Phylogeny and Classification of Armored Scale Insects (Hemiptera: Coccomorpha: Diaspididae)

Total Page:16

File Type:pdf, Size:1020Kb

Phylogeny and Classification of Armored Scale Insects (Hemiptera: Coccomorpha: Diaspididae) Zootaxa 4616 (1): 001–098 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Monograph ZOOTAXA Copyright © 2019 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4616.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:1B9DFBC9-2BA8-4619-8F70-E372DCBD7411 ZOOTAXA 4616 Phylogeny and classification of armored scale insects (Hemiptera: Coccomorpha: Diaspididae) BENJAMIN B. NORMARK1,2,7, AKIKO OKUSU1, GEOFFREY E. MORSE3, DANIEL A. PETERSON1,2,4, TAKAO ITIOKA5 & SCOTT A. SCHNEIDER1, 2, 6 1Department of Biology, University of Massachusetts, Amherst, Massachusetts, U.S.A. 2Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, U.S.A. 3Department of Biology, University of San Diego, San Diego, California, U.S.A. E-mail: [email protected] 4Present address: Finch Therapeutics, Somerville, Massachusetts, U.S.A. 5Graduate School of Human and Environmental Studies, Kyoto University, Japan. E-mail: [email protected] 6Present address: USDA, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, Systematic Ento- mology Laboratory, Beltsville, Maryland, U.S.A. E-mail: [email protected] 7Corresponding author. E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by G. Watson: 5 Feb. 2019; published: 17 Jun. 2019 Licensed under a Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0 BENJAMIN B. NORMARK, AKIKO OKUSU, GEOFFREY E. MORSE, DANIEL A. PETERSON, TAKAO ITIOKA & SCOTT A. SCHNEIDER Phylogeny and classification of armored scale insects (Hemiptera: Coccomorpha: Diaspididae) (Zootaxa 4616) 98 pp.; 30 cm. 17 Jun. 2019 ISBN 978-1-77670-683-9 (paperback) ISBN 978-1-77670-684-6 (Online edition) FIRST PUBLISHED IN 2019 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] https://www.mapress.com/j/zt © 2019 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 4616 (1) © 2019 Magnolia Press NORMARK ET AL. Table of contents Abstract . 3 Introduction . 5 Materials and methods . 6 Results . 35 Discussion . 44 Keys . 46 Key to groups of scale insects that secrete a waxy scale cover . 46 Key to subfamilies of Diaspididae . 46 Key to tribes of Diaspidinae . 47 Key to subtribes of Diaspidini . 47 Key to tribes of Aspidiotinae . 48 NOTES ON HIGHER TAXA . 48 Family DIASPIDIDAE Targioni Tozzetti . 48 Subfamily ANCEPASPIDINAE Borchsenius, new rank . 49 Subfamily FURCASPIDINAE Balachowsky, new rank . 50 Subfamily DIASPIDINAE Targioni Tozzetti . 51 Tribe LEPIDOSAPHIDINI Shimer . 54 Tribe DIASPIDINI Targioni Tozzetti . 64 Subtribe DIASPIDINA Targioni Tozzetti . 66 Subtribe FIORINIINA Leonardi . 66 Subtribe CHIONASPIDINA Brues & Melander . 71 Subfamily ASPIDIOTINAE Westwood . 76 Tribe GYMNASPIDINI Balachowsky, new rank . 76 Tribe LEUCASPIDINI Atkinson . 77 Tribe AONIDIINI Balachowsky, new rank . 79 Tribe SMILACICOLINI Takagi . 82 Tribe ODONASPIDINI Ferris . 82 Tribe PARLATORIINI Leonardi. 83 Tribe ASPIDIOTINI Westwood . 85 DESCRIPTIONS OF NEW GENERA . 86 Hendersonaspis Normark, gen. n. 86 Brimblecombia Normark, gen. n. 90 Acknowledgements . 93 References . 