Genetic Variation in the TAS2R38 Bitter Taste Receptor and Gastric
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Information for Instructor
Using a Single-Nucleotide Polymorphism to Predict Bitter-Tasting Ability 21 INFORMATION FOR INSTRUCTOR CONCEPTS AND METHODS This laboratory can help students understand several important concepts of modern biology: • The relationship between genotype and phenotype. • The use of single-nucleotide polymorphisms (SNPs) in predicting drug response (pharmacogenetics). • A number of SNPs are inherited together as a haplotype. • The movement between in vitro experimentation and in silico computation. The laboratory uses several methods for modern biological research: • DNA extraction and purification. • Polymerase chain reaction (PCR). • DNA restriction. • Gel electrophoresis. • Bioinformatics. LAB SAFETY The National Association of Biology Teachers recognizes the importance of laboratory activities using human body samples and has developed safety guidelines to minimize the risk of transmitting serious disease. ("The Use of Human Body Fluids and Tissue Products in Biology," News & Views, June 1996.) These are summarized below: • Collect samples only from students under your direct supervision. • Do not use samples brought from home or obtained from an unknown source. • Do not collect samples from students who are obviously ill or are known to have a serious communicable disease. • Have students wear proper safety apparel: latex or plastic gloves, safety glasses or goggles, and lab coat or apron. • Supernatants and samples may be disposed of in public sewers (down lab drains). • Have students wash their hands at the end of the lab period. • Do not store samples in a refrigerator or freezer used for food. The risk of spreading an infectious agent by this lab method is much less likely than from natural atomizing processes, such as coughing or sneezing. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Download Download
Supplementary Figure S1. Results of flow cytometry analysis, performed to estimate CD34 positivity, after immunomagnetic separation in two different experiments. As monoclonal antibody for labeling the sample, the fluorescein isothiocyanate (FITC)- conjugated mouse anti-human CD34 MoAb (Mylteni) was used. Briefly, cell samples were incubated in the presence of the indicated MoAbs, at the proper dilution, in PBS containing 5% FCS and 1% Fc receptor (FcR) blocking reagent (Miltenyi) for 30 min at 4 C. Cells were then washed twice, resuspended with PBS and analyzed by a Coulter Epics XL (Coulter Electronics Inc., Hialeah, FL, USA) flow cytometer. only use Non-commercial 1 Supplementary Table S1. Complete list of the datasets used in this study and their sources. GEO Total samples Geo selected GEO accession of used Platform Reference series in series samples samples GSM142565 GSM142566 GSM142567 GSM142568 GSE6146 HG-U133A 14 8 - GSM142569 GSM142571 GSM142572 GSM142574 GSM51391 GSM51392 GSE2666 HG-U133A 36 4 1 GSM51393 GSM51394 only GSM321583 GSE12803 HG-U133A 20 3 GSM321584 2 GSM321585 use Promyelocytes_1 Promyelocytes_2 Promyelocytes_3 Promyelocytes_4 HG-U133A 8 8 3 GSE64282 Promyelocytes_5 Promyelocytes_6 Promyelocytes_7 Promyelocytes_8 Non-commercial 2 Supplementary Table S2. Chromosomal regions up-regulated in CD34+ samples as identified by the LAP procedure with the two-class statistics coded in the PREDA R package and an FDR threshold of 0.5. Functional enrichment analysis has been performed using DAVID (http://david.abcc.ncifcrf.gov/) -
Bitter Taste Perception in Neanderthals Through the Analysis of The
View metadata, citation and similar papers Downloadedat core.ac.uk from http://rsbl.royalsocietypublishing.org/ on March 22, 2016 brought to you by CORE provided by Repositorio Institucional de la Universidad de Oviedo Biol. Lett. (2009) 5, 809–811 The most extensively studied taste variation in doi:10.1098/rsbl.2009.0532 humans is sensitivity to a bitter substance called phe- Published online 12 August 2009 nylthiocarbamide (PTC). Although approximately 75 Evolutionary biology per cent of the world population perceives this sub- stance as intensely bitter, it is virtually tasteless for the remaining 25 per cent of the population (Kim & Bitter taste perception in Drayna 2004). This is owing to a dominant ‘taster’ allele that shows a similar frequency to the recessive Neanderthals through the ‘non-taster’ allele. PTC itself is not found in any vegetable, but chemically similar substances that analysis of the TAS2R38 produce an identical response to PTC are present in gene many plant foods (including Brussels sprouts, cabbage, broccoli and others). It was discovered Carles Lalueza-Fox1,*, Elena Gigli1, (Kim et al. 2003) that most of the variation in PTC Marco de la Rasilla2, Javier Fortea2 sensitivity is related to polymorphisms at the and Antonio Rosas3 TAS2R38 gene, a single 1002 bp coding exon that encodes a 333-amino-acid, G-protein-coupled recep- 1Institut de Biologia Evolutiva, CSIC-UPF, Dr. Aiguader 88, 08003 Barcelona, Spain tor. The TAS2R38 gene has three amino-acid changes 2A´ rea de Prehistoria, Departamento de Historia, Universidad de Oviedo, in high frequencies that determine only five main hap- Teniente Alfonso Martı´nez s/n, 33011 Oviedo, Spain lotypes. -
G Protein-Coupled Receptors
S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. -
G Protein‐Coupled Receptors
S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: G protein-coupled receptors. British Journal of Pharmacology (2019) 176, S21–S141 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein-coupled receptors Stephen PH Alexander1 , Arthur Christopoulos2 , Anthony P Davenport3 , Eamonn Kelly4, Alistair Mathie5 , John A Peters6 , Emma L Veale5 ,JaneFArmstrong7 , Elena Faccenda7 ,SimonDHarding7 ,AdamJPawson7 , Joanna L Sharman7 , Christopher Southan7 , Jamie A Davies7 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria 3052, Australia 3Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK 4School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 5Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 6Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 7Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website. -
Treatment of Chronic Alcoholism: an Integrated Approach Hemangi Rajput* Integrative Health Care Practitioner, Essence Natural Health Clinic, Canada
Integrati & ve e M iv t e a d n i c r i e n t l e A Alternative & Integrative Medicine Rajput, Altern Integ Med 2014, 3:2 ISSN: 2327-5162 DOI: 10.4172/2327-5162.1000152 Review Article Open Access Treatment of Chronic Alcoholism: An Integrated Approach Hemangi Rajput* Integrative Health care Practitioner, Essence Natural Health Clinic, Canada Abstract Alternative medicine coupled with conventional and psychosocial therapies has been shown to be greatly effective in treating chronic alcoholism with positive treatment outcomes. Herbs like Kudzu, Tangerine Peel, Gentian and Bupleurum have been used efficaciously to treat chronic alcoholism and reduce liver toxicity. This article reviews the herbs Kudzu, Tangerine Peel, Gentian and Bupleurum with respect to their actions on the enzymes alcohol and acetaldehyde dehydrogenase. We further explore the genetic and pathophysiological basis of alcoholism while unraveling genetic polymorphisms in the genes involved in metabolic and effector action pathways that have an important bearing on why some individuals are addicted to alcohol, have severe withdrawal response and increased tendency to relapse. In this article we mainly discuss the role of alternative medicine, specifically in context with the above mentioned herbs for their role in inhibiting production of acetaldehyde dehydrogenase, suppressing craving, regulating blood glucose balance and reducing hepatotoxicity in chronic alcoholics. Keywords: Acetaldehyde dehydrogenase; Alternative medicine; Alternative treatment with herbs has shown to be effective in Bupleurum; Chronic alcoholism; Gentian; Integrated medicine; ameliorating the side-effects of withdrawal, restore optimal homeostasis Kudzu; Tangerine Peel and decrease psychological dependence in chronic alcoholics. Background Pathophysiology of Chronic Alcoholism Alcoholism has been described as early as 1700 BC in “The book To treat alcoholism, we need to understand how ethanol is of Anni” where Egyptians described excessive intoxication in humans. -
Prostaglandin E2 As Mediator and Modulator of Airway Smooth Muscle Responses
