Velvet Plug-In Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Touchpoint: Dynamically Re-Routable Effects Processing As a Multi-Touch Tablet Instrument
Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece Touchpoint: Dynamically Re-Routable Effects Processing as a Multi-Touch Tablet Instrument Nicholas K. Suda Owen S. Vallis, Ph.D California Institute of the Arts California Institute of the Arts 24700 McBean Pkwy. 24700 McBean Pkwy. Valencia, California 91355 Valencia, California 91355 United States United States [email protected] [email protected] ABSTRACT Touchpoint is a multi-touch tablet instrument which pre- sents the chaining-together of non-linear effects processors as its core music synthesis technique. In doing so, it uti- lizes the on-the-fly re-combination of effects processors as the central mechanic of performance. Effects Processing as Synthesis is justified by the fact that that the order in which non-linear systems are arranged re- sults in a diverse range of different output signals. Be- cause the Effects Processor Instrument is a collection of software, the signal processing ecosystem is virtual. This means that processors can be re-defined, re-configured, cre- Figure 1. The sprawl of peripherals used to control IDM ated, and destroyed instantaneously, as a “note-level” mu- artist Tim Exile’s live performance. sical decision within a performance. The software of Touchpoint consists of three compo- nents. The signal processing component, which is address- In time stretching, pitch correcting, sample replacing, no- ed via Open Sound Control (OSC), runs in Reaktor Core. ise reducing, sound file convolving, and transient flagging The touchscreen component runs in the iOS version of Le- their recordings, studio engineers of every style are reg- mur, and the networking component uses ChucK. -
Tyrone Jackson, Jazz Piano
KENNESAW STATE UNIVERSITY SCHOOL OF MUSIC Tyrone Jackson Faculty Recital "Tribute to The Fender Rhodes in Jazz" Tyrone Jackson, fender rhodes Karla Harris, vocals Patrick Arthur, electric guitar Brandon Boone, upright and electric bass Chris Burroughs, drums Frankie Quinones, percussion Wednesday, October 18, 2017 at 8 pm Dr. Bobbie Bailey & Family Performance Center, Morgan Hall Twenty-eighth Concert of the 2017-18 Concert Season program This concert is a tribute to the iconic instrument, the Fender Rhodes. The Rhodes piano (also known as the Fender Rhodes piano or simply Fender Rhodes or Rhodes) is an electric piano invented by Harold Rhodes, which became particularly popular throughout the 1970s. CBS oversaw mass production of the Rhodes piano in the 1970s, and it was used extensively through the decade, particularly in jazz, pop, and soul music. The Rhodes became a staple in recordings and live performances for renown keyboard artists Herbie Hancock and Chick Corea. A resurgence of the instrument recently has been realized through jazz musicians Nicholas Payton and Christian Scott. "Tribute to The Fender Rhodes in Jazz" The Backwards Step / Nicholas Payton Scenario / Tyrone Jackson Come Together / Lennon-McCartney Cry Me A River / Arthur Hamilton Benin / Tyrone Jackson By Chance / Tyrone Jackson Take 5 / Desmond-Brubeck Sound of Music / Rodgers-Hammerstein Butterfly / Herbie Hancock Song for Bilbao / Pat Methany Lecturer in Jazz Studies and Jazz Piano yrone Jackson – the name is quickly becoming synonymous with the quintessential jazz piano player. His boundless creativity coupled with subtle accompaniments has Tyrone poised for national recognition. TBorn in the New Orleans cradle of jazz, Jackson embodies the spirit of the Crescent City. -
Resonant Spaces Notes