93 Supplementary material . See DOI link Abstract Armored scale insects (Hemiptera: Coccomorpha: Diaspididae) are major economic pests and are among the world's most invasive species. Here we describe a system of specimen and identification management that establishes a basis for well- vouchered molecular identification. We also present an expanded Bayesian phylogenetic analysis based on concatenated fragments of 4 genetic loci: the large ribosomal subunit (28S), elongation factor-1 alpha (EF-1α), cytochrome oxidase I and II (COI‒II), and the small ribosomal subunit (16S) of the primary endosymbiont, Uzinura diaspidicola (Bacteroidetes: Flavobacteriales). Our sample includes 1,389 individuals, representing 11 outgroup species and at least 311 described and 61 undescribed diaspidid species. The results broadly support Takagi's 2002 classification but indicate that some revisions are needed. We propose a revised classification recognizing 4 subfamilies: Ancepaspidinae Borchsenius, new rank, Fur- caspidinae Balachowsky, new rank, Diaspidinae Targioni Tozzetti, and Aspidiotinae Westwood. Within Aspidiotinae, in addition to the existing tribes Aspidiotini Westwood, Parlatoriini Leonardi, Odonaspidini Ferris, Leucaspidini Atkinson, and Smilacicolini Takagi, we recognize as tribes Gymnaspidini Balachowsky, new rank, and Aonidiini Balachowsky, new rank. Within Diaspidinae we recognize the 2 tribes Lepidosaphidini Shimer and Diaspidini Targioni Tozzetti, and within Diaspidini we recognize three subtribes: Diaspidina Targioni Tozzetti, Fioriniina Leonardi, and Chionaspidina Brues & Melander. We regard Kuwanaspidina Borchsenius as a junior synonym of Fioriniina, Thysanaspidini Takagi as a junior synonym of Leucaspidini, and Protodiaspidina Takagi and Ulucoccinae Takagi as junior synonyms of Chionaspi- dina. To clarify the composition of the higher taxa we describe 2 new genera for Australian species heretofore misplaced in the genus Ancepaspis Ferris: Brimblecombia Normark (Aonidiini) and Hendersonaspis Normark (Leucaspidini). We also propose many additional minor modifications to the taxonomy of Diaspididae, including the following new combi- nations, revived combinations, and replacement names: Aonidia edgerleyi (Mamet), new combination (from Bigymnas- pis Balachowsky); Aonidomytilus espinosai Porter, revived combination (from Porterinaspis González); Aspidiotus PHYLOGENY AND CLASSIFICATION OF DIASPIDIDAE Zootaxa 4616 (1) © 2019 Magnolia Press · 3 badius (Brain), new combination (this and the next 5 Aspidiotus species all from Aonidia Targioni Tozzetti); Aspidiotus biafrae (Lindinger), new combination; Aspidiotus chaetachmeae (Brain), new combination; Aspidiotus laticornis (Bala- chowsky), new combination; Aspidiotus rhusae (Brain), new combination; Aspidiotus sclerosus (Munting), new com- bination; Brimblecombia asperata (Brimblecombe), new combination (this and the next 5 Brimblecombia species all from Ancepaspis); Brimblecombia longicauda (Brimblecombe), new combination; Brimblecombia magnicauda (Brim- blecombe), new combination; Brimblecombia reticulata (Brimblecombe), new combination; Brimblecombia rotundi- cauda (Brimblecombe), new combination; Brimblecombia striata (Brimblecombe), new combination; Cooleyaspis pseudomorpha (Leonardi), new combination (from Dinaspis Leonardi); Cupidaspis wilkeyi (Howell & Tippins), new combination (from Paracupidaspis Howell & Tippins); Cupressaspis isfarensis Borchsenius, revived combination (this species, the next 2 species in Cupressaspis Borchsenius, revived genus, and the next 9 species in Diaspidiotus Cockerell all from Aonidia); Cupressaspis mediterranea (Lindinger), revived combination; Cupressaspis relicta (Balachowsky), new combination; Diaspidiotus atlanticus (Ferris), new combination; Diaspidiotus marginalis (Brain), new combina- tion; Diaspidiotus maroccanus (Balachowsky), new combination; Diaspidiotus mesembryanthemae (Brain), new com- bination; Diaspidiotus opertus (De Lotto), new combination; Diaspidiotus shastae (Coleman), new combination; Diaspidiotus simplex (Leonardi), new combination; Diaspidiotus visci (Hall), new combination; Diaspidiotus.
