children’s sucrose detection thresholds relate to their age and sex, taste genotype, added sugar or caloric intake, temperament or food neophobia and adiposity. Methods: Sucrose detection thresholds in children age 7-14 years were tested individually using a validated two-alternative, forced-choice, paired-comparison tracking method. Genetic variants of taste receptor genes were assayed: TAS1R2, TAS1R3 and GNAT3 (sweet taste receptor genes; one variant each) and the bitter receptor gene TAS2R38 (three variants). Children (n=216) were measured for body weight and height. A subset of 96 children was measured for percent body fat, waist to height ratio and added sugar and kcal intake. Results: Mean sucrose threshold was 12.0 (SD 12.9), 0.23 to 153.8 mM. Girls were more sensitive than boys [t(214) = 2.0, p=0.047] and older children more sensitive than younger children [r(214) = -0.16, p = 0.016]. Variants in the bitter but not the sweet taste receptor genes were related to sucrose threshold and sugar intake; children with two bitter-sensitive alleles could detect sucrose at lower concentrations [F(2,165) = 4.55, p = 0.012; rs1726866]. Children with these variants also reported eating more added sugar (%kcals; [F(2, 62) = 3.64, p = 0.032]) than did children with less sensitive alleles. Sucrose detection thresholds predicted central adiposity [F(2, 59) = 6.1, p = 0.016), but not percent body fat [F(2, 58) = 1.4, p = 0.238]) when adjusted for added sugar intake, temperament, age, sex and negative reaction to foods. Conclusions: Differences in sweet taste sensitivity may affect childhood dietary sugar intake with long- term health consequences, including obesity. There may be a more complex interplay between the bitter and sweet taste systems during development than previously appreciated. Understanding taste related parameters as well as other dimensions that may affect food consumption might help in developing weight management to minimize childhood obesity risk. Degree Type Dissertation Degree Name Doctor of Philosophy (PhD) Graduate Group Nursing First Advisor Charlene W. Compher Second Advisor Danielle R. Reed Keywords Diet, Genetics, Obesity, Polymorphism, Sucrose, Thresholds Subject Categories Genetics | Human and Clinical Nutrition | Nursing | Nutrition This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/1793 SUCROSE THRESHOLDS AND GENETIC POLYMORPHISMS OF SWEET AND BITTER TASTE RECEPTOR GENES IN CHILDREN Paule Valery Joseph, MSN, CRNP, CTN-B A DISSERTATION in Nursing Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 2015 Supervisor of Dissertation Co-Supervisor of Dissertation _________ __________________ ___________________________ Charlene W. Compher, PhD, RD, FADA Danielle R. Reed, PhD Professor of Nutrition Science Member, Monell Chemical Senses Center Graduate Group Chairperson ______ _________ __________ Connie Ulrich, PhD, RN, FAAN Associate Professor of Nursing; and Associate Professor of Bioethics, Department of Medical Ethics, School of Medicine Dissertation Committee Marilyn S. Sommers, PhD, RN, FAAN Lillian S. Brunner Professor of Medical-Surgical Nursing Danielle Reed, PhD Member, Monell Chemical Senses Center Julie Mennella, PhD Member, Monell Chemical Senses Center SUCROSE THRESHOLDS AND GENETIC POLYMORPHISMS OF SWEET AND BITTER TASTE RECEPTOR GENES IN CHILDREN COPYRIGHT© 2015 Paule Valery Joseph This work is licensed under the Creative Commons Attribution-NonCommercial- ShareAlike 3.0 License To view a copy of this license, visit http://creativecommons.org/licenses/by-ny-sa/2.0/ DEDICATION I dedicate my dissertation work to my family and my loving partner. “The best kind of people, are the ones that come into your life, and make you see the sun where you once saw clouds. The people that believe in you so much, you start to believe in you yourself. The people that love you simply for being you. The once in a lifetime kind of people.”-~Unknown iii ACKNOWLEDGMENTS I would like to first thank the members of my interdisciplinary dissertation committee—not only for their time and extreme patience, but also for their intellectual contributions to my development as a nurse scientist. I would like to acknowledge my dissertation chair and academic mentor, Dr. Charlene Compher, who supported my idea of choosing a study in genetics for my dissertation, for her unconditional time and support. Thank you to Dr. Danielle Reed for taking a chance with me despite my unconventional career trajectory, for her time and dedication to mentor me. Thank you for the Friday afternoon science discussions, they certainly allowed me to explore things through different lenses and more specially thank you for giving me the opportunity to develop my science in her laboratory. Thank you to Dr. Julie Mennella for all of her advice and the generous use of her dataset for this