Andrew McPherson Resonant Spaces for cello and live electronics Performance Notes Overview This piece involves three components: the cello, live electronic processing, and "sequenced" sounds which are predetermined but which render in real time to stay synchronized to the per- former. Each component is notated on a separate staff (or pair of staves) in the score. The cellist needs a bridge contact pickup on his or her instrument. It can be either integrated into the bridge or adhesively attached. A microphone will not work as a substitute, because the live sound plays back over speakers very near to the cello and feedback will inevitably result. The live sound simulates the sound of a resonating string (and, near the end of the piece, ringing bells). This virtual string is driven using audio from the cello. Depending on the fundamental frequency of the string and the note played by the cello, different pitches are produced and played back by speakers placed near the cellist. The sequenced sounds are predetermined, but are synchronized to the cellist by means of a series of cue points in the score. At each cue point, the computer pauses and waits for the press of a footswitch to advance. In some cases, several measures go by without any cue points, and it is up to the cellist to stay synchronized to the sequenced sound. An in-ear monitor with a click track is available in these instances to aid in synchronization. The electronics are designed to be controlled in real-time by the cellist, so no other technician is required in performance. -
User Manual Mellotron V - WELCOME to the MELLOTRON the Company Was Called Mellotronics, and the First Product, the Mellotron Mark 1, Appeared in 1963
USER MANUAL Special Thanks DIRECTION Frédéric BRUN Kévin MOLCARD DEVELOPMENT Pierre-Lin LANEYRIE Benjamin RENARD Marie PAULI Samuel LIMIER Baptiste AUBRY Corentin COMTE Mathieu NOCENTI Simon CONAN Geoffrey GORMOND Florian MARIN Matthieu COUROUBLE Timothée BÉHÉTY Arnaud BARBIER Germain MARZIN Maxime AUDFRAY Yann BURRER Adrien BARDET Kevin ARCAS Pierre PFISTER Alexandre ADAM Loris DE MARCO Raynald DANTIGNY DESIGN Baptiste LE GOFF Morgan PERRIER Shaun ELLWOOD Jonas SELLAMI SOUND DESIGN Victor MORELLO Boele GERKES Ed Ten EYCK Paul SCHILLING SPECIAL THANKS Terry MARDSEN Ben EGGEHORN Jay JANSSEN Paolo NEGRI Andrew CAPON Boele GERKES Jeffrey CECIL Peter TOMLINSON Fernando Manuel Chuck CAPSIS Jose Gerardo RENDON Richard COURTEL RODRIGUES Hans HOLEMA SANTANA JK SWOPES Marco CORREIA Greg COLE Luca LEFÈVRE Dwight DAVIES Gustavo BRAVETTI Ken Flux PIERCE George WARE Tony Flying SQUIRREL Matt PIKE Marc GIJSMAN Mat JONES Ernesto ROMEO Adrien KANTER Jason CHENEVAS-PAULE Neil HESTER MANUAL Fernando M RODRIGUES Vincent LE HEN (editor) Jose RENDON (Author) Minoru KOIKE Holger STEINBRINK Stephan VANKOV Charlotte METAIS Jack VAN © ARTURIA SA – 2019 – All rights reserved. 11 Chemin de la Dhuy 38240 Meylan FRANCE www.arturia.com Information contained in this manual is subject to change without notice and does not represent a commitment on the part of Arturia. The software described in this manual is provided under the terms of a license agreement or non-disclosure agreement. The software license agreement specifies the terms and conditions for its lawful use. No part of this manual may be reproduced or transmitted in any form or by any purpose other than purchaser’s personal use, without the express written permission of ARTURIA S.A. -
USB MIDI CONTROLLER INTRODUCTION This Is an Ultra-Compact MIDI Controller Which Serves to Control Music Software
USB MIDI CONTROLLER INTRODUCTION This is an ultra-compact MIDI controller which serves to control music software. It is equipped with 25/49/61 velocity-sensitive keys as well as 1 fader and 4 rotary controls. The controller connects both PC and Mac(OTG convertor cable is required for connecting to Mobile phone and Pad). You can do without a bulky power adapter as power supply is via the USB bus. It’s also available to download the full user manual and other setting instructions from http://en.worlde.com.cn/. 2 STEPS FOR KS TO WORK 1) Connect your KS to the computer by USB cable. 2) Open your DAW in your computer and select KS as your hardware controller in your DAW. Now you are ready to go. CONNECTING A COMPUTER Use the included USB cable to connect the USB MIDI controller to a USB2.0 port on your computer. The power will turn on. Select the KS as MIDI controller within your music software and you are ready to go. DEVICE SETUP IN SOFTWARE To select KS as a controller for your digital audio workstation (DAW): 1. Connect KS to your computer using a standard USB cable. (If you are connecting KS to a USB hub, make sure it is a powered hub. If another device with USB3.0 is connected to USB hub at the same time, KS will not work properly at this time.) 2. Open your DAW. 3. Open your DAW's Preferences, Options, or Device Setup, select KS as your hardware controller, and then close t hat window. -