Recommended publications
  • Cycad Aulacaspis Scale
    Invasive Insects: Risks and Pathways Project CYCAD AULACASPIS SCALE UPDATED: APRIL 2020 Invasive insects are a huge biosecurity challenge. We profile some of the most harmful insect invaders overseas to show why we must keep them out of Australia. Species Cycad aulacaspis scale / Aulacaspis yasumatsui. Also known as Asian cycad scale. Main impacts Decimates wild cycad populations, kills cultivated cycads. Native range Thailand. Invasive range China, Taiwan, Singapore, Indonesia, Guam, United States, Caribbean Islands, Mexico, France, Ivory Coast1,2. Detected in New Zealand in 2004, but eradicated.2 Main pathways of global spread As a contaminant of traded nursery material (cycads and cycad foliage).3 WHAT TO LOOK OUT FOR The adult female cycad aulacaspis scale has a white cover (scale), 1.2–1.6 mm long, ENVIRONMENTAL variable in shape and sometimes translucent enough to see the orange insect with its IMPACTS OVERSEAS orange eggs beneath. The scale of the male is white and elongate, 0.5–0.6 mm long. Photo: Jeffrey W. Lotz, Florida Department of Agriculture and Consumer Services, The cycad aulacaspis scale has decimated Bugwood.org | CC BY 3.0 cycads on Guam since it appeared there in 2003. The affected species, Cycas micronesica, was once the most common cause cycad extinctions around the world, Taiwan, 100,000 cycads were destroyed tree on Guam, but was listed by the IUCN 7 including in India10 and Indonesia11. The by an outbreak of the scale . It is difficult as endangered in 2006 following attacks continuous removal of plant sap by the to control in cultivation because of high by three insect pests, of which this scale scale depletes cycads of carbohydrates4,9.
    [Show full text]
  • Zootaxa,Phylogeny and Higher Classification of the Scale Insects
    Zootaxa 1668: 413–425 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Phylogeny and higher classification of the scale insects (Hemiptera: Sternorrhyncha: Coccoidea)* P.J. GULLAN1 AND L.G. COOK2 1Department of Entomology, University of California, One Shields Avenue, Davis, CA 95616, U.S.A. E-mail: [email protected] 2School of Integrative Biology, The University of Queensland, Brisbane, Queensland 4072, Australia. Email: [email protected] *In: Zhang, Z.-Q. & Shear, W.A. (Eds) (2007) Linnaeus Tercentenary: Progress in Invertebrate Taxonomy. Zootaxa, 1668, 1–766. Table of contents Abstract . .413 Introduction . .413 A review of archaeococcoid classification and relationships . 416 A review of neococcoid classification and relationships . .420 Future directions . .421 Acknowledgements . .422 References . .422 Abstract The superfamily Coccoidea contains nearly 8000 species of plant-feeding hemipterans comprising up to 32 families divided traditionally into two informal groups, the archaeococcoids and the neococcoids. The neococcoids form a mono- phyletic group supported by both morphological and genetic data. In contrast, the monophyly of the archaeococcoids is uncertain and the higher level ranks within it have been controversial, particularly since the late Professor Jan Koteja introduced his multi-family classification for scale insects in 1974. Recent phylogenetic studies using molecular and morphological data support the recognition of up to 15 extant families of archaeococcoids, including 11 families for the former Margarodidae sensu lato, vindicating Koteja’s views. Archaeococcoids are represented better in the fossil record than neococcoids, and have an adequate record through the Tertiary and Cretaceous but almost no putative coccoid fos- sils are known from earlier.
