Infection by the castrating parasitic nematode Sphaerularia bombi changes gene expression in Bombus terrestris bumblebee queens Thomas J. Colgan1,2,3*, James C. Carolan4, Seirian Sumner5, Mark L. Blaxter6, Mark J. F. Brown7* Affiliation: 1. Department of Zoology, School of Natural Sciences, University of Dublin, Trinity College, Dublin 2, Ireland. 2. School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, United Kingdom. 3. School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland. 4. Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland. 5. Centre for Biodiversity and Environment Research, University College London, Gower Street, London WC1E 6BT, United Kingdom. 6. School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom. 7. Department of Biological Sciences, Centre for Ecology, Evolution and Behaviour, Royal Holloway University of London, Egham Hill, Egham, TW20 0EX, United Kingdom. Correspondence: Thomas J. Colgan
[email protected] Mark J.F. Brown
[email protected] Short running title: Nematode alters bumblebee queen gene expression. 1 Abstract Parasitism can result in dramatic changes in host phenotype, which are themselves underpinned by genes and their expression. Understanding how hosts respond at the molecular level to parasites can therefore reveal the molecular architecture of an altered host phenotype. The entomoparasitic nematode Sphaerularia bombi is a parasite of bumblebee (Bombus) hosts where it induces complex behavioural changes and host castration. To examine this interaction at the molecular level, we performed genome-wide transcriptional profiling using RNA-Seq of S. bombi-infected Bombus terrestris queens at two critical time-points: during and just after overwintering diapause.