The SARS-Cov-2 RNA–Protein Interactome in Infected Human Cells

Total Page:16

File Type:pdf, Size:1020Kb

The SARS-Cov-2 RNA–Protein Interactome in Infected Human Cells The SARS-CoV-2 RNA–protein interactome in infected human cells The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Schmidt, Nora et al. "The SARS-CoV-2 RNA–protein interactome in infected human cells." Nature Microbiology (December 2020): doi.org/10.1038/s41564-020-00846-z. © 2020 The Author(s) As Published http://dx.doi.org/10.1038/s41564-020-00846-z Publisher Springer Science and Business Media LLC Version Final published version Citable link https://hdl.handle.net/1721.1/128950 Terms of Use Creative Commons Attribution 4.0 International license Detailed Terms https://creativecommons.org/licenses/by/4.0/ ARTICLES https://doi.org/10.1038/s41564-020-00846-z The SARS-CoV-2 RNA–protein interactome in infected human cells Nora Schmidt 1,10, Caleb A. Lareau 2,10, Hasmik Keshishian3,10, Sabina Ganskih 1, Cornelius Schneider4,5, Thomas Hennig6, Randy Melanson3, Simone Werner1, Yuanjie Wei1, Matthias Zimmer1, Jens Ade 1, Luisa Kirschner6, Sebastian Zielinski 1, Lars Dölken1,6, Eric S. Lander3,7,8, Neva Caliskan1,9, Utz Fischer1,5, Jörg Vogel 1,4, Steven A. Carr3, Jochen Bodem 6 ✉ and Mathias Munschauer 1 ✉ Characterizing the interactions that SARS-CoV-2 viral RNAs make with host cell proteins during infection can improve our understanding of viral RNA functions and the host innate immune response. Using RNA antisense purification and mass spec- trometry, we identified up to 104 human proteins that directly and specifically bind to SARS-CoV-2 RNAs in infected human cells. We integrated the SARS-CoV-2 RNA interactome with changes in proteome abundance induced by viral infection and linked interactome proteins to cellular pathways relevant to SARS-CoV-2 infections. We demonstrated by genetic perturba- tion that cellular nucleic acid-binding protein (CNBP) and La-related protein 1 (LARP1), two of the most strongly enriched viral RNA binders, restrict SARS-CoV-2 replication in infected cells and provide a global map of their direct RNA contact sites. Pharmacological inhibition of three other RNA interactome members, PPIA, ATP1A1, and the ARP2/3 complex, reduced viral replication in two human cell lines. The identification of host dependency factors and defence strategies as presented in this work will improve the design of targeted therapeutics against SARS-CoV-2. he rapid spread of a new severe acute respiratory between viral and host proteins has revealed cellular pathways rele- syndrome-related coronavirus (SARS-CoV-2) around the vant to productive infection12. However, these studies cannot reveal globe has led to a worldwide spike in a SARS-like respira- how viral RNA is regulated during infection or how host cell RNA T 1 13 tory illness termed coronavirus disease 2019 (COVID-19) . To date, metabolism is remodelled to enable virus replication . more than one million lives have been lost due to COVID-19. A We sought to obtain an unbiased and quantitative picture of the detailed understanding of the molecular interactions and perturba- cellular proteins that directly bind to SARS-CoV-2 RNAs in infected tions occurring during SARS-CoV-2 infection is required to under- human cells. Recent RNA capture and quantitative mass spectrom- stand the biology of SARS-CoV-2 and design