    [Show full text]
  • Descriptive Anatomy and Evolutionary Patterns of Anatomical Diversification in Adenia (Passifloraceae) David J
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 27 | Issue 1 Article 3 2009 Descriptive Anatomy and Evolutionary Patterns of Anatomical Diversification in Adenia (Passifloraceae) David J. Hearn University of Arizona, Tucson Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Hearn, David J. (2009) "Descriptive Anatomy and Evolutionary Patterns of Anatomical Diversification in Adenia (Passifloraceae)," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 27: Iss. 1, Article 3. Available at: http://scholarship.claremont.edu/aliso/vol27/iss1/3 Aliso, 27, pp. 13–38 ’ 2009, Rancho Santa Ana Botanic Garden DESCRIPTIVE ANATOMY AND EVOLUTIONARY PATTERNS OF ANATOMICAL DIVERSIFICATION IN ADENIA (PASSIFLORACEAE) DAVID J. HEARN Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA ([email protected]) ABSTRACT To understand evolutionary patterns and processes that account for anatomical diversity in relation to ecology and life form diversity, anatomy of storage roots and stems of the genus Adenia (Passifloraceae) were analyzed using an explicit phylogenetic context. Over 65,000 measurements are reported for 47 quantitative and qualitative traits from 58 species in the genus. Vestiges of lianous ancestry were apparent throughout the group, as treelets and lianous taxa alike share relatively short, often wide, vessel elements with simple, transverse perforation plates, and alternate lateral wall pitting; fibriform vessel elements, tracheids associated with vessels, and libriform fibers as additional tracheary elements; and well-developed axial parenchyma. Multiple cambial variants were observed, including anomalous parenchyma proliferation, anomalous vascular strands, successive cambia, and a novel type of intraxylary phloem.
    [Show full text]
  • Data Sheets on Quarantine Pests
    Prepared by CABI and EPPO for the EU under Contract 90/399003 Data Sheets on Quarantine Pests Aonidiella citrina IDENTITY Name: Aonidiella citrina (Coquillett) Synonyms: Aspidiotus citrinus Coquillett Chrysomphalus aurantii citrinus (Coquillett) Taxonomic position: Insecta: Hemiptera: Homoptera: Diaspididae Common names: Yellow scale (English) Cochenille jaune (French) Escama amarilla de los cítricos (Spanish) Notes on taxonomy and nomenclature: The original description by Coquillett is inadequate and simply refers to 'the yellow scale' on orange (Nel, 1933). A. citrina is morphologically very similar to the Californian red scale, Aonidiella aurantii (Maskell), and was considered to be a variety until Nel (1933) raised it to specific level based on a comparative study of their ecology, biology and morphology. Bayer computer code: AONDCI EU Annex designation: II/A1 HOSTS A. citrina is polyphagous attacking plant species belonging to more than 50 genera in 32 families. The main hosts of economic importance are Citrus spp., especially oranges (C. sinensis), but the insect is also recorded incidentally on a wide range of ornamentals and some fruit crops including Acacia, bananas (Musa paradisiaca), Camellia including tea (C. sinensis), Clematis, Cucurbitaceae, Eucalyptus, Euonymus, guavas (Psidium guajava), Hedera helix, Jasminum, Ficus, Ligustrum, Magnolia, mangoes (Mangifera indica), Myrica, olives (Olea europea), peaches (Prunus persica), poplars (Populus), Rosa, Schefflera actinophylla, Strelitzia reginae, Viburnum and Yucca. The main potential hosts in the EPPO region are Citrus spp. growing in the southern part of the region, around the Mediterranean. GEOGRAPHICAL DISTRIBUTION A. citrina originated in Asia and has spread to various tropical and subtropical regions throughout the world. The precise distribution of A.
    [Show full text]
  • Survival of the Cycad Aulacaspis Scale in Northern Florida During Sub-Freezing Weather
    furcata) (FDACS/DPI, 2002). These thrips are foliage feeders North American Plant Protection Organization’s Phytosanitary causing galling and leaf curl, which is cosmetic and has not Alert System been associated with plant decline. This feeding damage is http://www.pestalert.org only to new foliage and appears to be seasonal. This pest is be- coming established in urban areas causing concern to home- Literature Cited owners and commercial landscapers due to leaf damage. Control is difficult due to protection by leaf galls. Howev- Edwards, G. B. 2002. Pest Alert, Holopothrips sp., an Introduced Thrips Pest er, systemic insecticides are providing some control. No bio- of Trumpet Tree. March 2002. <http://doacs.state.fl.us/~pi/enpp/ ento/images/paholo-pothrips3.02.gif>. controls have been found. FDACS/DPI. 2002. TRI-OLOGY. Mar.-Apr. 2002. Fla. Dept. Agr. Cons. Serv./ Div. Plant Ind. Newsletter, vol. 41, no. 2. <http://doacs.state.fl.us/~pi/ Resources for New Insect Pest Information enpp/02-mar-apr.html>. Howard, F. W., A. Hamon, G. S. Hodges, C. M. Mannion, and J. Wofford. 2002. Lobate Lac Scale, Paratachardina lobata lobata (Chamberlin) (Hemip- The following are some web sites and list serves for addi- tera: Sternorrhyncha: Coccoidea: Kerriidae). Univ. of Fla. Cir., EENY- tional information on new insects pests in Florida. 276. <http://edis.ifas.ufl.edu/IN471>. Hoy, M. A., A. Hamon, and R. Nguyen. 2003. Pink Hibiscus Mealybug, Ma- University of Florida Pest Alert conellicoccus hirsutus (Green) (Insecta: Homoptera: Pseudococcidae). http://extlab7.entnem.ufl.edu/PestAlert/ Univ. of Fla. Cir., EENY-29. <http://creatures.ifas.ufl.edu/orn/mealybug/ mealybug.htm>.