USB MIDI CONTROLLER INTRODUCTION This Is an Ultra-Compact and Light-Weight MIDI Controller Which Serves to Control Music Software
USB MIDI CONTROLLER INTRODUCTION This is an ultra-compact and light-weight MIDI controller which serves to control music software. It is equipped with 25 velocity-sensitive keys, and 8 velocity-sensitive drum pads as well as 4 faders and 4 rotary controls. The controller connects both PC and Mac(OTG convertor cable is required for connecting to Mobile phone and Pad). You can do without a bulky power adapter as power supply is via the USB bus. The unit is supplied with a software editor which you can download from WORLDE website. The software editor will let you customize this USB MIDI controller to your own requirements. It’s also available to download the full user manual and other setting instructions from http://en.worlde.com.cn/. 3 STEPS FOR PANDAMINI TO WORK 1) Connect your PANDAMINI to the computer by USB cable. 2) Download the software editor from the download page of WORLDE website and customize all editable controllers, and create, save and load presets. 3) Open your DAW in your computer and select PANDAMINI as your hardware controller in your DAW. Now you are ready to go. CONNECTING A COMPUTER Use the included USB cable to connect the USB MIDI controller to a USB2.0 port on your computer. The power will turn on and the scene LED will light up. Select the PANDAMINI as MIDI controller within your music software and you are ready to go. FIRST STEPS WITH THE EDITOR The editor will let you customize all editable controllers, and create, save and load presets. -
Real-Time Physical Model of a Wurlitzer and Rhodes Electric Piano
Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017 REAL-TIME PHYSICAL MODEL OF A WURLITZER AND RHODES ELECTRIC PIANO Florian Pfeifle Systematic Musicology, University of Hamburg Hamburg, DE [email protected] ABSTRACT tation methodology as is published in [21]. This work aims at extending the existing physical models of mentioned publications Two well known examples of electro-acoustical keyboards played in two regards by (1) implementing them on a FPGA for real-time since the 60s to the present day are the Wurlitzer electric piano synthesis and (2) making the physical model more accurate when and the Rhodes piano. They are used in such diverse musical gen- compared to physical measurements as is discussed in more detail res as Jazz, Funk, Fusion or Pop as well as in modern Electronic in section 4 and 5. and Dance music. Due to the popularity of their unique sound and timbre, there exist various hardware and software emulations which are either based on a physical model or consist of a sample 2. RELATED WORK based method for sound generation. In this paper, a real-time phys- ical model implementation of both instruments using field pro- Scientific research regarding acoustic and electro-mechanic prop- grammable gate array (FPGA) hardware is presented. The work erties of both instruments is comparably sparse. Freely available presented herein is an extension of simplified models published user manuals as well as patents surrounding the tone production before. Both implementations consist of a physical model of the of the instruments give an overview of basic physical properties of main acoustic sound production parts as well as a model for the both instrument [5]; [7]; [8]; [13]; [4]. -
An Arduino-Based MIDI Controller for Detecting Minimal Movements in Severely Disabled Children
