Ammonite Biostratigraphy from the Planula and Platynota Zones in the Lugar Section (External Subbetic, Southern Spain)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Review of the Classification of Jurassic Aspidoceratid Ammonites – the Superfamily Aspidoceratoidea
VOLUMINA JURASSICA, 2020, XVIII (1): 47–52 DOI: 10.7306/VJ.18.4 A review of the classification of Jurassic aspidoceratid ammonites – the Superfamily Aspidoceratoidea Horacio PARENT1, Günter SCHWEIGERT2, Armin SCHERZINGER3 Key words: Superfamily Aspidoceratoidea, Aspidoceratidae, Epipeltoceratinae emended, Peltoceratidae, Gregoryceratinae nov. subfam. Abstract. The aspidoceratid ammonites have been traditionally included in the superfamily Perisphinctoidea. However, the basis of this is unclear for they bear unique combinations of characters unknown in typical perisphinctoids: (1) the distinct laevaptychus, (2) stout shells with high growth rate of the whorl section area, (3) prominent ornamentation with tubercles, spines and strong growth lines running in parallel over strong ribs, (4) lack of constrictions, (5) short to very short bodychamber, and (6) sexual dimorphism characterized by minia- turized microconchs and small-sized macroconchs besides the larger ones, including changes of sex during ontogeny in many cases. Considering the uniqueness of these characters we propose herein to raise the family Aspidoceratidae to the rank of a superfamily Aspi- doceratoidea, ranging from the earliest Late Callovian to the Early Berriasian Jacobi Zone. The new superfamily includes two families, Aspidoceratidae (Aspidoceratinae, Euaspidoceratinae, Epipeltoceratinae and Hybonoticeratinae), and Peltoceratidae (Peltoceratinae and Gregoryceratinae nov. subfam.). The highly differentiated features of the aspidoceratoids indicate that their life-histories -
The Transversarium-Bifurcatus Zone Boundary at Rocha (Peral Area, East-Centralalgarve, Portugal)
The Transversarium-Bifurcatus Zone boundary at Rocha (Peral area, East-CentralAlgarve, Portugal) B.MARQUES * F. OLORIZ ** F. J. RODRIGUEZ-TOVAR ** P. S. CAETANO * * - Centro Estratigrafia e Paleobiologia da UNL, Faculdade de Ciencias e Tecnologia, Quinta da Torre, P-2825 Monte de Caparica, Portugal ** - Dpto. Estr. Paleont., Fac. Ciencias, Univ. Granada and Inst. And. Geol. Mediterranea (LA.G.M.) 18002 Granada, Spain pp. 109-125 Ciencias da Terra (UNL) Lisboa NQll 1992 3 figs., 2 pI. zones Bifurcatus/Bimammatum a ete reconnue une autre discontinuite, correspondanta celledu type II quisepareles RESUMO cycles 4.3-4.4 de HAQ et al. (1987); cette discontinuite avait deja ete individualisee sur la marge sud de I'Iberie. Palavras-chave: Amonites - Macroinvertebrados Dans I' intervalle entre la partie superieure de la zone bentonicas - Biostratigrafia - Ecostratigrafia a Transversarium et la partie inferieure de la zone a Descontinuidades-s--Jurdssico superior-Oxfordiano-:- Bimammatum,l'analysedel'evolutionecostratigraphique, Algarve- Sui de Portugal. faite a partir des spectres de la faune, a montre que dans I'ensemble des cephalopodes, les ammonites sont les Este trabalho representa 0 primeiro estudo organismesles plus tolerantsau stressecologique,provoque, pormenorizado do limite das Zonas de Transversarium soitparla diminution del'ecospace, soitpardes arrivees de Bifurcatus no Algarve. Este limite esta associado, na area materiel terrigene; dans ces conditions, la faune benthique do Peral, a uma descontinuidade estratigrafica cujo hiato diminue considerablernent. Dans l'ensemble de la faune afecta, parcialmente, as Zonas de Transversarium e de recoltce on signale la presence, relativement abondante et Bifurcatus. Uma outra descontinuidade foi reconhecida no diversifice, desDichotomoceras,auparavantpascommuns. limite das Zonas de Bifurcatus-Bimarnrnatum que, nesta area, coincide com a descontinuidade doTipo II que separa osciclos4.3-4.4 de HAQet al. -
INJURIES - a KEY to UNDERSTANDING LIFE MODES of AMMONOIDS Keupp, Helmut Institut Für Paläontologie, Freie Universität Berlin, Malteserstr