    [Show full text]
  • Diaspididae (Hemiptera: Coccoidea) En Olivo, <I>Olea Europaea</I>
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 2014 Diaspididae (Hemiptera: Coccoidea) en olivo, Olea europaea Linnaeus (Oleaceae), en Brasil Vera Regina dos Santos Wolff Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/insectamundi dos Santos Wolff, Vera Regina, "Diaspididae (Hemiptera: Coccoidea) en olivo, Olea europaea Linnaeus (Oleaceae), en Brasil" (2014). Insecta Mundi. 900. http://digitalcommons.unl.edu/insectamundi/900 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI A Journal of World Insect Systematics 0385 Diaspididae (Hemiptera: Coccoidea) en olivo, Olea europaea Linnaeus (Oleaceae), en Brasil Vera Regina dos Santos Wolff Fundação Estadual de Pesquisa Agropecuária (FEPAGRO) Rua Gonçalves Dias 570. Porto Alegre Rio Grande do Sul, Brasil Date of Issue: September 26, 2014 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL Vera Regina dos Santos Wolff Diaspididae (Hemiptera: Coccoidea) en olivo, Olea europaea Linnaeus (Oleaceae), en Brasil Insecta Mundi 0385: 1–6 ZooBank Registered: urn:lsid:zoobank.org:pub:8ED57F9D-E002-4269-88DA-A8DBDB41F57E Published in 2014 by Center for Systematic Entomology, Inc. P. O. Box 141874 Gainesville, FL 32614-1874 USA http://centerforsystematicentomology.org/ Insecta Mundi is a journal primarily devoted to insect systematics, but articles can be published on any non-marine arthropod. Topics considered for publication include systematics, taxonomy, nomenclature, checklists, faunal works, and natural history.
    [Show full text]
  • Aspidiotus Nerii Bouchè (Insecta: Hemipthera: Diaspididae)
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 2003 Molecular systematics of a sexual and parthenogenetic species complex : Aspidiotus nerii Bouchè (Insecta: Hemipthera: Diaspididae). Lisa M. Provencher University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Provencher, Lisa M., "Molecular systematics of a sexual and parthenogenetic species complex : Aspidiotus nerii Bouchè (Insecta: Hemipthera: Diaspididae)." (2003). Masters Theses 1911 - February 2014. 3090. Retrieved from https://scholarworks.umass.edu/theses/3090 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. MOLECULAR SYSTEMATICS OF A SEXUAL AND PARTHENOGENETIC SPECIES COMPLEX: Aspidiotus nerii BOUCHE (INSECTA: HEMIPTERA: DIASPIDIDAE). A Thesis Presented by LISA M. PROVENCHER Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 2003 Entomology MOLECULAR SYSTEMATICS OF A SEXUAL AND PARTHENOGENETIC SPECIES COMPLEX: Aspidiotus nerii BOUCHE (INSECTA: HEMIPTERA: DIASPIDIDAE). A Thesis Presented by Lisa M. Provencher Roy G. V^n Driesche, Department Head Department of Entomology What is the opposite of A. nerii? iuvf y :j3MSuy ACKNOWLEDGEMENTS I thank Edward and Mari, for their patience and understanding while I worked on this master’s thesis. And a thank you also goes to Michael Sacco for the A. nerii jokes. I would like to thank my advisor Benjamin Normark, and a special thank you to committee member Jason Cryan for all his generous guidance, assistance and time.