IT 16054 Examensarbete 15 hp Juni 2016 An Arduino-based MIDI Controller for Detecting Minimal Movements in Severely Disabled Children Mattias Linder Institutionen för informationsteknologi Department of Information Technology Abstract An Arduino-based MIDI Controller for Detecting Minimal Movements in Severely Disabled Children Mattias Linder Teknisk- naturvetenskaplig fakultet UTH-enheten In therapy, music has played an important role for children with physical and cognitive impairments. Due to the nature of different impairments, many traditional Besöksadress: instruments can be very hard to play. This thesis describes the development of a Ångströmlaboratoriet Lägerhyddsvägen 1 product in which electrical sensors can be used as a way of creating sound. These Hus 4, Plan 0 sensors can be used to create specially crafted controllers and thus making it possible for children with different impairments to create music or sound. This Postadress: thesis examines if it is possible to create such a device with the help of an Arduino Box 536 751 21 Uppsala micro controller, a smart phone and a computer. The end result is a product that can use several sensors simultaneously to either generate notes, change the Telefon: volume of a note or controlling the pitch of a note. There are three inputs for 018 – 471 30 03 specially crafted sensors and three static potentiometers which can also be used as Telefax: specially crafted sensors. The sensor inputs for the device are mini tele (2.5mm) 018 – 471 30 00 and any sensor can be used as long as it can be equipped with this connector. The product is used together with a smartphone application to upload different settings Hemsida: and a computer with a music work station which interprets the device as a MIDI http://www.teknat.uu.se/student synthesizer. -
37 Key Digital Keyboard INSTRUCTION MANUAL
ages: 3+ BATTERY COMPARTMENT Battery Compartment Door 37 Key Digital Keyboard INSTRUCTION MANUAL Phillips head screw Insert 4X AA Size Batteries 5 6 7 10 14 13 1 2 4 8 9 11 12 100 SOUNDS 100 RHYTHMS T00 Acoustic Grand Piano T50 Synth Strings 2 R00 Fusion R50 Disco T01 Bright Acoustic Piano T51 Choir Aahs R01 Clup Pop R51 Electro Pop T02 Electric Grand Piano T52 Voice Oohs R02 16 Beat Pop R52 Hip Hop T03 Honky-Tonk Piano T53 Synth Voice R03 8 Beat Pop R53 Rap Pop T04 Rhodes Piano T54 Orchestra Hit R04 8 Beat Soul R54 Techno T05 Chorused Piano T55 Trumpet R05 Pop Rock R55 Trance T06 Harpsichord T56 Trombone R06 60's Soul R56 Funky Disco T07 Clavi T57 Tuba R07 8 Beat Rock R57 Disco Party T08 Celesta T58 Muted Trumpet R08 Funk R58 Disco Samba T09 Glockenspiel T59 French Horn R09 Twist R59 Club Latin T10 Music Box T60 Brass Section R10 British Pop R60 Club Dance T11 Vibraphone T61 Synth Brass 1 R11 Rock Ballad R61 Disco Funk T12 Marimba T62 Synth Brass 2 R12 Limbo Rock R62 Disco Hands T13 Xylophone T63 Soprano Sax R13 Hard Rock R63 Disco Alt T14 Tubular Bells T64 Alto Sax R14 Rock & Roll R64 Saturday Night T15 Dulcimer T65 Tenor Sax R15 Straight Rock R65 Hip Shuffle T16 Drawbar Organ T66 Baritone Sax R16 Jazz Rock R66 Garage T17 Percussive Organ T67 Oboe R17 Schlager Rock R67 UK Pop T18 Rock Organ T68 English Horn R18 Waltz R68 Slow & Easy T19 Church Organ T69 Bassoon R19 Samba R69 Modern Country Pop T20 Reed Organ T70 Clarinet R20 Tango R70 Country Ballad T21 Accordion T71 Piccolo R21 Cha Cha R71 Schlager T22 Harmonica T72 Flute R22 Paso -
Virtual Musical Instruments: Print This Technological Aspects Article and Interactive Performance Issues
428 l Virtual Musical Instruments: Print this Technological Aspects article and Interactive Performance Issues Suguru Goto [email protected] Abstract I have been creating various Gestural Interfaces1 for use in my compositions for Virtual Musical Instruments2. These Virtual Musical Instruments do not merely refer to the physical instruments, but also involve Sound Synthesis3, programming and Interactive Video4. Using the Virtual Musical Instruments, I experimented with numerous compositions and performances. This paper is intended to report my experiences, as well as their development; and concludes with a discussion of some issues as well as the problem of the very notion of interactivity. 1. An interface which translates body movement to analog signals. This contains a controller which is created with sensors and video scanning system. This is usually created by an artist himself or with a collaborator. This does not include a commercially produced MIDI controller. 