PETITION to LIST the Rusty Patched Bumble Bee Bombus Affinis

Total Page:16

File Type:pdf, Size:1020Kb

PETITION to LIST the Rusty Patched Bumble Bee Bombus Affinis PETITION TO LIST The rusty patched bumble bee Bombus affinis (Cresson), 1863 AS AN ENDANGERED SPECIES UNDER THE U.S. ENDANGERED SPECIES ACT Female Bombus affinis foraging on Dalea purpurea at Pheasant Branch Conservancy, Wisconsin, 2012, Photo © Christy Stewart Submitted by The Xerces Society for Invertebrate Conservation Prepared by Sarina Jepsen, Elaine Evans, Robbin Thorp, Rich Hatfield, and Scott Hoffman Black January 31, 2013 1 The Honorable Ken Salazar Secretary of the Interior Office of the Secretary Department of the Interior 18th and C Street N.W. Washington D.C., 20240 Dear Mr. Salazar: The Xerces Society for Invertebrate Conservation hereby formally petitions to list the rusty patched bumble bee (Bombus affinis) as an endangered species under the Endangered Species Act, 16 U.S.C. § 1531 et seq. This petition is filed under 5 U.S.C. 553(e) and 50 CFR 424.14(a), which grants interested parties the right to petition for issue of a rule from the Secretary of the Interior. Bumble bees are iconic pollinators that contribute to our food security and the healthy functioning of our ecosystems. The rusty patched bumble bee was historically common from the Upper Midwest to the eastern seaboard, but in recent years it has been lost from more than three quarters of its historic range and its relative abundance has declined by ninety-five percent. Existing regulations are inadequate to protect this species from disease and other threats. We are aware that this petition sets in motion a specific process placing definite response requirements on the U.S. Fish and Wildlife Service and very specific time constraints upon those responses. 16 U.S.C. § 1533(b). We will therefore expect a finding by the Service within 90 days regarding whether our petition contains substantial information to warrant a full status review. Sincerely, Sarina Jepsen Endangered Species Program Director, The Xerces Society for Invertebrate Conservation 2 TABLE OF CONTENTS I. EXECUTIVE SUMMARY ...................................................................................................................................... 4 II. CANDIDATE BACKGROUND, STATUS, AND LISTING HISTORY ........................................................... 4 III. POPULATION STATUS AND DISTRIBUTION .............................................................................................. 5 A. Historic Distribution . ........................................................................................................................................... 5 B. Population Status. ................................................................................................................................................. 6 1. Midwestern United States .................................................................................................................................. 6 2. Northeastern United States and southeastern Canada ........................................................................................ 6 C. Current Distribution .............................................................................................................................................. 7 IV. CURRENT AND POTENTIAL THREATS – SUMMARY OF FACTORS FOR CONSIDERATION ..... 10 A. The Present or Threatened Destruction, Modification, or Curtailment of its Habitat or Range .......................... 10 1. Agricultural Intensification ........................................................................................................................ 11 2. Livestock Grazing ...................................................................................................................................... 11 3. Urban Development ................................................................................................................................... 12 4. Fire and Fire Suppression ........................................................................................................................... 12 B. Overutilization for Commercial, Recreational, Scientific, or Educational Purposes. ......................................... 13 C. Disease or Predation ........................................................................................................................................... 13 1. Pathogens and Parasites of Bumble Bees ................................................................................................... 13 a. Microparasites ........................................................................................................................................ 13 b. Macroparasites ....................................................................................................................................... 14 2. Pathogen Spillover ..................................................................................................................................... 15 a. Commercial Bumble Bees ..................................................................................................................... 15 b. Honey Bees ............................................................................................................................................ 17 D. The Inadequacy of Existing Regulatory Mechanisms ........................................................................................ 18 1. Existing Regulations are Inadequate to Protect this Species’ Habitat ........................................................ 18 2. Existing Regulations are Inadequate to Protect this Species from Disease ................................................ 