    [Show full text]
  • Biological Responses and Control of California Red Scale Aonidiella Aurantii (Maskell) (Hemiptera: Diaspididae)
    Biological responses and control of California red scale Aonidiella aurantii (Maskell) (Hemiptera: Diaspididae) by Khalid Omairy Mohammed Submitted to Murdoch University in fulfilment of the requirements for the degree of Doctor of Philosophy College of Science, Health, Engineering and Education Murdoch University Perth, Western Australia March 2020 Declaration The work described in this thesis was undertaken while I was an enrolled student for the degree of Doctor of Philosophy at Murdoch University, Western Australia. I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution. To the best of my knowledge, all work performed by others, published or unpublished, has been duly acknowledged. Khalid O. Mohammed Date: March 10, 2020 I Acknowledgements بِ ْس ِمِِاللَّ ِـه َِّالر ْح َم ٰـ ِن َِّالر ِح ِيمِ ُ َويَ ْسأَلُ َونَك َِع ِن ُِّالروحِِِۖقُ ِل ُِّالر ُوح ِِم ْنِأَ ْم ِر َِر ِب َيِو َماِأ ِوتيتُ ْم ِِم َن ِْال ِع ْل ِمِإِ ََّّل َِق ِل ايًلِ﴿٨٥﴾ The research for this thesis was undertaken in the School of Veterinary and Life Science, Murdoch University. I would like to express my heartfelt gratitude to my supervisors Professor Yonglin Ren and Dr Manjree Agarwal “Postharvest Biosecurity and Food Safety Laboratory Murdoch” for their support with enthusiasm, constructive editing, and patience throughout the years of this wonderful project. I deeply appreciate their encouragement, assistance and for being so willing to take me on as a student. I would like to express my sincere gratitude to all those who helped me in completing this thesis.
    [Show full text]
  • Ants, Pests and Natural Enemies in Mediterranean Citrus
    ANTS, PESTS AND NATURAL ENEMIES IN MEDITERRANEAN CITRUS Ecological interactions and practical implications for biological control DOCTORAL THESIS Presented by: Altea Calabuig Gomar Directed by: Ferran Garcia Marí and Apostolos Pekas València, May 2015 UNIVERSITAT POLITÈCNICA DE VALÈNCIA Escola Tècnica Superior d’Enginyeria Agronòmica i del Medi Natural UNIVERSITAT POLITÈCNICA DE VALÈNCIA Escola Tècnica Superior d’Enginyeria Agronòmica i del Medi Natural Departament d’Ecosistemes Agroforestals Ants, pests and natural enemies in Mediterranean citrus: ecological interactions and practical implications for biological control DOCTORAL THESIS Presented by: Altea Calabuig Gomar Directed by: Ferran Garcia Marí Apostolos Pekas València, 2015 A Dídac “Mucha gente pequeña en lugares pequeños, haciendo cosas pequeñas pueden cambiar el mundo” Eduardo Galeano Aknowledgments Després de 4 anys de feina em vénen al cap un munt de persones sense les quals, directament o indirectament, no hagués pogut acabar aquesta tesi i a les quals m’agradaria mostrar el meu agraïment. En primer lloc, vull agrair a Ferran Garcia Marí que em donara l’oportunitat de realitzar aquesta tesi amb ell. He gaudit del seu gran coneixement i de la seua ampla experiència en el camp de l’entomologia. Ha estat tot un privilegi. Gràcies per tota l’atenció i ensenyament que m’has donat. També li dec un agraïment especial a Apostolos Pekas per haver codirigit aquesta tesi i per haver-me permès d’aprofundir en la investigació que ell va encetar. Per haver confiat en mi des d’un principi sense gairebé conèixer-me. Tolis ha estat tot un exemple de rigor i professionalitat. Les discussions científiques i no científiques amb ell sempre han estat ben enriquidores.