project. I am grateful she agreed to serve as a member of my dissertation committee, for challenging me and pushing my thinking. Also my gratitude to Dr. Marilyn Sommers for helping me think about methodological and disparity issues and for the many thought-provoking questions and ideas. Thank you for being a member of my dissertation committee. Without all of their guidance, persistence and constant sharing of their perils of wisdom this dissertation would have not been possible. I would like to express my appreciation to a number of readers who contributed their time during my studies Drs. Linda Hatfield, Bart de Jonghe, Joseph Libonati and Yvonne Paterson. iv My sincere regards to many people at Monell Chemical Senses Center, but a special token of gratitude to Anna Lysenko, Michael Marquis, Corrine Mansfield, Lauren Shaw, Loma Inamdar, Susana Finkbeiner, Daniel Hwang, Charles Arayata (CJ), Dr. Nuala Bobowski, Dr. Valentina Parma, Dr. Casey Trimmer and Dr. Katharine Prigge their expert technical assistance and friendship. My experience in the lab was greatly enhanced thanks to the support they provided. Specially thanks to Ms. Patricia J. Watson for her valuable editorial assistance. My utmost gratitude to people at Penn. Particularly to Jesse Chittams who provided insight and statistical expertise that greatly assisted my dissertation. Thank you to Dr. Sherry Morgan from the biomedical library for the innumerable times she provided help. I would also like to thank my very amazing PhD cohort and other doctoral students at Penn Nursing and other programs at Penn for their friendship, care and moral support. The PhD program can be very isolating and lonely. I have been blessed to find a tight- knit group of friends to commiserate with. I will always appreciate all they have done for me and the many prayers. Profound thanks to my hard working parents who have sacrificed their lives for my sister and I. My parents unconditionally and good examples have taught me to work hard for the things that I aspire to achieve and for instilling in me the importance of responsibility, endurance and education. They provided unconditional love and care. I certainly would not have made it this far without them. Thank you to my lovely sister, who has been my best friend and beacon of support during my PhD program. Also to the rest of my family with my warmest regards for believing in me and supporting me when v all I had was a dream to come to America. Finally, to my partner I could have not asked for a better companion. Thank you for being my best friend and my rock, your unconditional support and encouragement helped me when I needed it the most. Thanks for always listening and being my cheerleader. To all, I will always be grateful for your constant prayers, source of support and encouragement during the times of success and challenges. I am truly thankful for having each of you in my life. Above all, I owe it all to God Almighty for granting me the wisdom, health and strength to undertake
Recommended publications
  • Information for Instructor
    Using a Single-Nucleotide Polymorphism to Predict Bitter-Tasting Ability 21 INFORMATION FOR INSTRUCTOR CONCEPTS AND METHODS This laboratory can help students understand several important concepts of modern biology: • The relationship between genotype and phenotype. • The use of single-nucleotide polymorphisms (SNPs) in predicting drug response (pharmacogenetics). • A number of SNPs are inherited together as a haplotype. • The movement between in vitro experimentation and in silico computation. The laboratory uses several methods for modern biological research: • DNA extraction and purification. • Polymerase chain reaction (PCR). • DNA restriction. • Gel electrophoresis. • Bioinformatics. LAB SAFETY The National Association of Biology Teachers recognizes the importance of laboratory activities using human body samples and has developed safety guidelines to minimize the risk of transmitting serious disease. ("The Use of Human Body Fluids and Tissue Products in Biology," News & Views, June 1996.) These are summarized below: • Collect samples only from students under your direct supervision. • Do not use samples brought from home or obtained from an unknown source. • Do not collect samples from students who are obviously ill or are known to have a serious communicable disease. • Have students wear proper safety apparel: latex or plastic gloves, safety glasses or goggles, and lab coat or apron. • Supernatants and samples may be disposed of in public sewers (down lab drains). • Have students wash their hands at the end of the lab period. • Do not store samples in a refrigerator or freezer used for food. The risk of spreading an infectious agent by this lab method is much less likely than from natural atomizing processes, such as coughing or sneezing.