2. This refers to a whole system which contains Gesture, Gestural Interface, Mapping Interface, algorithm, Sound Syn- thesis, and Interactive Video. According to programming and artistic concept, it may extensively vary. 3. This is a domain of programming to generate sound with a computer. In this article, the way of this programming emphasis the relationship between gesture and sound production. 4. A video image which is altered in real time. In Virtual Musical Instruments, the image is changed by gesture. This image is usually projected on a screen in a live performance. 429 Introduction The problem confronting artists who work with interactive media is the use of commercially-produced computers. Very few of them build their machines from scratch. -
Passive Simulation of the Nonlinear Port-Hamiltonian Modeling of a Rhodes Piano Antoine Falaize, Thomas Hélie
Passive simulation of the nonlinear port-Hamiltonian modeling of a Rhodes Piano Antoine Falaize, Thomas Hélie To cite this version: Antoine Falaize, Thomas Hélie. Passive simulation of the nonlinear port-Hamiltonian modeling of a Rhodes Piano. 2016. hal-01390534 HAL Id: hal-01390534 https://hal.archives-ouvertes.fr/hal-01390534 Preprint submitted on 2 Nov 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Passive simulation of the nonlinear port-Hamiltonian modeling of a Rhodes Piano Antoine Falaize1,∗, Thomas H´elie1,∗ Project-Team S3 (Sound Signals and Systems) and Analysis/Synthesis team, Laboratory of Sciences and Technologies of Music and Sound (UMR 9912), IRCAM-CNRS-UPMC, 1 place Igor Stravinsky, F-75004 Paris Abstract This paper deals with the time-domain simulation of an electro-mechanical pi- ano: the Fender Rhodes. A simplified description of this multi-physical system is considered. It is composed of a hammer (nonlinear mechanical component), a cantilever beam (linear damped vibrating component) and a pickup (nonlinear magneto-electronic transducer). The approach is to propose a power-balanced formulation of the complete system, from which a guaranteed-passive simulation is derived to generate physically-based realistic sound synthesis. -
Basics Working with Audio Working with MIDI Features
 Welcome to the Cantabile guides! Here you'll find everything you need to understand Cantabile. Prefer a downloadable PDF file? Also, don't forget the training videos and if you've got questions the community forum is a great place to ask. Basics Installation Getting Started Working with Plugins Ports and Routes Routing Diagrams Main Window Controls Tool Tips and Help Panels Upgrading from Version 2 Derek Cook's Cantabile Guide Working with Audio Configuring Audio Ports Mapping Channels between Audio Ports Working with MIDI MIDI Route Settings MIDI Filters MIDI Monitoring Global Transpose Features Preset Models Managing Plugins Audio Engine Options Racks Metronome Media Players Recording Bindings Quick Controller Monitor Panel Controller Bar MIDI Clock Synchronization Onscreen Keyboard Loopback Ports Song and Rack Options Morph and Randomize Tools Network Server Performance Management Song and Rack States Set Lists Ticker Bar Show Notes Live Mode Set List Verification and Printing Preventing Prompts to Save Customizing Cantabile Customizing Shortcut Keys Multiple Configurations Resource Folder Gain Control Curves Expression Reference Custom Themes Language Translations Command Line Options Variables SysEx Macros Controller Defaults Diagnostics Tuning for Reliable Glitch Free Performance Performance Profiler Diagnostic Options Settings Folder Prevent Memory Paging Options No Sound Technology Introduction to Computer Based Music Understanding 64-bit Understanding Multi-Core Understanding Cantabile's Performance Metrics jBridge Support Support for High-Resolution Displays Licensing Understanding Cantabile's Licensing System Installation on Multiple Machines My Serial Number Doesn't Work Installing Cantabile 3 To install Cantabile simply run the installer. There are no options, simply follow the steps.