therapeutic strategies. etry (MS) approaches14–17 applied ultraviolet (UV) crosslinking to SARS-CoV-2 is an enveloped, positive-sense, single-stranded create covalent bonds between RNA molecules and the proteins RNA virus that, upon infection of a host cell, deploys a they directly interact with. Unlike chemical crosslinking, UV irradi- ‘translation-ready’ RNA molecule, which uses the protein synthe- ation does not stabilize protein–protein or RNA–RNA interactions, sis machinery of the host to express a set of viral proteins crucial making it a preferable choice for dissecting direct RNA–pro- for replication2. Replication of the full-length viral genome and tein interactions18,19. RNA antisense purification and quantitative transcription of subgenomic RNAs both involve the synthesis of mass spectrometry (RAP–MS) combines UV crosslinking with a negative-strand RNA intermediates3. In common with other RNA highly denaturing purification procedure and is ideally suited to viruses, SARS-CoV-2 is dependent on effectively engaging host cell capture and identify only those proteins that bind directly to factors such as regulators of RNA stability, processing, localization SARS-CoV-2 RNAs14,15. and translation to facilitate replication and production of progeny. The host cell, on the other hand, must detect the pathogen and Results activate appropriate innate immune response pathways to restrict Capturing SARS-CoV-2 RNAs in infected human cells. To purify virus infection4. SARS-CoV-2 RNAs and the complement of directly crosslinked Studies on SARS-CoV-2-infected human cells to date have cellular proteins from infected human cells, we designed a pool of focused on characterizing expression or modification changes biotinylated DNA oligonucleotides antisense to the positive-sense in the host cell transcriptome5,6 or proteome7–9. Further, interac- SARS-CoV-2 RNA and its subgenomic messenger RNAs. As a cel- tions between recombinant viral proteins and host proteins have lular system, we selected the human liver cell line Huh7, which been identified in uninfected cells10,11. Mapping of the interactions is naturally permissive to both SARS-CoV-1 and SARS-CoV-2 1Helmholtz Institute for RNA-based Infection Research, Helmholtz-Center for Infection Research, Würzburg, Germany. 2School of Medicine, Stanford University, Palo Alto, CA, USA. 3Broad Institute of MIT and Harvard, Cambridge, MA, USA. 4Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany. 5Department of Biochemistry, University of Würzburg, Würzburg, Germany. 6Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany. 7Department of Biology, MIT, Cambridge, MA, USA. 8Department of Systems Biology, Harvard Medical School, Boston, MA, USA. 9Faculty of Medicine, University of Würzburg, Würzburg, Germany. 10These authors contributed equally: Nora Schmidt, Caleb A. Lareau, Hasmik Keshishian. ✉e-mail: [email protected]; [email protected] Nature MICROBIOLOgy | www.nature.com/naturemicrobiology ARTICLES NATURE MICROBIOLOGY a UV crosslink Lysis and denaturing antisense purification Quantitative LC–MS/MS Identification Quantitation Crosslinked protein Benzonase elution, SARS-CoV-2 95% TMT labelling of peptides RNA Intensity m/z AAA SARS- CoV-2 Crosslinked RNA Antisense capture 5% probes NHS beads RNase H elution, Reads Infected covalent protein capture human cell b c Expanded RNA interactome Core RNA