18 3. Existing Regulations are Inadequate to Protect this Species from Pesticides ............................................ 19 E. Other Natural or Manmade Factors Affecting its Continued Existence .............................................................. 19 1. Pesticides .................................................................................................................................................... 19 a. Insecticides ............................................................................................................................................ 20 b. Herbicides .............................................................................................................................................. 21 2. Population Dynamics and Structure ........................................................................................................... 22 a. Declining North American Bumble Bees have lost Genetic Diversity .................................................. 22 b. Impacts of Genetic Factors on Bumble Bees ......................................................................................... 22 3. Global Climate Change .............................................................................................................................. 23 4. Competition with Commercial Honey Bees ............................................................................................... 24 V. TAXONOMIC STATUS ...................................................................................................................................... 24 VI. SPECIES DESCRIPTION ................................................................................................................................. 24 A. Queens and Workers ........................................................................................................................................... 24 B. Males ................................................................................................................................................................... 25 VII. BIOLOGY, HABITAT REQUIREMENTS AND POLLINATION ECOLOGY ........................................ 25 A. Biology and Habitat Requirements ..................................................................................................................... 25 B. Bumble Bee Pollination Ecology ........................................................................................................................ 26 VIII. CONCLUSION ................................................................................................................................................. 28 IX. REFERENCES CITED ...................................................................................................................................... 28 X. PERSONAL COMMUNICATION ..................................................................................................................... 41 XI. APPENDIX I........................................................................................................................................................ 42 3 I. EXECUTIVE SUMMARY The rusty patched bumble bee (Bombus affinis) faces an immediate risk of extinction. Recent research has shown a significant reduction in both the range and relative abundance of this species. Although it was historically common from the Upper Midwest to the eastern seaboard, a recent nationwide study estimated that the rusty patched bumble bee had been lost from 87% of its historic range and that its relative abundance had declined by 95% (Cameron et al. 2011a; pers. comm. J. Lozier). A second recent study of historic museum specimens and records from contemporary surveys confirmed that this species has been lost from more than 70% of its entire historic range (including Canada) (Colla et al. 2012). The rusty patched bumble bee is threatened
Recommended publications
  • The Mite-Y Bee: Factors Affecting the Mite Community of Bumble Bees (Bombus Spp., Hymenoptera: Apidae)
    The Mite-y Bee: Factors Affecting the Mite Community of Bumble Bees (Bombus spp., Hymenoptera: Apidae) By Stephanie Margaret Haas Thesis submitted to the Faculty of Graduate and Postdoctoral Studies, University of Ottawa, in partial fulfillment of the requirements for M.Sc. Degree in the Ottawa-Carleton Institute of Biology Thèse soumise à la Faculté des études supérieures et postdoctorales, Université d’Ottawa en vue de l’obtention de la maîtrise en sciences de l’Institut de Biologie d’Ottawa-Carleton © Stephanie Haas, Ottawa, Canada, 2017 Abstract Parasites and other associates can play an important role in shaping the communities of their hosts; and their hosts, in turn, shape the community of host-associated organisms. This makes the study of associates vital to understanding the communities of their hosts. Mites associated with bees have a range of lifestyles on their hosts, acting as anything from parasitic disease vectors to harmless scavengers to mutualistic hive cleaners. For instance, in Apis mellifera (the European honey bee) the parasitic mite Varroa destructor has had a dramatic impact as one of the causes of colony-collapse disorder. However, little is known about mites associated with bees outside the genus Apis or about factors influencing the makeup of bee- associated mite communities. In this thesis, I explore the mite community of bees of the genus Bombus and how it is shaped by extrinsic and intrinsic aspects of the bees' environment at the individual bee, bee species, and bee community levels. Bombus were collected from 15 sites in the Ottawa area along a land-use gradient and examined for mites.
