LIGHTWAVE 3D RELEASE 4 Hl
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PC Hardware Contents
PC Hardware Contents 1 Computer hardware 1 1.1 Von Neumann architecture ...................................... 1 1.2 Sales .................................................. 1 1.3 Different systems ........................................... 2 1.3.1 Personal computer ...................................... 2 1.3.2 Mainframe computer ..................................... 3 1.3.3 Departmental computing ................................... 4 1.3.4 Supercomputer ........................................ 4 1.4 See also ................................................ 4 1.5 References ............................................... 4 1.6 External links ............................................. 4 2 Central processing unit 5 2.1 History ................................................. 5 2.1.1 Transistor and integrated circuit CPUs ............................ 6 2.1.2 Microprocessors ....................................... 7 2.2 Operation ............................................... 8 2.2.1 Fetch ............................................. 8 2.2.2 Decode ............................................ 8 2.2.3 Execute ............................................ 9 2.3 Design and implementation ...................................... 9 2.3.1 Control unit .......................................... 9 2.3.2 Arithmetic logic unit ..................................... 9 2.3.3 Integer range ......................................... 10 2.3.4 Clock rate ........................................... 10 2.3.5 Parallelism ......................................... -
LVDS(Low Voltage Differential Signaling)
Low Voltage Differential Signaling (LVDS) THE MAGAZINE FOR COMPUTER APPLICATIONS Circuit Cellar Online offers articles illustrating creative solutions and unique applications through complete projects, practical tutorials, and useful design techniques. RESOURCE PAGES A Guide to online information about: LVDS (Low Voltage Differential Signaling) by Bob Paddock At my day job, I had a project where I needed to scan almost 100 switches that covered a span of almost six feet. Complicating the matter, I did not have control over the enclosure this project would end up in. Most likely it would be a wooden box with poor ventilation. I needed a high speed technology so I would not miss multiple simultaneous switch closures when the switches where scanned, but I also needed a low-EMI technology to meet FCC part 15 guidelines (pdf), and as always the cost had to be kept low. Traditional signaling technologies like TTL/CMOS, RS-442/423, RS-485, and PECL could not move the data fast enough while maintaining low power, noise, and cost. I found Low Voltage Differential Signaling (LVDS) is the only signaling technology to meet all four criteria. The key to LVDS technology is to use a differential data-transmission scheme. Instead of designating a precise voltage level for a logic one or zero, the LVDS standard specifies a voltage differential. This approach ensures outstanding common-mode-noise immunity. Any noise introduced into the medium is seen by the receivers as common-mode modulations and is rejected. The receivers respond only to differential voltages. It is well recognized that the benefits of balanced data transmission begin http://www.chipcenter.com/circuitcellar/february00/c0200r28.htm?PRINT=true (1 of 10) [8/24/2001 7:55:23 AM] Low Voltage Differential Signaling (LVDS) to outweigh the costs over single-ended techniques when signal transition times approach 10 ns. -
Introduction to Parallel Processing : Algorithms and Architectures
Introduction to Parallel Processing Algorithms and Architectures PLENUM SERIES IN COMPUTER SCIENCE Series Editor: Rami G. Melhem University of Pittsburgh Pittsburgh, Pennsylvania FUNDAMENTALS OF X PROGRAMMING Graphical User Interfaces and Beyond Theo Pavlidis INTRODUCTION TO PARALLEL PROCESSING Algorithms and Architectures Behrooz Parhami Introduction to Parallel Processing Algorithms and Architectures Behrooz Parhami University of California at Santa Barbara Santa Barbara, California KLUWER ACADEMIC PUBLISHERS NEW YORK, BOSTON , DORDRECHT, LONDON , MOSCOW eBook ISBN 0-306-46964-2 Print ISBN 0-306-45970-1 ©2002 Kluwer Academic Publishers New York, Boston, Dordrecht, London, Moscow All