interactome 4 Adjusted P value Adjusted P value –2 –3 NSP6 10–1 10–2 10–3 10–4 10 10 CNBP PPIA NSP6 EIF3H ORF3a N EIF1AY S FUBP3 NSP15 LARP4 HNRNPA3 STIP1 RPS4X PUM1 RPS26 S YBX1 ATXN2L NSP9 YBX3 smORF_G043944 2 NSP15 IGF2BP1 N PABPC4 HNRNPAB SYNCRIP GALNT1 G3BP2 ATP1A1 NSP10 NSP12 YTHDF2 RPS11 NSP1 ORF3a STOM RTCB EEF2 M PABPC1 EIF4G1 NSP5 SND1 MSI2 ORF9b M SERBP1 NSP8 EIF4B HNRNPA0 UPF1 CCT3 NSP3 EIF4H RPL21 MOV10 RPS12 CSDE1 RPS5 –4 –2 NSP16 2 4 A1CF NSP10 RBMS2 PCBP2 RAB6A RPL3 RAB6D APOE PPP1CC EIF3G RPS2 EIF3C SCFD1 RPL28 NSP12 EEF1A1 CAPRIN1 RPL8 DDX3X RPL18A EIF3E PFN1 TMT ratio (SARS-CoV-2/RMRP) replicate 2 RPS14 CNBP 2 –2 NSP16 NSP1 RPP30 RPS10 ACTA1 RPP25 RPL15 LASP1 Log SARS-CoV-2 proteins LSM14A TAGLN2 POP1 HNRNPA1 HNRNPA2B1 IGF2BP2 ORF9b POP4 Human SARS-CoV-2 RNA LIN28B RPL36AL interactome (adjusted P < 0.05) RYDEN NSP3 POP7 STRAP PGK1 NSP9 PEBP1 RMRP subunits (adjusted P < 0.05) ACTR2 RAB7A ANXA1 ALMS1 USO1 ACTB –4 RPL6 EGFR CFL1 SRI DDX1 G3BP1 HDLBP EIF3L EIF5A HNRNPL Log2 TMT ratio (SARS-CoV-2/RMRP) replicate 1 PPP1CB GSPT1 RPL13 GDI2 RPS3 RBM47 GPI YWHAZ RPL7A PURB Fig. 1 | RNA–protein interactome of SARS-CoV-2 in infected human cells. a, Outline of the RAP–MS method to identify proteins bound to SARS-CoV-2 RNA and their crosslinked RNA sequences. b, Quantification of SARS-CoV-2 RNA-interacting proteins relative to RMRP-interacting proteins. The scatter plot of log2-transformed TMT ratios from two biological replicates is shown. The grey dots represent all proteins detected with two or more unique peptides. c, Proteins enriched in SARS-CoV-2 RNA purifications (Supplementary Table 1). Left: core SARS-CoV-2 RNA interactome (adjusted P < 0.05). Left and right: expanded SARS-CoV-2 RNA interactome. Significantly enriched proteins are highlighted in teal; SARS-CoV-2-encoded proteins are highlighted in magenta. Adjusted P value: two-tailed moderated t-test. replication20,21. SARS-CoV-2 preferentially infects cells in the originating from SARS-CoV-2 RNA made up 93 and 92% of all respiratory tract, but infection of multiple organs, including the mapped reads in 2 highly correlated replicate experiments (r = 0.994; liver, has been reported22. Extended Data Fig. 1b,c). To test if our pool of antisense capture probes was suitable for To identify proteins that specifically interact with SARS-CoV-2 the purification of SARS-CoV-2 RNAs from infected Huh7 cells, we RNAs as opposed to non-specific background proteins, we com- performed RAP–MS 24 h after infection when viral replication levels pared the protein content of SARS-CoV-2 RNA purifications to were high21. We implemented a covalent protein capture step after that of an unrelated control ribonucleoprotein complex of known the release of SARS-CoV-2 RNA-bound proteins, which enabled composition. As the control, we used the endogenously expressed us to identify RNA sequences crosslinked to purified proteins human ribonuclease mitochondrial RNA processing (RMRP) RNA (Fig. 1a and Methods). Protein-crosslinked RNA fragments mapped and purified both SARS-CoV-2 RNA and RMRP from infected to the entire length of the viral genome with near-complete sequence Huh7 cells. RMRP was selected for several reasons: (1) RMRP inter- coverage, indicating that interactions across all viral RNA acts with approximately ten well-known proteins that serve as an 15,23 regions were captured (Extended Data Fig.