©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at INJURIES - A KEY TO UNDERSTANDING LIFE MODES OF AMMONOIDS Keupp, Helmut Institut für Paläontologie, Freie Universität Berlin, Malteserstr. 74-100, D-12249, Berlin. Email: [email protected] Comparative studies of the different types of regenerated injuries, which had been resulted from predatory interactivities, and their positions along the aperture of Mesozoic ammonoids (Early to Middle Triassic, Jurassic) allow to distinguish taxa with demersial modes of life and taxa which lived predominantely within the free water column , respectively. The main predators at the bottom were pincers-bearing crustaceans and in some cases also pycnodontid fishes, while predominantely different kind of fishes attacked free swimming ammonoids. A bimodal distribution (Fig.l) of same types of injuries caused by crustaceans along the aperture exhibits information about attacks during active as well as resting phases of these ammonoid animals, proving their demersial life style (KEUPP, 1997). From analogous types of injuries and their similar distribution patterns on the shell, a more or less bottom related life mode of Middle Triassic ptychitids is postulated as well as for the longidome Jurassic morphotypes with simple bifurcating ribs [e.g. Dactylioceras (Lower Toarcian) and several perisphinctids (Upper Jurassic)]. In contrast, the normal distribution of injury positions at the aperture, for example of Liassic harpoceratids, presumingly mostly caused by fish-attacks, indicates epipelagic life style. The often observed cases of multiple attacks on the same ammonoid specimen always with the same cofiguration of shell breakage and same position of injuries on the shell can be interpreted to hint at a stable habitat stationarity of both the predator and the ammonite. -
Paleontological Contributions
THE UNIVERSITY OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS May 15, 1970 Paper 47 SIGNIFICANCE OF SUTURES IN PHYLOGENY OF AMMONOIDEA JURGEN KULLMANN AND JOST WIEDMANN Universinit Tubingen, Germany ABSTRACT Because of their complex structure ammonoid sutures offer best possibilities for the recognition of homologies. Sutures comprise a set of individual elements, which may be changed during the course of ontogeny and phylogeny as a result of heterotopy, hetero- morphy, and heterochrony. By means of a morphogenetic symbol terminology, sutural formulas may be established which show the composition of adult sutures as well as their ontogenetic development. WEDEKIND ' S terminology system is preferred because it is the oldest and morphogenetically the most consequent, whereas RUZHENTSEV ' S system seems to be inadequate because of its usage of different symbols for homologous elements. WEDEKIND ' S system includes only five symbols: E (for external lobe), L (for lateral lobe), I (for internal lobe), A (for adventitious lobe), U (for umbilical lobe). Investigations on ontogenetic development show that all taxonomic groups of the entire superorder Ammonoidea can be compared one with another by means of their sutural development, expressed by their sutural formulas. Most of the higher and many of the lower taxa can be solely characterized and arranged in phylogenetic relationship by use of their sutural formulas. INTRODUCTION Today very few ammonoid workers doubt the (e.g., conch shape, sculpture, growth lines) rep- importance of sutures as indication of ammonoid resent less complicated structures; therefore, phylogeny. The considerable advances in our numerous homeomorphs restrict the usefulness of knowledge of ammonoid evolution during recent these features for phylogenetic investigations. -
Stuttgarter Beiträge Zur Naturkunde
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Stuttgarter Beiträge Naturkunde Serie B [Paläontologie] Jahr/Year: 1997 Band/Volume: 247_B Autor(en)/Author(s): Schweigert Günter, Callomon John H. Artikel/Article: Der banhini-Faunenhonzont und seine Bedeutung für die Korrelation zwischen tethyalem und subborealem Oberjura 1-69 © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at Stuttgarter Beiträge zur Naturkunde Serie B (Geologie und Paläontologie) Herausgeber: Staatliches Museum für Naturkunde, Rosenstein 1, D-70191 Stuttgart Stuttgarter Beitr. Naturk. Ser. B Nr. 247 69 S., ZTaf, 10 Abb. Stuttgart, 31. 07. 