    [Show full text]
  • Classification of the Apidae (Hymenoptera)
    Utah State University DigitalCommons@USU Mi Bee Lab 9-21-1990 Classification of the Apidae (Hymenoptera) Charles D. Michener University of Kansas Follow this and additional works at: https://digitalcommons.usu.edu/bee_lab_mi Part of the Entomology Commons Recommended Citation Michener, Charles D., "Classification of the Apidae (Hymenoptera)" (1990). Mi. Paper 153. https://digitalcommons.usu.edu/bee_lab_mi/153 This Article is brought to you for free and open access by the Bee Lab at DigitalCommons@USU. It has been accepted for inclusion in Mi by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. 4 WWvyvlrWryrXvW-WvWrW^^ I • • •_ ••^«_«).•>.• •.*.« THE UNIVERSITY OF KANSAS SCIENC5;^ULLETIN LIBRARY Vol. 54, No. 4, pp. 75-164 Sept. 21,1990 OCT 23 1990 HARVARD Classification of the Apidae^ (Hymenoptera) BY Charles D. Michener'^ Appendix: Trigona genalis Friese, a Hitherto Unplaced New Guinea Species BY Charles D. Michener and Shoichi F. Sakagami'^ CONTENTS Abstract 76 Introduction 76 Terminology and Materials 77 Analysis of Relationships among Apid Subfamilies 79 Key to the Subfamilies of Apidae 84 Subfamily Meliponinae 84 Description, 84; Larva, 85; Nest, 85; Social Behavior, 85; Distribution, 85 Relationships among Meliponine Genera 85 History, 85; Analysis, 86; Biogeography, 96; Behavior, 97; Labial palpi, 99; Wing venation, 99; Male genitalia, 102; Poison glands, 103; Chromosome numbers, 103; Convergence, 104; Classificatory questions, 104 Fossil Meliponinae 105 Meliponorytes,
    [Show full text]
  • Anthidium Manicatum, an Invasive Bee, Excludes a Native Bumble Bee, Bombus Impatiens, from floral Resources
    Biol Invasions https://doi.org/10.1007/s10530-018-1889-7 (0123456789().,-volV)(0123456789().,-volV) ORIGINAL PAPER Anthidium manicatum, an invasive bee, excludes a native bumble bee, Bombus impatiens, from floral resources Kelsey K. Graham . Katherine Eaton . Isabel Obrien . Philip T. Starks Received: 15 April 2018 / Accepted: 21 November 2018 Ó Springer Nature Switzerland AG 2018 Abstract Anthidium manicatum is an invasive pol- response to A. manicatum presence. We found that B. linator reaching widespread distribution in North impatiens avoided foraging near A. manicatum in both America. Male A. manicatum aggressively defend years; but despite this resource exclusion, we found no floral territories, attacking heterospecific pollinators. evidence of fitness consequences for B. impatiens. Female A. manicatum are generalists, visiting many of These results suggest A. manicatum pose as significant the same plants as native pollinators. Because of A. resource competitors, but that B. impatiens are likely manicatum’s rapid range expansion, the territorial able to compensate for this resource loss by finding behavior of males, and the potential for female A. available resources elsewhere. manicatum to be significant resource competitors, invasive A. manicatum have been prioritized as a Keywords Exotic species Á Resource competition Á species of interest for impact assessment. But despite Interspecific competition Á Foraging behavior Á concerns, there have been no empirical studies inves- Pollination tigating the impact of A. manicatum on North Amer- ican pollinators. Therefore, across a two-year study, we monitored foraging behavior and fitness of the common eastern bumble bee (Bombus impatiens) in Introduction With increasing movement of goods and people Electronic supplementary material The online version of around the world, introduction of exotic species is this article (https://doi.org/10.1007/s10530-018-1889-7) con- increasing at an unprecedented rate (Ricciardi et al.
    [Show full text]
  • Interspecific Geographic Distribution and Variation of the Pathogens
    Journal of Invertebrate Pathology xxx (2011) xxx–xxx Contents lists available at SciVerse ScienceDirect Journal of Invertebrate Pathology journal homepage: www.elsevier.com/locate/jip Interspecific geographic distribution and variation of the pathogens Nosema bombi and Crithidia species in United States bumble bee populations Nils Cordes a, Wei-Fone Huang b, James P. Strange c, Sydney A. Cameron d, Terry L. Griswold c, ⇑ Jeffrey D. Lozier e, Leellen F. Solter b, a University of Bielefeld, Evolutionary Biology, Morgenbreede 45, 33615 Bielefeld, Germany b Illinois Natural History Survey, Prairie Research Institute, University of Illinois, 1816 S. Oak St., Champaign, IL 61820, United States c USDA-ARS Pollinating Insects Research Unit, Utah State University, Logan, UT 84322-5310, United States d Department of Entomology and Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, United States e Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, United States article info abstract Article history: Several bumble bee (Bombus) species in North America have undergone range reductions and rapid Received 4 September 2011 declines in relative abundance. Pathogens have been suggested as causal factors, however, baseline data Accepted 10 November 2011 on pathogen distributions in a large number of bumble bee species have not been available to test this Available online xxxx hypothesis. In a nationwide survey of the US, nearly 10,000 specimens of 36 bumble bee species collected at 284 sites were evaluated for the presence and prevalence of two known Bombus pathogens, the micros- Keywords: poridium Nosema bombi and trypanosomes in the genus Crithidia. Prevalence of Crithidia was 610% for all Bombus species host species examined but was recorded from 21% of surveyed sites.