Recommended publications
  • A Cytoskeleton-Related Gene, USO1, Is Required for Intracellular Protein
    A Cytoskeleton-related Gene, USO1, Is Required for Intracellular Protein Transport in Saccharomyces cer isiae Harushi Nakajima, Aiko Hiram,* Yuri Ogawa, Tadashi Yonehara, Koji Yoda, and Makari Yamasaki Department of Agricultural Chemistry, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku Tokyo 113, Japan; and * Institute of Applied Microbiology, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku Tokyo 113, Japan Abstract. The Saccharomyces cerevisiae mutant accumulation of the ER at the restrictive temperature. strains blocked in the protein secretion pathway are Abnormally oriented bundles of microtubules were of- not able to induce sexual aggregation. We have uti- ten found in the nucleus. The US01 gene was cloned lized the defect of aggregation to concentrate the by complementation of the usol temperature-sensitive secretion-deficient cells and identified a new gene growth defect. DNA sequence analysis revealed a which functions in the process of intracellular protein hydrophilic protein of 1790 amino acids with a COOH- transport. The new mutant, usol, is temperature sensi- terminal 1,100-amino acid-long t~-helical structure tive for growth and protein secretion. At the restrictive characteristic of the coiled-coil rod region of the temperature (37°C), usol mutant accumulated the cytoskeleton-related proteins. These observations sug- core-glycosylated precursor form of the exported pro- gest that Usol protein plays a role as a cytoskeletal tein invertase in the cells. Ultrastructural study of the component in the protein transport from the ER to the mutant fixed by the freeze-substitution method re- later secretory compartments. vealed expansion of the nuclear envelope lumen and N the eukaryotic ceils, proteins destined for the extra- into the ER, sec61,62,63, ptll, and 2 have been isolated by cellular environment, plasma membrane, or lysosomes utilizing the mislocalization to the cytoplasm of prepro-a- I are first synthesized as precursor polypeptides in the factor-HIS4 or prepro-ct-factor-TRP1 fusion proteins (Deshaies cytoplasm.
    [Show full text]
  • Mouse Pop1 Conditional Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Pop1 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Pop1 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Pop1 gene (NCBI Reference Sequence: NM_152894 ; Ensembl: ENSMUSG00000022325 ) is located on Mouse chromosome 15. 17 exons are identified, with the ATG start codon in exon 2 and the TGA stop codon in exon 17 (Transcript: ENSMUST00000052290). Exon 4~5 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Pop1 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-365B13 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 4 starts from about 9.92% of the coding region. The knockout of Exon 4~5 will result in frameshift of the gene. The size of intron 3 for 5'-loxP site insertion: 2480 bp, and the size of intron 5 for 3'-loxP site insertion: 1452 bp. The size of effective cKO region: ~2209 bp. The cKO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 4 5 6 7 17 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Pop1 Homology arm cKO region loxP site Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • Cartilage-Hair Hypoplasia
    Cartilage-hair hypoplasia Description Cartilage-hair hypoplasia is a disorder of bone growth characterized by short stature ( dwarfism) with other skeletal abnormalities; fine, sparse hair (hypotrichosis); and abnormal immune system function (immune deficiency) that can lead to recurrent infections. People with cartilage-hair hypoplasia have unusually short limbs and short stature from birth. They typically have malformations in the cartilage near the ends of the long bones in the arms and legs (metaphyseal chondrodysplasia), which then affects development of the bone itself. Most people with cartilage-hair hypoplasia are unusually flexible in some joints, but they may have difficulty extending their elbows fully. Affected individuals have hair that is lighter in color than that of other family members because the core of each hair, which contains some of the pigment that contributes the hair's color, is missing. The missing core also makes each strand of hair thinner, causing the hair to have a sparse appearance overall. Unusually light-colored skin ( hypopigmentation), malformed nails, and dental abnormalities may also be seen in this disorder. The extent of the immune deficiency in cartilage-hair hypoplasia varies from mild to severe. Affected individuals with the most severe immune problems are considered to have severe combined immunodeficiency (SCID). People with SCID lack virtually all immune protection from bacteria, viruses, and fungi and are prone to repeated and persistent infections that can be very serious or life-threatening. These infections are often caused by "opportunistic" organisms that ordinarily do not cause illness in people with a normal immune system. Most people with cartilage-hair hypoplasia, even those who have milder immune deficiency, experience infections of the respiratory system, ears, and sinuses.