    [Show full text]
  • Bitter Taste Perception in Neanderthals Through the Analysis of The
    View metadata, citation and similar papers Downloadedat core.ac.uk from http://rsbl.royalsocietypublishing.org/ on March 22, 2016 brought to you by CORE provided by Repositorio Institucional de la Universidad de Oviedo Biol. Lett. (2009) 5, 809–811 The most extensively studied taste variation in doi:10.1098/rsbl.2009.0532 humans is sensitivity to a bitter substance called phe- Published online 12 August 2009 nylthiocarbamide (PTC). Although approximately 75 Evolutionary biology per cent of the world population perceives this sub- stance as intensely bitter, it is virtually tasteless for the remaining 25 per cent of the population (Kim & Bitter taste perception in Drayna 2004). This is owing to a dominant ‘taster’ allele that shows a similar frequency to the recessive Neanderthals through the ‘non-taster’ allele. PTC itself is not found in any vegetable, but chemically similar substances that analysis of the TAS2R38 produce an identical response to PTC are present in gene many plant foods (including Brussels sprouts, cabbage, broccoli and others). It was discovered Carles Lalueza-Fox1,*, Elena Gigli1, (Kim et al. 2003) that most of the variation in PTC Marco de la Rasilla2, Javier Fortea2 sensitivity is related to polymorphisms at the and Antonio Rosas3 TAS2R38 gene, a single 1002 bp coding exon that encodes a 333-amino-acid, G-protein-coupled recep- 1Institut de Biologia Evolutiva, CSIC-UPF, Dr. Aiguader 88, 08003 Barcelona, Spain tor. The TAS2R38 gene has three amino-acid changes 2A´ rea de Prehistoria, Departamento de Historia, Universidad de Oviedo, in high frequencies that determine only five main hap- Teniente Alfonso Martı´nez s/n, 33011 Oviedo, Spain lotypes.
    [Show full text]
  • G Protein-Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading.
    [Show full text]
  • G Protein‐Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: G protein-coupled receptors. British Journal of Pharmacology (2019) 176, S21–S141 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein-coupled receptors Stephen PH Alexander1 , Arthur Christopoulos2 , Anthony P Davenport3 , Eamonn Kelly4, Alistair Mathie5 , John A Peters6 , Emma L Veale5 ,JaneFArmstrong7 , Elena Faccenda7 ,SimonDHarding7 ,AdamJPawson7 , Joanna L Sharman7 , Christopher Southan7 , Jamie A Davies7 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria 3052, Australia 3Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK 4School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 5Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 6Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 7Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website.
    [Show full text]
  • Treatment of Chronic Alcoholism: an Integrated Approach Hemangi Rajput* Integrative Health Care Practitioner, Essence Natural Health Clinic, Canada
    Integrati & ve e M iv t e a d n i c r i e n t l e A Alternative & Integrative Medicine Rajput, Altern Integ Med 2014, 3:2 ISSN: 2327-5162 DOI: 10.4172/2327-5162.1000152 Review Article Open Access Treatment of Chronic Alcoholism: An Integrated Approach Hemangi Rajput* Integrative Health care Practitioner, Essence Natural Health Clinic, Canada Abstract Alternative medicine coupled with conventional and psychosocial therapies has been shown to be greatly effective in treating chronic alcoholism with positive treatment outcomes. Herbs like Kudzu, Tangerine Peel, Gentian and Bupleurum have been used efficaciously to treat chronic alcoholism and reduce liver toxicity. This article reviews the herbs Kudzu, Tangerine Peel, Gentian and Bupleurum with respect to their actions on the enzymes alcohol and acetaldehyde dehydrogenase. We further explore the genetic and pathophysiological basis of alcoholism while unraveling genetic polymorphisms in the genes involved in metabolic and effector action pathways that have an important bearing on why some individuals are addicted to alcohol, have severe withdrawal response and increased tendency to relapse. In this article we mainly discuss the role of alternative medicine, specifically in context with the above mentioned herbs for their role in inhibiting production of acetaldehyde dehydrogenase, suppressing craving, regulating blood glucose balance and reducing hepatotoxicity in chronic alcoholics. Keywords: Acetaldehyde dehydrogenase; Alternative medicine; Alternative treatment with herbs has shown to be effective in Bupleurum; Chronic alcoholism; Gentian; Integrated medicine; ameliorating the side-effects of withdrawal, restore optimal homeostasis Kudzu; Tangerine Peel and decrease psychological dependence in chronic alcoholics. Background Pathophysiology of Chronic Alcoholism Alcoholism has been described as early as 1700 BC in “The book To treat alcoholism, we need to understand how ethanol is of Anni” where Egyptians described excessive intoxication in humans.