    [Show full text]
  • Guide to MN Bumble Bees: Females
    Guide to MN Bumble Bees: Females This guide is only for females (12 antennal segments, 6 abdominal segments, most bumble Three small bees, most have pollen baskets, no beards on their mandibles). First determine which yellow eyes highlighted section your bee is in, then go through numbered characters to find a match. See if your bee matches the color patterns shown and the description in the text. Color patterns ® can vary. More detailed keys are available at discoverlife.org. Top of head Bee Front of face Squad Join the search for bumble bees with www.bumbleebeewatch.org Cheek Yellow hairs between wings, 1st abdominal band yellow (may have black spot in center of thorax) 1. Black on sides of 2nd ab, yellow or rusty in center 2.All other ab segments black 3. 2nd ab brownish centrally surrounded by yellow 2nd abdominal 2nd abdominal Light lemon Center spot band with yellow band with yellow hairs on on thorax with in middle, black yellow in middle top of head and sometimes faint V on sides. Yellow bordered by and on thorax. shaped extension often in a “W” rusty brown in a back from the shape. Top of swooping shape. middle. Queens head yellow. Top of head do not have black. Bombus impatiens Bombus affinis brownish central rusty patched bumble bee Bombus bimaculatus Bombus griseocollis common eastern bumble bee C patch. two-spotted bumble bee C brown-belted bumble bee C 5. Yellow on front edge of 2nd ab 6. No obvious spot on thorax. 4. 2nd ab entirely yellow and ab 3-6 black Yellow on top Black on top of Variable color of head.
    [Show full text]
  • NIH Public Access Author Manuscript J Eukaryot Microbiol
    NIH Public Access Author Manuscript J Eukaryot Microbiol. Author manuscript; available in PMC 2009 November 18. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: J Eukaryot Microbiol. 2009 ; 56(2): 142±147. doi:10.1111/j.1550-7408.2008.00374.x. Morphological, molecular, and phylogenetic characterization of Nosema ceranae, a microsporidian parasite isolated from the European honey bee, Apis mellifera Y.P. Chena, J.D. Evansa, C. Murphyb, R. Gutellc, M. Zukerd, D. Gundensen-Rindale, and J.S. Pettisa a USDA-ARS, Bee Research Laboratory, Beltsville, MD, USA b USDA-ARS, Soybean Genomic & Improvement Laboratory, Beltsville, MD, USA c Institute for Cellular and Molecular Biology and Section of Integrative Biology, University of Texas, Austin, TX, USA d Rensselaer Polytechnic Institute, NY, USA e USDA-ARS, Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD, USA Abstract Nosema ceranae, a microsporidian parasite originally described from Apis cerana, has been found to infect Apis melllifera and is highly pathogenic to its new host. In the present study, data on the ultrastructure of N. ceranae, presence of N. ceranae-specific nucleic acid in host tissues, and phylogenetic relationships with other microsporidia species are described. The ultrastructural features indicate that N. ceranae possesses all of the characteristics of the genus Nosema. Spores of N. ceranae measured approximately 4.4 × 2.2 μm on fresh smears. The number of coils of the polar filament inside spores was 18--21. PCR signals specific for N. ceranae were detected not only in the primary infection site, the midgut, but also in the tissues of hypopharyngeal glands, salivary glands, Malpighian tubules, and fat body.
    [Show full text]
  • Phylogenetic Analysis of the Corbiculate Bee Tribes Based on 12 Nuclear Protein-Coding Genes (Hymenoptera: Apoidea: Apidae) Atsushi Kawakita, John S
    Phylogenetic analysis of the corbiculate bee tribes based on 12 nuclear protein-coding genes (Hymenoptera: Apoidea: Apidae) Atsushi Kawakita, John S. Ascher, Teiji Sota, Makoto Kato, David W. Roubik To cite this version: Atsushi Kawakita, John S. Ascher, Teiji Sota, Makoto Kato, David W. Roubik. Phylogenetic anal- ysis of the corbiculate bee tribes based on 12 nuclear protein-coding genes (Hymenoptera: Apoidea: Apidae). Apidologie, Springer Verlag, 2008, 39 (1), pp.163-175. hal-00891935 HAL Id: hal-00891935 https://hal.archives-ouvertes.fr/hal-00891935 Submitted on 1 Jan 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie 39 (2008) 163–175 Available online at: c INRA/DIB-AGIB/ EDP Sciences, 2008 www.apidologie.org DOI: 10.1051/apido:2007046 Original article Phylogenetic analysis of the corbiculate bee tribes based on 12 nuclear protein-coding genes (Hymenoptera: Apoidea: Apidae)* Atsushi Kawakita1, John S. Ascher2, Teiji Sota3,MakotoKato 1, David W. Roubik4 1 Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan 2 Division of Invertebrate Zoology, American Museum of Natural History, New York, USA 3 Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan 4 Smithsonian Tropical Research Institute, Balboa, Ancon, Panama Received 2 July 2007 – Revised 3 October 2007 – Accepted 3 October 2007 Abstract – The corbiculate bees comprise four tribes, the advanced eusocial Apini and Meliponini, the primitively eusocial Bombini, and the solitary or communal Euglossini.