    [Show full text]
  • Rpp2, an Essential Protein Subunit of Nuclear Rnase P, Is Required for Processing of Precursor Trnas and 35S Precursor Rrna in Saccharomyces Cerevisiae
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 6716–6721, June 1998 Biochemistry Rpp2, an essential protein subunit of nuclear RNase P, is required for processing of precursor tRNAs and 35S precursor rRNA in Saccharomyces cerevisiae VIKTOR STOLC*, ALEXANDER KATZ†, AND SIDNEY ALTMAN†‡ †Department of Biology, Yale University, New Haven, CT 06520; and *Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510 Contributed by Sidney Altman, March 31, 1998 ABSTRACT RPP2, an essential gene that encodes a 15.8- has been suggested that RNase P is an ancestor of RNase kDa protein subunit of nuclear RNase P, has been identified MRP, because RNase MRP has been found only in eukaryotes in the genome of Saccharomyces cerevisiae. Rpp2 was detected (20). Yeast RNase MRP functions in processing of precursor by sequence similarity with a human protein, Rpp20, which rRNAs at the A3 site in the internal transcribed sequence of copurifies with human RNase P. Epitope-tagged Rpp2 can be the 35S precursor rRNA (21) and also cleaves RNA primers found in association with both RNase P and RNase mitochon- for mitochondrial DNA replication (22, 23). Although RNase drial RNA processing in immunoprecipitates from crude MRP does not cleave ptRNAs in vitro, its role in rRNA extracts of cells. Depletion of Rpp2 protein in vivo causes processing is affected by proteins that associate with RNase P accumulation of precursor tRNAs with unprocessed introns in vivo (11–14). RNase P functions in the biosynthesis of and 5* and 3* termini, and leads to defects in the processing tRNAs (8) and appears to have a role in rRNA processing in of the 35S precursor rRNA.
    [Show full text]
  • Anti-GM130 (Cis-Golgi Marker) Antibody R1608-7
    Anti-GM130 (cis-Golgi Marker) antibody R1608-7 Product Type: Rabbit polyclonal IgG, primary antibodies Species reactivity: Human, Mouse, Rat Applications: WB, ICC, IHC-P, FC Molecular Wt: 130 kDa Description: Peripheral membrane component of the cis-Golgi stack that acts as a membrane skeleton that maintains the structure of the Golgi apparatus, and as a vesicle thether that facilitates vesicle fusion to the Golgi membrane. Together with p115/USO1 and STX5, involved in vesicle tethering and fusion at the cis-Golgi membrane to maintain the stacked and inter- connected structure of the Golgi apparatus. Plays a central role in mitotic Golgi disassembly. Also plays a key role in spindle pole assembly and centrosome organization. Promotes the mitotic spindle pole assembly by activating the spindle assembly factor TPX2 to nucleate microtubules around the Golgi and capture them to couple mitotic membranes to the spindle. TPX2 then activates AURKA kinase and stimulates local microtubule nucleation. Upon filament assembly, nascent microtubules are further captured by GOLGA2, thus linking Golgi membranes to the spindle. Regulates the meiotic spindle pole assembly, probably via the same mechanism. Also regulates the centrosome organization. Also required for the Golgi ribbon formation and glycosylation of membrane and secretory proteins. Immunogen: Recombinant protein within human GM130 aa 64-231. Positive control: Hela, MCF-7, LO2, human tonsil tissue, human liver tissue, human kidney tissue, mouse brain tissue. Subcellular location: Cytoplasm, Cytoskeleton, Membrane, Microtubule. Database links: SwissProt: Q08379 Human | Q921M4 Mouse | Q62839 Rat Recommended Dilutions: WB 1:500-1:2,000 ICC 1:50-1:200 IHC-P 1:50-1:200 FC 1:50-1:200 Storage Buffer: 1*PBS (pH7.4), 0.2% BSA, 50% Glycerol.