1997 Der banhini-Faunenhonzont und seine Bedeutung für die Korrelation zwischen tethyalem und subborealem Oberjura The bauhini faunal horizon and its correlation value in the Tethyan and Subboreal Late Jurassic Von Günter Seh weigert, Stuttgart, und John H. C a 1 1 o m o n, London Mit 7 Tafeln und 10 Abbildungen Abstract The ammonite fauna of the so-called „bauhini horizon" is described in detail. The material comes from the Upper Danube valley and from the Lochen area (SW Germany). The bauhini horizon marks the youngest horizon of the Hauffianum Subzone (Late Oxfordian) of the Te- thyan chronozonation. The comparison of amoeboceratids permits a correlation of this hori- zon with the base of the Subboreal Kimmeridgian (Baylei Zone, densicostata horizon). Hence the bauhini horizon is demonstrated to be one of the most important levels for correlations. Three new ammonite species are described from the bauhini horizon: Metahaploceras muehl- heimense n. sp., Physodoceras wulfbachense n. sp., and Pictonia praeperisphinctoides n. -
A Comparison of the Ammonite Faunas of the Antarctic Peninsula and Magallanes Basin
J. geol. Soc. London, Vol. 139, 1982, pp. 763-770, 1 fig, 1 table. Printed in Northern Ireland A comparison of the ammonite faunas of the Antarctic Peninsula and Magallanes Basin M. R. A. Thomson SUMMARY: Ammonite-bearingJurassic and Cretaceous sedimentary successions are well developed in the Antarctic Peninsula and the Magallanes Basin of Patagonia. Faunas of middle Jurassic-late Cretaceous age are present in Antarctica but those of Patagonia range no earlier than late Jurassic. Although the late Jurassic perisphinctid-dominated faunas of the Antarctic Peninsulashow wide-ranging Gondwana affinities, it is not yet possible to effect a close comparison with faunas of similar age in Patagonia because of the latter's poor preservation and our scant knowledge of them. In both regions the Neocomian is not well represented in the ammonite record, although uninterrupted sedimentary successions appear to be present. Lack of correspondence between the Aptian and Albian faunas of Alexander I. and Patagonia may be due to major differences in palaeogeographical setting. Cenomanian-Coniacian ammonite faunas are known only from Patagonia, although bivalve faunas indicate that rocks of this age are present in Antarctica. Kossmaticeratid faunas mark the late Cretaceous in both regions. In Antarcticathese have been classified as Campanian, whereas in Patagonia it is generally accepted, perhaps incorrectly, that these also range into the Maestrichtian. Fossiliferous Jurassic and Cretaceous marine rocks are rize first those of the Antarctic Peninsula and then to well developedin theAntarctic Peninsula, Scotia compare them with those of Patagonia. Comparisons Ridge andPatagonia (Fig. 1A).In Antarcticathese between Antarctic ammonite faunas and other Gond- rocks are distributed along the western and eastern wana areas wereoutlined by Thomson (1981a), and margins of theAntarctic Peninsula, formerly the the faunas of the marginal basin were discussed in magmatic arc from which the sediments were derived. -
Sepkoski, J.J. 1992. Compendium of Fossil Marine Animal Families
MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. Department of the Geophysical Sciences University of Chicago Chicago, Illinois 60637 Milwaukee Public Museum Contributions in Biology and Geology Rodney Watkins, Editor (Reviewer for this paper was P.M. Sheehan) This publication is priced at $25.00 and may be obtained by writing to the Museum Gift Shop, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Orders must also include $3.00 for shipping and handling ($4.00 for foreign destinations) and must be accompanied by money order or check drawn on U.S. bank. Money orders or checks should be made payable to the Milwaukee Public Museum. Wisconsin residents please add 5% sales tax. In addition, a diskette in ASCII format (DOS) containing the data in this publication is priced at $25.00. Diskettes should be ordered from the Geology Section, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Specify 3Y. inch or 5Y. inch diskette size when ordering. Checks or money orders for diskettes should be made payable to "GeologySection, Milwaukee Public Museum," and fees for shipping and handling included as stated above. Profits support the research effort of the GeologySection. ISBN 0-89326-168-8 ©1992Milwaukee Public Museum Sponsored by Milwaukee County Contents Abstract ....... 1 Introduction.. ... 2 Stratigraphic codes. 8 The Compendium 14 Actinopoda. -
Sexual Dimorphism in the Bathonian Morphoceratid Ammonite Polysphinctites Tenuiplicatus