    [Show full text]
  • The Rusty Patched Bumble Bee (Bombus Affinis) Voluntary Implementation Guidance for Section 10(A)(1)(B) of the Endangered Species Act
    The Rusty Patched Bumble Bee (Bombus affinis) Voluntary Implementation Guidance for Section 10(a)(1)(B) of the Endangered Species Act Version 1.1 U.S. Fish & Wildlife Service, Regions 3, 4, 5 and 6 March 21, 2017 Contents Background and Purpose ................................................................................................................ 1 Current Versions of this Guidance .................................................................................................. 1 Range of Rusty Patched Bumble Bee .............................................................................................. 1 Brief Description of the Habitat Model ...................................................................................... 2 Section 10(a)(1)(B) of the Endangered Species Act and the Rusty Patched Bumble Bee .............. 5 Screening and Evaluation of Projects – A Stepwise Approach ................................................... 5 Step 1. Determine whether the rusty patched bumble bee is likely to be present in the project area. ............................................................................................................................ 5 Step 2 - Review the Project for its Potential to Incidentally Take the Species ....................... 8 Step 3 - Review Measures to Avoid Incidental Take of the Rusty Patched Bumble Bee ...... 14 Conservation Measures ............................................................................................................ 15 Restore and Maintain High Quality Habitat
    [Show full text]
  • Bumble Bees of CT-Females
    Guide to CT Bumble Bees: Females This guide is only for females (12 antennal segments, 6 abdominal segments, most bumble bees, most have pollen baskets, no beards on their mandibles). First determine which yellow Three small eyes highlighted section your bee is in, then go through numbered characters to find a match. See if your bee matches the color patterns shown and the description in the text. Color patterns can vary. More detailed keys are available at discoverlife.org. Top of head Join the search for bumble bees with www.bumbleebeewatch.org Front of face Cheek Yellow hairs between wings, 1st abdominal band yellow (may have black spot in center of thorax) 1. Black on sides of 2nd ab, yellow or rusty in center 2.All other ab segments black 3. 2nd ab brownish centrally surrounded by yellow 2nd abdominal 2nd abdominal Light lemon Center spot band with yellow band with yellow hairs on on thorax with in middle, black yellow in middle top of head and sometimes faint V on sides. Yellow bordered by and on thorax. shaped extension often in a “W” rusty brown in a back from the shape. Top of swooping shape. middle. Queens head yellow. Top of head do not have black. Bombus impatiens Bombus affinis brownish central rusty patched bumble bee Bombus bimaculatus Bombus griseocollis common eastern bumble bee patch. two-spotted bumble bee brown-belted bumble bee 4. 2nd ab entirely yellow and ab 3-6 black 5. No obvious spot on thorax. Yellow on top Black on top of Variable color of head.
    [Show full text]
  • Global Trends in Bumble Bee Health
    EN65CH11_Cameron ARjats.cls December 18, 2019 20:52 Annual Review of Entomology Global Trends in Bumble Bee Health Sydney A. Cameron1,∗ and Ben M. Sadd2 1Department of Entomology, University of Illinois, Urbana, Illinois 61801, USA; email: [email protected] 2School of Biological Sciences, Illinois State University, Normal, Illinois 61790, USA; email: [email protected] Annu. Rev. Entomol. 2020. 65:209–32 Keywords First published as a Review in Advance on Bombus, pollinator, status, decline, conservation, neonicotinoids, pathogens October 14, 2019 The Annual Review of Entomology is online at Abstract ento.annualreviews.org Bumble bees (Bombus) are unusually important pollinators, with approx- https://doi.org/10.1146/annurev-ento-011118- imately 260 wild species native to all biogeographic regions except sub- 111847 Saharan Africa, Australia, and New Zealand. As they are vitally important in Copyright © 2020 by Annual Reviews. natural ecosystems and to agricultural food production globally, the increase Annu. Rev. Entomol. 2020.65:209-232. Downloaded from www.annualreviews.org All rights reserved in reports of declining distribution and abundance over the past decade ∗ Corresponding author has led to an explosion of interest in bumble bee population decline. We Access provided by University of Illinois - Urbana Champaign on 02/11/20. For personal use only. summarize data on the threat status of wild bumble bee species across bio- geographic regions, underscoring regions lacking assessment data. Focusing on data-rich studies, we also synthesize recent research on potential causes of population declines. There is evidence that habitat loss, changing climate, pathogen transmission, invasion of nonnative species, and pesticides, oper- ating individually and in combination, negatively impact bumble bee health, and that effects may depend on species and locality.