rights reserved No part of this eBook may be reproduced or transmitted in any form or by any means, electronic, mechanical, recording, or otherwise, without written consent from the Publisher Created in the United States of America Visit Kluwer Online at: http://www.kluweronline.com and Kluwer's eBookstore at: http://www.ebooks.kluweronline.com To the four parallel joys in my life, for their love and support. This page intentionally left blank. Preface THE CONTEXT OF PARALLEL PROCESSING The field of digital computer architecture has grown explosively in the past two decades. Through a steady stream of experimental research, tool-building efforts, and theoretical studies, the design of an instruction-set architecture, once considered an art, has been transformed into one of the most quantitative branches of computer technology. At the same time, better understanding of various forms of concurrency, from standard pipelining to massive parallelism, and invention of architectural structures to support a reasonably efficient and user-friendly programming model for such systems, has allowed hardware performance to continue its exponential growth. -
A Bibliography of Publications in Byte Magazine: 1990–1994
A Bibliography of Publications in Byte Magazine: 1990{1994 Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 05 September 2013 Version 2.12 Title word cross-reference 100 [Ano94-129, Bry93b, HK94]. 100-Mbps [Bry93b]. 100-MHz [Ano94-129, HK94]. 1000 [Ano91u]. 10A [Ano92-73]. 110 [Nad90a]. 1120NX [Ano91e]. 1200C /Views [Api94b]. [Rei93b]. 13-pound [Nad90d]. 144 [Tho93b]. 14th [Ano92-185]. 15-to 040/120 [Ano93-60]. 040/200 [Ano93-60]. [Ano94-89]. 15th [Ano90m]. 16 [Tho90e]. 16-and [Gre94e]. 16-bit 1 [Ano90w, Ano90-51, Ano90a, Ano90-110, [Ano93-48, Ano94-88, Ano94-119, Gla90b, Ano90-113, Ano91-29, Ano93-61, Ano93-130, Sha94b, Tho94b, Wsz90]. 16-Million-Color Ano94a, Del93a, Del93b, Die90b, Far90, [Tho90e]. 16.7 [Ano91-131]. Nan90b, Pep91, Ref94]. 1-2-3 16.7-Million-Color [Ano91-131]. 165c [AR91, Gas93, Ano90-51, Ano90-110, [Tho93a]. 17-ppm [Ano93-92]. 180 Ano90-113, Ano91-29, Ano93-61, Ano94a, [Ano93-93]. 180-MBps [Ano93-93]. 1954 Del93a, Del93b, Die90b, Far90, Pep91]. [Hal94d]. 1954-1994 [Hal94d]. 1990s 1-2-3/G [Ano90-51, Die90b]. 1-megabyte [Cra91k, Lip90b, Osm90, Ras91b, Ras91o, [Tho90d, Ano90a]. 1/2 [Ano92-45]. Tho90f, VC90s, Woo91b]. 1994 [Hal94d]. 1/2-inch [Ano92-45]. 10 [Ano94-165, Nan94b]. 10-Mbps 2 [Ano91-117, Ano91-76, Ano91-131, [Ano94-165, Nan94b]. -
Solution Microcap 5 Reviewed Nulling Coil Interaction Analogue Filters Alternative Balanced Amplifier Analysing Fm Noise
EW+WW exclusivea0% off virtual instruments ELECTRONICS Denmark DKr. 65.00 Germany DM 15.00 Greece Dra.950 Holland Dfl. 14 Italy L. 8000 IR £3.30 Singapore 5S12.60 WORLD Spain Pts. 750 USA $4.94 A REED BUSINESS PUBLICATION +WIRELESS WORLD SOR DISTRIBUTION September 1995£2.10 New audio power solution MicroCap 5 reviewed Nulling coil interaction Analogue filters Alternative balanced amplifier Analysing fm noise 20% discountumaudio analyser UK launch MICROMASTER LV PROGRAMMER by marl manufActurers111(10611g AMD MICROCHIP ATMEL from only £495 THE ONLY PROGRAMMERS WITH TRUE 3 VOLT SUPPORT The Only True 3V and 5V FEATURES Widest ever device support Universal Programmers including EPROMs, EEPROMs, Flash, Serial PROMs, BPROMs, ce Technology's universal programming solutions are designed with the future in mind. In PALs, MACH, MAX, MAPL, PEELs, addition totheir comprehensive, ever widening device support, they arethe only EPLDs, Microcontrollers etc. programmers ready to correctly programme and verify 3 volt devices NOW. Operating from battery or mains power, they are flexible enough for any programming needs. Correct programming and verification of 3 volt devices. The Speedmaster LV and Micromaster LV have been rigorously tested and approved by some of the most well known names in semiconductor manufacturing today, something that very few Approved by major manufacturers. programmers can claim, especially at this price level! High speed: programmes and Not only that, we give free software upgrades so you can dial up our bulletin board any time for verifies National 27C512 in under the very latest in device support. II seconds. Speedmaster LV and Micromaster LV - they're everything you'll need for programming, chip Full range of adaptors availab e for testing and ROM emulation, now and in the future. -