Sexual dimorphism in the Bathonian morphoceratid ammonite Polysphinctites tenuiplicatus HORACIO PARENT and MICHAŁ ZATOŃ Parent, H. and Zatoń, M. 2016. Sexual dimorphism in the Bathonian morphoceratid ammonite Polysphinctites tenuipli- catus. Acta Palaeontologica Polonica 61 (4): 875–884. Asphinctites tenuiplicatus [M] and Polysphinctites secundus [m] from the Asphinctites tenuiplicatus Zone (Early Batho- nian), are usually considered as a sexual dimorphic pair, although authors describe them as separate species. We used statistical methods to test the sexual dimorphic correspondence between those morphospecies, based on a rather large sample of well-preserved macro- and microconchs derived from a single horizon of calcareous concretions in the Polish Jura. Our results indicate that both dimorphs or sexes have identical ontogeny up to a critical diameter, from which they diverge towards the characteristic morphology and sculpture of each dimorph. Thus, both dimorphs are described as a single species: Polysphinctites tenuiplicatus [M and m]. After review of the several nominal species usually assigned to the genera Asphinctites and Polysphinctites throughout their stratigraphic and biogeographic range in the Early Bathonian of the Tethys, it is concluded that they actually correspond to only two species of a single lineage. The corre- sponding name for the lineage should be Polysphinctites (= Asphinctites as a junior synonym). Key words: Ammonoidea, Morphoceratidae, dimorphism, macroconch, microconch, Jurassic, Poland. Horacio Parent [[email protected]], Laboratorio de Paleontología, IFG-FCEIA, Universidad Nacional de Ro- sario, Pellegrini 250, 2000 Rosario, Argentina. Michał Zatoń [[email protected]], University of Silesia, Faculty of Earth Sciences, Department of Palaeontology and Stratigraphy, ul. Będzińska 60, 41-200 Sosnowiec, Poland. -
Abbreviation Kiel S. 2005, New and Little Known Gastropods from the Albian of the Mahajanga Basin, Northwestern Madagaskar
1 Reference (Explanations see mollusca-database.eu) Abbreviation Kiel S. 2005, New and little known gastropods from the Albian of the Mahajanga Basin, Northwestern Madagaskar. AF01 http://www.geowiss.uni-hamburg.de/i-geolo/Palaeontologie/ForschungImadagaskar.htm (11.03.2007, abstract) Bandel K. 2003, Cretaceous volutid Neogastropoda from the Western Desert of Egypt and their place within the noegastropoda AF02 (Mollusca). Mitt. Geol.-Paläont. Inst. Univ. Hamburg, Heft 87, p 73-98, 49 figs., Hamburg (abstract). www.geowiss.uni-hamburg.de/i-geolo/Palaeontologie/Forschung/publications.htm (29.10.2007) Kiel S. & Bandel K. 2003, New taxonomic data for the gastropod fauna of the Uzamba Formation (Santonian-Campanian, South AF03 Africa) based on newly collected material. Cretaceous research 24, p. 449-475, 10 figs., Elsevier (abstract). www.geowiss.uni-hamburg.de/i-geolo/Palaeontologie/Forschung/publications.htm (29.10.2007) Emberton K.C. 2002, Owengriffithsius , a new genus of cyclophorid land snails endemic to northern Madagascar. The Veliger 45 (3) : AF04 203-217. http://www.theveliger.org/index.html Emberton K.C. 2002, Ankoravaratra , a new genus of landsnails endemic to northern Madagascar (Cyclophoroidea: Maizaniidae?). AF05 The Veliger 45 (4) : 278-289. http://www.theveliger.org/volume45(4).html Blaison & Bourquin 1966, Révision des "Collotia sensu lato": un nouveau sous-genre "Tintanticeras". Ann. sci. univ. Besancon, 3ème AF06 série, geologie. fasc.2 :69-77 (Abstract). www.fossile.org/pages-web/bibliographie_consacree_au_ammon.htp (20.7.2005) Bensalah M., Adaci M., Mahboubi M. & Kazi-Tani O., 2005, Les sediments continentaux d'age tertiaire dans les Hautes Plaines AF07 Oranaises et le Tell Tlemcenien (Algerie occidentale). -
High-Level Classification of the Nautiloid Cephalopods: a Proposal for the Revision of the Treatise Part K