Institute of Environmental Medicine Division of Physiology The Unit for Experimental Asthma and Allergy Research Karolinska Institutet, Stockholm, Sweden PROSTAGLANDIN E2 AS MEDIATOR AND MODULATOR OF AIRWAY SMOOTH MUSCLE RESPONSES Jesper Säfholm Stockholm 2013 All published papers were reproduced with permission from the publisher. Published by Karolinska Institutet. Printed by Repro Print AB © Jesper Säfholm, 2013 ISBN 978-91-7549-167-7 Printed by 2013 Gårdsvägen 4, 169 70 Solna To boldly go where a lot of people have gone before ABSTRACT Prostaglandin E2 (PGE2) is a lipid mediator produced by virtually every cell of the human body. Because common non-steroidal anti-inflammatory drugs (NSAIDs) inhibit its biosynthesis, PGE2 is usually considered to be a ‘pro-inflammatory’ mediator. The role of PGE2 in the lung and airways has however always been unclear. In particular, the airway responses caused by activation of its four different EP receptors have been debated. Research on the mechanisms involved in the actions of PGE2 has previously been limited by the low potency and selectivity of available pharmacological tools. Recently, a number of potent receptor antagonists and enzyme inhibitors have become available. The aim of this thesis was therefore to characterise airway responses to PGE2 in greater detail, focusing on the role of its receptors on baseline smooth muscle function and during antigen-induced contractions. Alongside investigating PGE2 responses, the newly discovered relaxant effects of bitter tasting substances acting at their respective receptors (TAS2Rs) were examined. The project mainly involved analysis of isometric contractions and relaxations in isolated airways from guinea pigs and humans in organ baths. -
The Potential Druggability of Chemosensory G Protein-Coupled Receptors
International Journal of Molecular Sciences Review Beyond the Flavour: The Potential Druggability of Chemosensory G Protein-Coupled Receptors Antonella Di Pizio * , Maik Behrens and Dietmar Krautwurst Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, 85354, Germany; [email protected] (M.B.); [email protected] (D.K.) * Correspondence: [email protected]; Tel.: +49-8161-71-2904; Fax: +49-8161-71-2970 Received: 13 February 2019; Accepted: 12 March 2019; Published: 20 March 2019 Abstract: G protein-coupled receptors (GPCRs) belong to the largest class of drug targets. Approximately half of the members of the human GPCR superfamily are chemosensory receptors, including odorant receptors (ORs), trace amine-associated receptors (TAARs), bitter taste receptors (TAS2Rs), sweet and umami taste receptors (TAS1Rs). Interestingly, these chemosensory GPCRs (csGPCRs) are expressed in several tissues of the body where they are supposed to play a role in biological functions other than chemosensation. Despite their abundance and physiological/pathological relevance, the druggability of csGPCRs has been suggested but not fully characterized. Here, we aim to explore the potential of targeting csGPCRs to treat diseases by reviewing the current knowledge of csGPCRs expressed throughout the body and by analysing the chemical space and the drug-likeness of flavour molecules. Keywords: smell; taste; flavour molecules; drugs; chemosensory receptors; ecnomotopic expression 1. Introduction Thirty-five percent of approved drugs act by modulating G protein-coupled receptors (GPCRs) [1,2]. GPCRs, also named 7-transmembrane (7TM) receptors, based on their canonical structure, are the largest family of membrane receptors in the human genome. -
The Bitter Taste Receptor Tas2r14 Is Expressed in Ovarian Cancer and Mediates Apoptotic Signalling
THE BITTER TASTE RECEPTOR TAS2R14 IS EXPRESSED IN OVARIAN CANCER AND MEDIATES APOPTOTIC SIGNALLING by Louis T. P. Martin Submitted in partial fulfilment of the requirements for the degree of Master of Science at Dalhousie University Halifax, Nova Scotia June 2017 © Copyright by Louis T. P. Martin, 2017 DEDICATION PAGE To my grandparents, Christina, Frank, Brenda and Bernie, and my parents, Angela and Tom – for teaching me the value of hard work. ii TABLE OF CONTENTS LIST OF TABLES ............................................................................................................. vi LIST OF FIGURES .......................................................................................................... vii ABSTRACT ....................................................................................................................... ix LIST OF ABBREVIATIONS AND SYMBOLS USED .................................................... x ACKNOWLEDGEMENTS .............................................................................................. xii CHAPTER 1 INTRODUCTION ........................................................................................ 1 1.1 G-PROTEIN COUPLED RECEPTORS ................................................................ 1 1.2 GPCR CLASSES .................................................................................................... 4 1.3 GPCR SIGNALING THROUGH G PROTEINS ................................................... 6 1.4 BITTER TASTE RECEPTORS (TAS2RS) ........................................................... -