Coherent Data Collectors: a Hardware Perspective
COHERENT DATA COLLECTORS: A HARDWARE PERSPECTIVE Coherent Data Collectors: A Hardware Perspective Russell Rzemien For more than 15 years, the Applied Physics Laboratory has been designing and operating coherent radar data-collection instrumentation. In this article, the engineer- ing challenges and design approaches used to meet analysis requirements are described, examples of collectors are provided, and the nature of future development efforts is outlined. (Keywords: Coherent signal processing, Radar analysis, Radar instrumentation, Radar systems, Test and evaluation.) INTRODUCTION Radar1–3 is an acronym derived from the words radio processors that only use amplitude information may fail detection and ranging. The term reveals much about to detect these targets in such environments. the operation and use of early radars. Those first devices Far better performance is achieved by coherent ra- used radio waves to detect the presence of objects and dars, i.e., radars that use the phase or frequency infor- to measure the ranges of those objects. Modern radars mation of the return echoes and not just the amplitude frequently provide additional information, such as of the return signal. An echo’s phase (or frequency) angular position and inbound velocity of an approach- remains constant for stationary objects like clutter, ing target. However, the primary function of radar is whereas the phase varies for moving objects. It is this target detection; all else follows from this. The detec- changing phase, along with the amplitude of the echo, tion problem remains a challenge, particularly with the that the signal processors in coherent radars use to development of stealth design techniques that signif- discriminate targets from background clutter. -
Portovi Personalnih Računara 50
Elektronski fakultet u Nišu Katedra za elektroniku Portovi i magistrale Student: Mentor: Vladimir Stefanović 11422 prof. dr Mile Stočev Milan Jovanović10236 Sadržaj Uvod 3 1.Magistrale 4 2.Portovi dati alfabetnim redom 36 3.Portovi personalnih računara 50 4.Poređenja i opisi PC interfejsa i portova 59 5.Hardver – mehaničke komponente 126 2 Uvod Sam rad se sastoji iz 5 dela u kojima su detaljno opisani PC portovi, magistrale, kao i razlike i sličnosti koje među njima postoje. U prvom poglavlju data je opšta podela magistrala, ukratko je opisan njihov način funkcionisanja, dati su odgovarajući standardi, generacije, a ukratko su opisane i suerbrze magistrale. U drugom poglavlju dat je alfabetni spisak portova, od kojih je većina obuhvaćena ovim radom. Treće poglavlje odnosi se na portove personalnih računara, kako Pentium tako i Apple i Mackintosh. Četvrti deo odnosi se na opisane portove i interfejse i njihovo međusobno poređenje. U ovom poglavlju date su i detaljne tabele u kojima su navedene i opisane neke od najvažnijih funkcija. I konačno, peto poglavlje se odnosi na hardver – USB portove, memorijske kartice SCSI portove. U Nišu, 03.10.2008. godine 3 1. Magistrale Prilagodljivost personalnog računara - njegova sposobnost da se proširi pomoću više vrsta interfejsa dozvoljavajući priključivanje mnogo različitih klasa dodatnih sastavnih delova i periferijskih uredjaja - bila je jedan od ključnnih razloga njegovog uspeha. U suštini, moderni PC računarski sistem malo se razlikuje od originalne IBM konstrukcije - to je skup komponenata, kako unutrašnjih tako i spoljašnjih, medjusobno povezanih pomoću elektronskih magistrala, preko kojih podaci putuju, dok se obavlja ciklus obrade koji ih pretvara od podataka ulaza u podatke izlaza. -
Processor Architectures for Synthetic Aperture Radar