Swiss Journal of Palaeontology (2019) 138:65–85 https://doi.org/10.1007/s13358-019-00186-4 (0123456789().,-volV)(0123456789().,- volV) REGULAR RESEARCH ARTICLE High-level classification of the nautiloid cephalopods: a proposal for the revision of the Treatise Part K 1 2 Andy H. King • David H. Evans Received: 4 November 2018 / Accepted: 13 February 2019 / Published online: 14 March 2019 Ó Akademie der Naturwissenschaften Schweiz (SCNAT) 2019 Abstract High-level classification of the nautiloid cephalopods has been largely neglected since the publication of the Russian and American treatises in the early 1960s. Although there is broad general agreement amongst specialists regarding the status of nautiloid orders, there is no real consensus or consistent approach regarding higher ranks and an array of superorders utilising various morphological features has been proposed. With work now commencing on the revision of the Treatise Part K, there is an urgent need for a methodical and standardised approach to the high-level classification of the nautiloids. The scheme proposed here utilizes the form of muscle attachment scars as a diagnostic feature at subclass level; other features (including siphuncular structures and cameral deposits) are employed at ordinal level. We recognise five sub- classes of nautiloid cephalopods (Plectronoceratia, Multiceratia, Tarphyceratia nov., Orthoceratia, Nautilia) and 18 orders including the Order Rioceratida nov. which contains the new family Bactroceratidae. This scheme has the advantage of relative simplicity (it avoids the use of superorders) and presents a balanced approach which reflects the considerable morphological diversity and phylogenetic longevity of the nautiloids in comparison with the ammonoid and coleoid cephalopods. -
Introduzione
INDICE GENERALE INTRODUZIONE .................................................................................................................. 5 1. STUDI PALEONTOLOGICI SUL GIURASSICO MEDIO E SUPERIORE IN SICILIA OCCIDENTALE ................................................................................................................... 7 2. PALEOECOLOGIA E PALEOBIOLOGIA DELLE AMMONITI ............................................ 13 3. EVOLUZIONE E PALEOGEOGRAFIA DELLE AMMONITI GIURASSICHE.......................... 19 3.1 PREMESSA ......................................................................................................... 19 3.2 AMMONITI GIURASSICHE E LORO EVOLUZIONE ................................................. 20 4. DISTRIBUZIONE STRATIGRAFICA E DIFFUSIONE PALEOBIOGEOGRAFICA DEI PRINCIPALI TAXA DI AMMONITI DELLA TETIDE OCCIDENTALE DURANTE IL GIURASSICO MEDIO E SUPERIORE ...................................................................................................................... 27 4.1 IL LIMITE CALLOVIANO-OXFORDIANO .............................................................. 37 4.2 IL PIANO OXFORDIANO. SCHEMI BIOSTRATIGRAFICI ADOTTATI ........................ 40 4.2.1 DISCUSSIONE .................................................................................................... 41 4.3 IL LIMITE OXFORDIANO-KIMMERIDGIANO ........................................................ 43 4.4 IL KIMMERIDGIANO .......................................................................................... 50 4.5 SCHEMA -
Towards a Consistent Oxfordian-Kimmeridgian Global
Towards a consistent Oxfordian-Kimmeridgian global boundary: current state of knowledge Andrzej Wierzbowski 1, Francois Atrops 2, Jacek Grabowski 1, Mark Hounslow 3, Bronisław A.Matyja 4, Federico Olóriz 5, Kevin Page 6, Horacio Parent 7, Mikhail A. Rogov 8, Günter Schweigert 9, Hubert Wierzbowski 1, John K. Wright 10 1 Polish Geological; Institute – National Research Institute, 4, Rakowiecka Str., 00-975 Warszawa, Poland, e-mail: [email protected] , [email protected] , [email protected] ; 2 UFR Sciences de la Terre, Université Claude-Bernard Lyon 1, 43 bd.du 11 Novembre, 69622 Villeurbanne Cedex, e-mail: francois.atrops@univ- lyon1.fr ; 3CEMP, Lancaster Environment Centre, Lancaster University, UK, e-mail: [email protected] ; 4 Faculty of Geology, University of Warsaw, 93, Żwirki i Wigury Str., 02-089 Warszawa, Poland, e-mail: [email protected] ; 5 Department of Stratigraphy and Paleontology, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, 1807 Granada, Spain, e-mail: [email protected]; 6 School of Geography, Earth and Environmental Sciences, University of Plymouth, Drakes Circus, Plymouth PL4 8AA, UK, e- mail: [email protected] ; 7 Laboratorio de Paleontologia IFG, FCEIA Universidad Nacional de Rosario, pellegrini 259-0, 2000 Rosario, Argentina, e-mail: [email protected],edu.ar ; 8 Geological Institute of Russian Academy of Sciences, 7, Pyzhevskii Lane, 119017 Moscow, Russia; e-mail: [email protected] ; 9Staatliches Museum für Naturkunde, 1, Rosenstein, 70-191Stuttgart, Germany; e-mail: [email protected] ;10 Department of Earth Sciences, Royal Holloway College, Egham, Surrey, U.K.