    [Show full text]
  • LOS INSECTOS ESCAMA (HEMIPTERA: STERNORRHYNCHA: COCCOIDEA) PRESENTES EN EL ORQUIDEARIO DE SOROA, PINAR DEL RÍO, CUBA Fitosanidad, Vol
    Fitosanidad ISSN: 1562-3009 [email protected] Instituto de Investigaciones de Sanidad Vegetal Cuba Mestre, Nereida; Ramos, Tomás; Hamon, Avas B.; Evans, Gregory LOS INSECTOS ESCAMA (HEMIPTERA: STERNORRHYNCHA: COCCOIDEA) PRESENTES EN EL ORQUIDEARIO DE SOROA, PINAR DEL RÍO, CUBA Fitosanidad, vol. 8, núm. 3, septiembre, 2004, pp. 25-29 Instituto de Investigaciones de Sanidad Vegetal La Habana, Cuba Disponible en: http://www.redalyc.org/articulo.oa?id=209117853005 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto FITOSANIDAD vol. 8, no. 3, septiembre 2004 LOS INSECTOS ESCAMA (HEMIPTERA: STERNORRHYNCHA: COCCOIDEA) PRESENTES EN EL ORQUIDEARIO DE SOROA, PINAR DEL RÍO, CUBA Ecología Nereida Mestre,1 Tomás Ramos,2 Avas B. Hamon3 y Gregory Evans3 1 Instituto de Ecología y Sistemática. Carretera de Varona, Km 3½, Capdevila, Boyeros. Apdo. Postal 8029, Ciudad de La Habana, CP. 10800, teléf.: (537)57-8088, c.e.: [email protected] 2Jardín Botánico Orquideario de Soroa, Universidad de Pinar del Río. Apartado postal no. 5, Candelaria, PInar del Río, CP 22700 3 Department of Agriculture and Consumer Services. Charles H Bronson, Commissioner. Division of Plant Industry. (FSCA) Gainesville, Florida, E.U. RESUMEN ABSTRACT Los insectos escama se encuentran entre las principales plagas de las Scale insects are considered to be among the principal pests of orchids; orquídeas cultivadas; sin embargo, en Cuba estos invertebrados han sido however in Cuba, little is known about these insects on orchids.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • Peña & Bennett: Annona Arthropods 329 ARTHROPODS ASSOCIATED
    Peña & Bennett: Annona Arthropods 329 ARTHROPODS ASSOCIATED WITH ANNONA SPP. IN THE NEOTROPICS J. E. PEÑA1 AND F. D. BENNETT2 1University of Florida, Tropical Research and Education Center, 18905 S.W. 280th Street, Homestead, FL 33031 2University of Florida, Department of Entomology and Nematology, 970 Hull Road, Gainesville, FL 32611 ABSTRACT Two hundred and ninety-six species of arthropods are associated with Annona spp. The genus Bephratelloides (Hymenoptera: Eurytomidae) and the species Cerconota anonella (Sepp) (Lepidoptera: Oecophoridae) are the most serious pests of Annona spp. Host plant and distribution are given for each pest species. Key Words: Annona, arthropods, Insecta. RESUMEN Doscientas noventa y seis especies de arthrópodos están asociadas con Annona spp. en el Neotrópico. De las especies mencionadas, el género Bephratelloides (Hyme- noptera: Eurytomidae) y la especie Cerconota anonella (Sepp) (Lepidoptera: Oecopho- ridae) sobresalen como las plagas mas importantes de Annona spp. Se mencionan las plantas hospederas y la distribución de cada especie. The genus Annona is confined almost entirely to tropical and subtropical America and the Caribbean region (Safford 1914). Edible species include Annona muricata L. (soursop), A. squamosa L. (sugar apple), A. cherimola Mill. (cherimoya), and A. retic- ulata L. (custard apple). Each geographical region has its own distinctive pest fauna, composed of indigenous and introduced species (Bennett & Alam 1985, Brathwaite et al. 1986, Brunner et al. 1975, D’Araujo et al. 1968, Medina-Gaud et al. 1989, Peña et al. 1984, Posada 1989, Venturi 1966). These reports place emphasis on the broader as- pects of pest species. Some recent regional reviews of the status of important pests and their control have been published in Puerto Rico, U.S.A., Colombia, Venezuela, the Caribbean Region and Chile (Medina-Gaud et al.
    [Show full text]