Processor Architectures for Synthetic Aperture Radar by Peter G. Meisl B.A.Sc. Electrical Engineering, University of British Columbia, 1990 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE in THE FACULTY OF GRADUATE STUDIES DEPARTMENT OF ELECTRICAL ENGINEERING We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA March 1996 © Peter Meisl, 1996 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of f3 leciy* c»\ E>n^ t n^e/i The University of British Columbia Vancouver, Canada Date DE-6 (2/88) -l : Abstract This thesis examines processor architectures for Synthetic Aperture Radar (SAR). SAR is a remote sensing technique that requires large amounts of computation and memory to form images. Processor architectures are sought that exhibit high performance, are scalable, are flexible, and are cost effective to develop and build. Performance is taken to be the primary figure of merit. The three facets of systems design, namely algorithm, technology, and architecture, are each examined in the process of finding the best architecture implementations. The examination of the algorithms is begun by reviewing SAR processing theory with the intent of summarizing the background for typical SAR proc• essor performance requirements. -
T——I- a Apic 16 I/O UNII 18 U.S
USOO5832279A United States Patent (19) 11 Patent Number: 5,832,279 ROStoker et al. (45) Date of Patent: Nov. 3, 1998 54 ADVANCED PROGRAMMABLE INTERRUPT 5,669,003 9/1997 Carmean et al. .................. 395/750.04 SNESIC) WITH HIGH SPEED OTHER PUBLICATIONS * LSI Logic, Serial linkTM SL300 High-Speed Serializer/ (75) Inventors: Michael D. Rostoker, Boulder Creek, Deserializer Technical Manual, May 1995. Calif.; Sushant Verman, Mississauga, Canada; Richard Egan, San Carlos; Primary Examiner—Ayaz R. Sheikh Jerry Chow, Sunnyvale, both of Calif. ASSistant Examiner Jigar Pancholi Attorney, Agent, or Firm-Oppenheimer Wolfe & Donnelly 73 Assignee: LSI Logic Corporation, Milpitas, LLP Calif. 57 ABSTRACT 21 Appl. No.: 863,373 A high speed Advanced Programmable Interrupt Controller (APIC) system includes a plurality of local units for priori 22 Filed: May 27, 1997 tizing and passing interrupts, an Input/Output (I/O) unit for feeding interrupts to the local units, and a Serial link data Related U.S. Application Data transmission System for interconnecting the I/O unit and the local units. The I/O unit and each local unit have a parallel 63 Continuation of Ser. No. 485,528, Jun. 7, 1995, abandoned. I/O interface. The Serial link transmission System includes a (51) Int. Cl." ........................................................ G06F 9/46 parallel signal bus connected to the parallel I/O interface of 52 U.S. Cl. ............................................. 395/739, 395/741 the I/O unit; a plurality of first serial link transceivers having 58 Field of Search ...................................... 395/733-742 parallel I/O interfaces connected to the parallel Signal bus, and Serial I/O interfaces respectively; a plurality of Second 56) References Cited Serial link transceivers having parallel I/O interfaces con nected to the parallel I/O interfaces of the local units, and U.S. -
Application of the Scalable Coherent Interface to Data Acquisition at LHC
RD24 Status Report 1994 EUR0PEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN/DRDC/ 94-23 RD24 Status Report 9 May 1994 RD24 Status Report Application of the Scalable Coherent Interface to Data Acquisition at LHC A. Bogaerts1,R.Keyser,H.Müller1, G. Mugnai, P. Ponting, D. Samyn, P.Werner CERN, Geneva, Switzerland B. Skaali, E.H.Kristiansen2,H.Golparian,J.Wikne,B.Wu University of Oslo, Department of Physics,Norway S.Gjessing University of Oslo, Departement of Informatics,Norway S. Falciano, F. Cesaroni, G. Medici INFN Sezione di Roma and University of Rome, La Sapienza, Italy P. Creti, M. Panareo INFN Sezione di Lecce, Italy A. Sytin, A. Ivanov, A. Ekimov IHEP, Protvino, Russia E. Sanchis-Peris, V. Gonzalez-Millan, J.M. Lopez-Amengual, A.Sebastia, J. Ferrer-Prieto IFIC, Valencia, Spain F.J.Wickens, D.R.Boterill, R.W.Hatley, J.L.Leake, R.P.Middleton Rutherford Appleton Laboratory, Didcot, UK R.Hughes-Jones, S.Kolya, R.Marshall, D.Mercer University of Manchester, UK K. Løchsen, S.E. Johansen, H. Kohmann, E. Rongved Dolphin Interconnect Solutions A.S., Oslo,Norway A. Guglielmi, A. Pastore Digital Equipment Corporation (DEC), Joint Project at CERN F-H. Worm, J. Bovier, A.Lounis Creative Electronic Systems (CES), Geneva, Switzerland R.Hon, D. North, G. Stone Apple Computer, Inc. Cupertino USA E. Perea Thomson-TCS Semiconducteurs Specifiques, Orsay, France 1. joint spokesmen 2 RD24 Status Report 1994 Motivation for SCI RD24 2nd Phase Activities and Milestones Previous activities and milestones of the RD24 collaboration are reported in the DRDC reports with the same title, referenced as CERN/DRDC/91-45 (Proposal P33), CERN/DRDC/ 92-06 (Addendum to Proposal P33), CERN/DRDC/93-20 (First RD24 Status Report May 93).