Positive Selection on a High-Sensitivity Allele of the Human Bitter-Taste Receptor TAS2R16
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Current Biology, Vol. 15, 1257–1265, July 26, 2005, ©2005 Elsevier Ltd All rights reserved. DOI 10.1016/j.cub.2005.06.042 Positive Selection on a High-Sensitivity Allele of the Human Bitter-Taste Receptor TAS2R16 Nicole Soranzo,1,* Bernd Bufe,3 Pardis C. Sabeti,4 by the N172 allele may have driven the signal of selec- James F. Wilson,1,5 Michael E. Weale,2 tion at an early stage of human evolution. Richard Marguerie,1 Wolfgang Meyerhof,3 and David B. Goldstein1,6 Introduction 1Department of Biology 2 Galton Institute for Molecular Medicine The chemical senses of taste and smell control our in- University College London teraction with the chemical environment and influence Gower Street, London WC1E 6BT our food preference [1]. Among the five different taste United Kingdom modalities recognized by humans—bitter, sweet, sour, 3 German Institute of Human Nutrition Potsdam- umami (monosodium glutamate), and salty—bitter taste Rehbruecke plays an important protective role because many plant Department of Molecular Genetics toxins have a bitter taste [1]. The ability to recognize Arthur-Scheunert-Allee 114-116 harmful compounds through taste may therefore influ- 14558 Nuthetal ence survival, at least in certain environments [2]. Hu- Germany mans can detect bitter compounds at very low concen- 4 Program in Medical and Population Genetics trations and show averse reactions toward foods that Whitehead/Massachusetts Institute for Technology are considered as excessively bitter [1]. Center for Genome Research The initiation of bitter-taste signaling is mediated by Cambridge, Massachusetts 02142 a highly variable family of seven-transmembrane G pro- tein-coupled receptor genes (TAS2Rs or T2Rs), com- prising 25 putatively functional genes and eight pseu- dogenes in humans [3–5]. -
Inhibition of Bitter Taste from Oral Tenofovir Alafenamide S
Supplemental material to this article can be found at: http://molpharm.aspetjournals.org/content/suppl/2021/04/06/molpharm.120.000071.DC1 1521-0111/99/5/319–327$35.00 https://doi.org/10.1124/molpharm.120.000071 MOLECULAR PHARMACOLOGY Mol Pharmacol 99:319–327, May 2021 Copyright ª 2021 The Author(s). This is an open access article distributed under the CC BY Attribution 4.0 International license. Inhibition of Bitter Taste from Oral Tenofovir Alafenamide s Erik Schwiebert,2 Yi Wang,1,2 Ranhui Xi, Katarzyna Choma, John Streiff, Linda J. Flammer, Natasha Rivers, Mehmet Hakan Ozdener, Robert F. Margolskee, Carol M. Christensen, Nancy E. Rawson, Peihua Jiang, and Paul A. S. Breslin Discovery Biomed, Birmingham, Alabama (E.S., J.S.); Monell Chemical Senses Center, Philadelphia, Pennsylvania (Y.W., R.X., K.C., L.J.F., N.R., M.H.O., R.F.M., C.M.C., N.E.R., P.J., P.A.S.B.); and Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey (P.A.S.B.) Received May 14, 2020; accepted March 1, 2021 Downloaded from ABSTRACT Children have difficulty swallowing capsules. Yet, when pre- 16 subjects showed reduction in perceived bitterness of TAF sented with liquid formulations, children often reject oral med- after pretreating (or “prerinsing”) with 6-methylflavone and ications due to their intense bitterness. Presently, effective mixing 6-methylflavone with TAF. Bitterness was completely strategies to identify methods, reagents, and tools to block and reliably blocked in two of these subjects. These data molpharm.aspetjournals.org bitterness remain elusive. For a specific bitter-tasting drug, demonstrate that a combined approach of human taste cell identification of the responsible bitter receptors and discovery culture–based screening, receptor-specific assays, and hu- of antagonists for those receptors can provide a method to man psychophysical testing can successfully discover mol- block perceived bitterness.