    [Show full text]
  • The Potential Druggability of Chemosensory G Protein-Coupled Receptors
    International Journal of Molecular Sciences Review Beyond the Flavour: The Potential Druggability of Chemosensory G Protein-Coupled Receptors Antonella Di Pizio * , Maik Behrens and Dietmar Krautwurst Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, 85354, Germany; [email protected] (M.B.); [email protected] (D.K.) * Correspondence: [email protected]; Tel.: +49-8161-71-2904; Fax: +49-8161-71-2970 Received: 13 February 2019; Accepted: 12 March 2019; Published: 20 March 2019 Abstract: G protein-coupled receptors (GPCRs) belong to the largest class of drug targets. Approximately half of the members of the human GPCR superfamily are chemosensory receptors, including odorant receptors (ORs), trace amine-associated receptors (TAARs), bitter taste receptors (TAS2Rs), sweet and umami taste receptors (TAS1Rs). Interestingly, these chemosensory GPCRs (csGPCRs) are expressed in several tissues of the body where they are supposed to play a role in biological functions other than chemosensation. Despite their abundance and physiological/pathological relevance, the druggability of csGPCRs has been suggested but not fully characterized. Here, we aim to explore the potential of targeting csGPCRs to treat diseases by reviewing the current knowledge of csGPCRs expressed throughout the body and by analysing the chemical space and the drug-likeness of flavour molecules. Keywords: smell; taste; flavour molecules; drugs; chemosensory receptors; ecnomotopic expression 1. Introduction Thirty-five percent of approved drugs act by modulating G protein-coupled receptors (GPCRs) [1,2]. GPCRs, also named 7-transmembrane (7TM) receptors, based on their canonical structure, are the largest family of membrane receptors in the human genome.
    [Show full text]
  • The Bitter Taste Receptor Tas2r14 Is Expressed in Ovarian Cancer and Mediates Apoptotic Signalling
    THE BITTER TASTE RECEPTOR TAS2R14 IS EXPRESSED IN OVARIAN CANCER AND MEDIATES APOPTOTIC SIGNALLING by Louis T. P. Martin Submitted in partial fulfilment of the requirements for the degree of Master of Science at Dalhousie University Halifax, Nova Scotia June 2017 © Copyright by Louis T. P. Martin, 2017 DEDICATION PAGE To my grandparents, Christina, Frank, Brenda and Bernie, and my parents, Angela and Tom – for teaching me the value of hard work. ii TABLE OF CONTENTS LIST OF TABLES ............................................................................................................. vi LIST OF FIGURES .......................................................................................................... vii ABSTRACT ....................................................................................................................... ix LIST OF ABBREVIATIONS AND SYMBOLS USED .................................................... x ACKNOWLEDGEMENTS .............................................................................................. xii CHAPTER 1 INTRODUCTION ........................................................................................ 1 1.1 G-PROTEIN COUPLED RECEPTORS ................................................................ 1 1.2 GPCR CLASSES .................................................................................................... 4 1.3 GPCR SIGNALING THROUGH G PROTEINS ................................................... 6 1.4 BITTER TASTE RECEPTORS (TAS2RS) ...........................................................