    [Show full text]
  • A Disease-Linked Lncrna Mutation in Rnase MRP Inhibits Ribosome Synthesis
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.29.437572; this version posted March 29, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A disease-linked lncRNA mutation in RNase MRP inhibits ribosome synthesis Nic Roberston1, Vadim Shchepachev1, David Wright2, Tomasz W. Turowski1, Christos Spanos1, Aleksandra Helwak1, Rose Zamoyska2, David Tollervey1 1 Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK 2 Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK Keywords: protein-RNA interaction; RNA-binding sites; UV crosslinking; mass spectrometry; genetic disease; Cartilage Hair Hypoplasia; ribosome synthesis; T cell activation Running title: RNase MRP defects cause ribosomopathy Highlights: • Mutations in RMRP lncRNA impair pre-rRNA processing and T cell activation • Patient derived fibroblasts show impaired pre-rRNA processing • Cells with the most common disease-linked mutation have specific processing defects • Cytoplasmic ribosomes and intact RNase MRP complexes are also reduced in these cells 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.29.437572; this version posted March 29, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Mutations in the human RMRP gene cause Cartilage Hair Hypoplasia (CHH), an autosomal recessive disorder characterized by skeletal abnormalities and impaired T cell activation.
    [Show full text]
  • Stx5-Mediated ER-Golgi Transport in Mammals and Yeast
    cells Review Stx5-Mediated ER-Golgi Transport in Mammals and Yeast Peter TA Linders 1 , Chiel van der Horst 1, Martin ter Beest 1 and Geert van den Bogaart 1,2,* 1 Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands 2 Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands * Correspondence: [email protected]; Tel.: +31-50-36-35230 Received: 8 July 2019; Accepted: 25 July 2019; Published: 26 July 2019 Abstract: The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) syntaxin 5 (Stx5) in mammals and its ortholog Sed5p in Saccharomyces cerevisiae mediate anterograde and retrograde endoplasmic reticulum (ER)-Golgi trafficking. Stx5 and Sed5p are structurally highly conserved and are both regulated by interactions with other ER-Golgi SNARE proteins, the Sec1/Munc18-like protein Scfd1/Sly1p and the membrane tethering complexes COG, p115, and GM130. Despite these similarities, yeast Sed5p and mammalian Stx5 are differently recruited to COPII-coated vesicles, and Stx5 interacts with the microtubular cytoskeleton, whereas Sed5p does not. In this review, we argue that these different Stx5 interactions contribute to structural differences in ER-Golgi transport between mammalian and yeast cells. Insight into the function of Stx5 is important given its essential role in the secretory pathway of eukaryotic cells and its involvement in infections and neurodegenerative diseases. Keywords: syntaxin 5; Golgi apparatus; endoplasmic reticulum; membrane trafficking; secretory pathway 1. Introduction The secretory pathway is essential for secretion of cytokines, hormones, growth factors, and extracellular matrix proteins, as well as for the delivery of receptors and transporters to the cell membrane and lytic proteins to endo-lysosomal compartments.
    [Show full text]
  • Identification of Differentially Expressed Genes in Human Bladder Cancer Through Genome-Wide Gene Expression Profiling
    521-531 24/7/06 18:28 Page 521 ONCOLOGY REPORTS 16: 521-531, 2006 521 Identification of differentially expressed genes in human bladder cancer through genome-wide gene expression profiling KAZUMORI KAWAKAMI1,3, HIDEKI ENOKIDA1, TOKUSHI TACHIWADA1, TAKENARI GOTANDA1, KENGO TSUNEYOSHI1, HIROYUKI KUBO1, KENRYU NISHIYAMA1, MASAKI TAKIGUCHI2, MASAYUKI NAKAGAWA1 and NAOHIKO SEKI3 1Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520; Departments of 2Biochemistry and Genetics, and 3Functional Genomics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan Received February 15, 2006; Accepted April 27, 2006 Abstract. Large-scale gene expression profiling is an effective CKS2 gene not only as a potential biomarker for diagnosing, strategy for understanding the progression of bladder cancer but also for staging human BC. This is the first report (BC). The aim of this study was to identify genes that are demonstrating that CKS2 expression is strongly correlated expressed differently in the course of BC progression and to with the progression of human BC. establish new biomarkers for BC. Specimens from 21 patients with pathologically confirmed superficial (n=10) or Introduction invasive (n=11) BC and 4 normal bladder samples were studied; samples from 14 of the 21 BC samples were subjected Bladder cancer (BC) is among the 5 most common to microarray analysis. The validity of the microarray results malignancies worldwide, and the 2nd most common tumor of was verified by real-time RT-PCR. Of the 136 up-regulated the genitourinary tract and the 2nd most common cause of genes we detected, 21 were present in all 14 BCs examined death in patients with cancer of the urinary tract (1-7).