    [Show full text]
  • Non-Leishmania Parasite in Fatal Visceral Leishmaniasis–Like Disease, Brazil
    DISPATCHES Non-Leishmania Parasite in Fatal Visceral Leishmaniasis–Like Disease, Brazil Sandra R. Maruyama,1 Alynne K.M. de Santana,1,2 performed whole-genome sequencing of 2 clinical isolates Nayore T. Takamiya, Talita Y. Takahashi, from a patient with a fatal illness with clinical characteris- Luana A. Rogerio, Caio A.B. Oliveira, tics similar to those of VL. Cristiane M. Milanezi, Viviane A. Trombela, Angela K. Cruz, Amélia R. Jesus, The Study Aline S. Barreto, Angela M. da Silva, During 2011–2012, we characterized 2 parasite strains, LVH60 Roque P. Almeida,3 José M. Ribeiro,3 João S. Silva3 and LVH60a, isolated from an HIV-negative man when he was 64 years old and 65 years old (Table; Appendix, https:// Through whole-genome sequencing analysis, we identified wwwnc.cdc.gov/EID/article/25/11/18-1548-App1.pdf). non-Leishmania parasites isolated from a man with a fatal Treatment-refractory VL-like disease developed in the man; visceral leishmaniasis–like illness in Brazil. The parasites signs and symptoms consisted of weight loss, fever, anemia, infected mice and reproduced the patient’s clinical mani- festations. Molecular epidemiologic studies are needed to low leukocyte and platelet counts, and severe liver and spleen ascertain whether a new infectious disease is emerging that enlargements. VL was confirmed by light microscopic exami- can be confused with leishmaniasis. nation of amastigotes in bone marrow aspirates and promas- tigotes in culture upon parasite isolation and by positive rK39 serologic test results. Three courses of liposomal amphotericin eishmaniases are caused by ≈20 Leishmania species B resulted in no response.
    [Show full text]
  • Development of Microplitiscroceipes As a Biological Sensor
    eea_743.fm Page 249 Wednesday, July 9, 2008 4:03 PM DOI: 10.1111/j.1570-7458.2008.00743.x Blackwell Publishing Ltd MINI REVIEW Development of Microplitis croceipes as a biological sensor J. K. Tomberlin1*, G. C. Rains2 & M. R. Sanford1 1Department of Entomology, Texas A&M University, College Station, TX 77845-2475, USA, and 2Department of Biological and Agricultural Engineering, University of Georgia, Tifton, GA 31783, USA Accepted: 2 May 2008 Key words: associative learning, Wasp Hound®, Hymenoptera, Braconidae, conditioning, medical diagnosis, forensics, food safety, national security, plant disease Abstract Classical conditioning, a form of associative learning, was first described in the vertebrate literature by Pavlov, but has since been documented for a wide variety of insects. Our knowledge of associative learning by insects began with Karl vonFrisch explaining communication among honeybees, Apis mellifera L. (Hymenoptera: Apidae). Since then, the honey bee has provided us with much of what we understand about associative learning in insects and how we relate the theories of learning in vertebrates to insects. Fruit flies, moths, and parasitic wasps are just a few examples of other insects that have been documented with the ability to learn. A novel direction in research on this topic attempts to harness the ability of insects to learn for the development of biological sensors. Parasitic wasps, especially Microplitis croceipes (Cresson) (Hymenoptera: Braconidae), have been conditioned to detect the odors associated with explosives, food toxins, and cadavers. Honeybees and moths have also been associatively conditioned to several volatiles of interest in forensics and national security. In some cases, handheld devices have been developed to harness the insects and observe conditioned behavioral responses to air samples in an attempt to detect target volatiles.
    [Show full text]