    [Show full text]
  • Inhibition of Bitter Taste from Oral Tenofovir Alafenamide S
    Supplemental material to this article can be found at: http://molpharm.aspetjournals.org/content/suppl/2021/04/06/molpharm.120.000071.DC1 1521-0111/99/5/319–327$35.00 https://doi.org/10.1124/molpharm.120.000071 MOLECULAR PHARMACOLOGY Mol Pharmacol 99:319–327, May 2021 Copyright ª 2021 The Author(s). This is an open access article distributed under the CC BY Attribution 4.0 International license. Inhibition of Bitter Taste from Oral Tenofovir Alafenamide s Erik Schwiebert,2 Yi Wang,1,2 Ranhui Xi, Katarzyna Choma, John Streiff, Linda J. Flammer, Natasha Rivers, Mehmet Hakan Ozdener, Robert F. Margolskee, Carol M. Christensen, Nancy E. Rawson, Peihua Jiang, and Paul A. S. Breslin Discovery Biomed, Birmingham, Alabama (E.S., J.S.); Monell Chemical Senses Center, Philadelphia, Pennsylvania (Y.W., R.X., K.C., L.J.F., N.R., M.H.O., R.F.M., C.M.C., N.E.R., P.J., P.A.S.B.); and Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey (P.A.S.B.) Received May 14, 2020; accepted March 1, 2021 Downloaded from ABSTRACT Children have difficulty swallowing capsules. Yet, when pre- 16 subjects showed reduction in perceived bitterness of TAF sented with liquid formulations, children often reject oral med- after pretreating (or “prerinsing”) with 6-methylflavone and ications due to their intense bitterness. Presently, effective mixing 6-methylflavone with TAF. Bitterness was completely strategies to identify methods, reagents, and tools to block and reliably blocked in two of these subjects. These data molpharm.aspetjournals.org bitterness remain elusive. For a specific bitter-tasting drug, demonstrate that a combined approach of human taste cell identification of the responsible bitter receptors and discovery culture–based screening, receptor-specific assays, and hu- of antagonists for those receptors can provide a method to man psychophysical testing can successfully discover mol- block perceived bitterness.
    [Show full text]
  • Bitter Inheritance Bitter Inheritance
    PTC Taster Bitter Inheritance Bitter Inheritance S–C–N thiocyanate group Glucosinolates Two synthetic organic compounds, phenylthiocarbamide (PTC), and propylthiouracil (PROP) were found to stimulate the same Many plants produce noxious alkaloid compounds to resist mammalian taste receptors. So these compounds, esp. PTC, were herbivory. used to study the perception of bitter flavor. E.g., cruciferous vegetables — cabbage/mustard family — • However, it was observed that ~30% of humans tested could not produce glucosinolates. taste bitter flavor from PTC. Humans perceive the taste of such compounds as bitter. • This ability/inability to taste PTC was heritable and attributed to variation in a single gene — the “PTC gene” Bitter Inheritance Mutation of the PTC gene • “PTC gene” = gene TAS2R38 on chromosome 7 The inheritance of the PTC phenotype has • T: “taster allele” = PAV allele been often used as an example of • t: “non-taster” allele = AVI allele simple dominance. • 3 single nucleotide polymorphisms (SNP) With the “PTC-taster” allele (T) dominant to the recessive “PTC-nontaster” allele (t). → 3 amino acid substitutions • Proline…Alanine…Valine → Alanine…Valine…Isoleucine • Primers ☛ bracKet 303 bp PCR product within TAS2R38 gene DNA • TT or Tt genotype → “PTC-taster” phenotype • SNP ☛ same size PCR product for PAV & AVI alleles • • tt genotype But one of the SNP is within the PCR product → disrupts a SatI restriction site → “PTC-nontaster” phenotype • SatI digest of TAS2R38 DNA PCR product: • PAC PCR product cleaved by SatI • AVI PCR
    [Show full text]
  • Individual Differences Among Children in Sucrose Detection Thresholds Relationship with Age, Gender, and Bitter Taste Genotype
    Individual Differences Among Children in Sucrose Detection Thresholds Relationship With Age, Gender, and Bitter Taste Genotype Paule Valery Joseph ▼ Danielle R. Reed ▼ Julie A. Mennella Background: Little research has focused on whether there are individual differences among children in their sensitivity to sweet taste and, if so, the biological correlates of such differences. Objectives: Our goal was to understand how variations in children’s sucrose detection thresholds relate to their age and gender, taste genotype, body composition, and dietary intake of added sugars. Methods: Sucrose detection thresholds in 7- to 14-year-old children were tested individually using a validated, two-alternative, forced-choice, paired-comparison tracking method. Five genetic variants of taste genes were assayed: TAS1R3 and GNAT3 (sweet genes; one variant each) and the bitter receptor gene TAS2R38 (three variants). All children were measured for body weight and height. A subset of these children were measured for the percentage of body fat and waist circumference and provided added sugar intake by 24-hour dietary recall. Results: Sucrose thresholds ranged from 0.23 to 153.8 mM with most of the children completing the threshold task (216/235; 92%). Some children were biologically related (i.e., siblings), and for the genetic analysis, one sibling from each family was studied. Variants in the bitter but not the sweet genes were related to sucrose threshold and sugar intake; children with two bitter-sensitive alleles could detect sucrose at lower concentrations (F(2,165) = 4.55, p = .01; rs1726866) and reported eating more added sugar (% kcal; F(2, 62) = 3.64, p = .03) than did children with less sensitive alleles.