    [Show full text]
  • Towards Reconstitution of Human Rnase P Protein Subunits with Human and Bacterial Rnase P Rnas
    Towards reconstitution of human RNase P protein subunits with human and bacterial RNase P RNAs Research Thesis Presented in partial fulfillment of the requirements for graduation with research distinction in Biochemistry in the undergraduate colleges of The Ohio State University by Chigozirim Ekeke The Ohio State University June 2011 Project Advisor: Dr. Venkat Gopalan 1 DEDICATION Dedicated to the Ekeke family for their support, love, and blessings throughout my undergraduate career. 2 ACKNOWLEDGEMENTS I would like to thank Dr. Venkat Gopalan for his mentorship, wisdom, and unselfishness in helping me throughout my undergraduate research studies. He has taught me how to be a better scientist and student. I consider his presence in my life a true blessing. I thank Dr. Lien Lai for her guidance and willingness to help me throughout my research experience. Her opinions, critiques, and invaluable wisdom have molded me into a better researcher as well. I also thank Dr. Caroline Breitenberger for serving on my thesis committee and support throughout my collegiate career. I am grateful to the wonderful colleagues that I worked with in the Gopalan laboratory: Dr. Wen-Yi Chen, Dr. I-Ming Cho, Dr. Anil Challa, Dr. Gireesha Mohannath, Sathiyanarayanan Manivannan, and Cecilia Go. I appreciate their assistance and insights in helping me throughout my research. Additionally, I would like to thank Stella Lai, Emily Wong, Derek Smith, and Andrew Merriman for their sincere friendship and advice throughout this project. I am grateful and humbled by the financial support provided to me by the NSF Research Experience for Undergraduates Supplement (2010), OSU College of Biological Sciences (2009, 2010), and the OSU Colleges of the Arts and Sciences (2010-2011).
    [Show full text]
  • Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
    Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Molecular Signatures Differentiate Immune States in Type 1 Diabetes Families
    Page 1 of 65 Diabetes Molecular signatures differentiate immune states in Type 1 diabetes families Yi-Guang Chen1, Susanne M. Cabrera1, Shuang Jia1, Mary L. Kaldunski1, Joanna Kramer1, Sami Cheong2, Rhonda Geoffrey1, Mark F. Roethle1, Jeffrey E. Woodliff3, Carla J. Greenbaum4, Xujing Wang5, and Martin J. Hessner1 1The Max McGee National Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin Milwaukee, WI 53226, USA. 2The Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA. 3Flow Cytometry & Cell Separation Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA. 4Diabetes Research Program, Benaroya Research Institute, Seattle, WA, 98101, USA. 5Systems Biology Center, the National Heart, Lung, and Blood Institute, the National Institutes of Health, Bethesda, MD 20824, USA. Corresponding author: Martin J. Hessner, Ph.D., The Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI 53226, USA Tel: 011-1-414-955-4496; Fax: 011-1-414-955-6663; E-mail: [email protected]. Running title: Innate Inflammation in T1D Families Word count: 3999 Number of Tables: 1 Number of Figures: 7 1 For Peer Review Only Diabetes Publish Ahead of Print, published online April 23, 2014 Diabetes Page 2 of 65 ABSTRACT Mechanisms associated with Type 1 diabetes (T1D) development remain incompletely defined. Employing a sensitive array-based bioassay where patient plasma is used to induce transcriptional responses in healthy leukocytes, we previously reported disease-specific, partially IL-1 dependent, signatures associated with pre and recent onset (RO) T1D relative to unrelated healthy controls (uHC).
    [Show full text]