    [Show full text]
  • Multiscale Simulations on Human Frizzled and Taste2 Gpcrs
    Multiscale simulations on human Frizzled and Taste2 GPCRs Mercedes Alfonso-Prieto1,2,*, Alejandro Giorgetti1,3,* and Paolo Carloni1,4,5,6,# 1 Computational Biomedicine, Institute for Advanced Simulations IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Jülich, Germany. 2 Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany. 3 Department of Biotechnology, University of Verona, Verona, Italy. 4 Department of Physics, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany. 5 JARA Institute Molecular Neuroscience and Neuroimaging (INM-11), Forschungszentrum Jülich GmbH, Jülich, Germany. 6 VNU Key Laboratory “Multiscale Simulation of Complex Systems”, VNU University of Science, Vietnam National University, Hanoi, Vietnam * Contributed equally to this work. # Corresponding author. Abstract Recently, molecular dynamics simulations, from all atom and coarse grained to hybrid methods bridging the two scales, have provided exciting functional insights into class F (Frizzled and Taste2) GPCRs (about 40 members in humans). Findings include: (i) The activation of one member of the Frizzled receptors (FZD4) involves a bending of transmembrane helix TM7 far larger than that in class A GPCRs. (ii) The affinity of an anticancer drug targeting another member (Smoothened receptor) decreases in a specific drug-resistant variant, because the mutation ultimately disrupts the binding cavity and affects TM6. (iii) A novel two-state recognition mechanism explains the very large agonist diversity for at least one member of the Taste2 GPCRs, hTAS2R46. Highlights ● Frizzled receptor’s activation may involve a wide conformational change of TM7. ● Smoothened receptor’s binding cavity is disrupted in a drug resistant variant.
    [Show full text]
  • The Relationship Between Single Nucleotide Polymorphisms in Taste
    The Relationship Between Single Nucleotide Polymorphisms in Taste Receptor Genes, Taste Perception and Dietary Intake by Elie Chamoun A Thesis presented to The University of Guelph In partial fulfillment of requirements for the degree of Doctor of Philosophy in Human Health and Nutritional Sciences Guelph, Ontario, Canada © Elie Chamoun, August 2018 i ABSTRACT THE RELATIONSHIP BETWEEN SINGLE NUCLEOTIDE POLYMORPHISMS IN TASTE RECEPTOR GENES, TASTE PERCEPTION AND DIETARY INTAKE Elie Chamoun Advisor: University of Guelph, 2018 Dr. David W.L. Ma Food preferences and dietary habits are heavily influenced by taste perception, and there is growing interest in characterizing taste preferences based on genetic variation. Genetic differences in the ability to perceive key tastes may impact eating patterns. Therefore, increased understanding of taste genetics may lead to new personalized strategies, which may influence the trajectory of chronic disease risk. Recent advances show that single nucleotide polymorphisms (SNPs) in taste receptor genes are associated with changes in psychophysical measures of taste as well as eating patterns. The current understanding of how genetic variation impacts taste function and dietary habits for sweet, fat, salt, sour, and umami taste is limited and warranted due to the role of these types of taste in detecting nutrients that pose health risks when overconsumed. Results from this thesis demonstrated that specific SNPs are associated with taste sensitivity, taste preference and eating patterns. In adults, associations between SNPs and psychophysical measures of taste were observed between rs4790151 (TRPV1) and salt sensitivity, rs2499729 (GRM4) and umami sensitivity, rs713598 (TAS2R38) and bitter sensitivity, and rs236514 (KCNJ2) and sour preference. In children, associations were observed between rs4790522 (TRPV1) and salt preference, and rs173135 (KCNJ2) and sour preference.
    [Show full text]