Molocular Genetics Referral Department of Clinical Genetics Prøvenr.: Aarhus University Hospital

Total Page:16

File Type:pdf, Size:1020Kb

Molocular Genetics Referral Department of Clinical Genetics Prøvenr.: Aarhus University Hospital Molocular Genetics Referral Department of Clinical Genetics Prøvenr.: Aarhus University Hospital Patient name (label): Modtage dato: Date of birth Gender Male Female Familie nr.: Requesting physician: (capital letters) Clinic/Department Phone, fax, e-mail Billing to Person reference Postal address International Purchase Order (IPO) number Sample type Date Blood Your reference number: DNA Other tissue (tissue type) Clinical informations Family informations/proband Known mutation Screening Analyses DNA-analysis (please specify on page 2) (7,5 ml EDTA blood. Infants at least 3 ml EDTA blood) Array-CGH (180K, standard analyse) High resolution array-CGH (1000k) (7,5 ml EDTA blood and 2 ml Li-heparin blood) Chromosome analysis – blood (2 ml Li-heparin blood. Infants at least 0,5 ml Li-heparin blood.) Cytogenetic analysis for Fanconis anemia (5 ml Li-heparin blood, special conditions concerning sample shipment, see www.kga.skejby.dk) Chromosome analysis – other tissue FISH analysis for: (2 ml LI-heparin blood) continue on next page For Laboratory Use Only Lægevisitation Laboratoriesignatur / Department of Clinical Genetics Aarhus University Hospital Brendstrupgårdsvej 21 C, DK-8200 Aarhus N Tel. +45 7845 5510 • Fax: +45 8678 3181 • www.kga.auh.dk 1/2 Molocular Genetics Referral Patient name and date of birth (label) DNA-analyses Skeletal Dysplasia (7,5 ml EDTA- blood. Infants at least 3 ml EDTA- blood) Achondroplasia (FGFR3) Hypochondroplasia (FGFR3) Muscular Dystrophies Saethre-Chotzen syndrome (TWIST) Becker Muscular Dystrophy (DMD) Thanatophoric Dysplasia Type 1 (FGFR3) Duchenne Muscular Dystrophy (DMD) Thanatophoric Dysplasia Type 2 (FGFR3) Myotonic Dystrophy (DMPK) Facio Scapulo Humeral Muscular Dystrophy (D4Z4, 4q35) Genodermatoses Limb-Girdle Muscular Dystrophy type 2I (FKRP) Darier disease (ATP2A2) Oculopharyngeal Muscular Dystrophy (PABPN1) Epidermolytic Palmoplantar Keratoderma (KRT9) Epidermolysis Bullosa Simplex (KRT5 and KRT14) Peripheral Neuropathies Hypohidrotic Ectodermal Dysplasia autosomal (EDAR) Charcot-Marie-Tooth Neuropathy 1A, 1B, 1X Hypohidrotic Ectodermal Dysplasia, X-linked (EDA) Charcot-Marie-Tooth Neuropathy 1A (PMP22) Ichthyosis, X-linked Charcot-Marie-Tooth Neuropathy Type 1B (MPZ) (steroidsulfatase deficiency) (STS) Charcot-Marie-Tooth Neuropathy Type 1X (GJB1) Keratin 1 (KRT1) Charcot-Marie-Tooth Neuropathy Type 2A (MFN2) Keratin 10 (KRT10) Familial Transthyretin Amyloidosis (TTR) Hereditary Neuropathy with Liability to Pressure Various Syndromes Palsies (PMP22) Angelman Syndrome (15q11-13) Spinal and Bulbar Muscular Atrophy (AR) Beckwith-Wiedemann Syndrome (11p15) Spinal Muscular Dystrophy Type 1, 2, 3 (SMN1) 22q11 Deletion Syndrome (22q11) Fragile-X Syndrome (FMR1) Hereditary Ataxia LEOPARD Syndrome (PTPN11) Friedreichs ataxia (FRDA) Miller-Dieker Syndrome Spinocerebellar Ataxia Type 1, 2, 3, 6, 7 (Lissencephali) (LIS1) Spinocerebellar Ataxia Type 1 (ATXN1) Noonan Syndrome (PTPN11, SOS1) Spinocerebellar Ataxia Type 2 (ATXN2) Prader-Willi Syndrome (15q11-13) Spinocerebellar Ataxia Type 3 (ATXN3) Silver-Russel Syndrome (11p15) Spinocerebellar Ataxia Type 6 (CACNA1A) William Syndrome (7q11) Spinocerebellar Ataxia Type 7 (ATXN7) Other diseases Neurodegenerative Diseases Hemophilia A (F8) Huntington Disease (HTT) Spielmeyer-Vogts Disease (CLN3) Parkinson Disease (juvenile-onset) (PARK2) Male infertility Cranio Synostosis Syndromes Cystic Fibrosis (CFTR) Apert Syndrome (FGFR2) Y Chromosome Deletion Analysis Crouzon Syndrome (FGFR2) Muenke Syndrome (FGFR3) Pfeiffer Syndrome (FGFR1) Prenatal Diagnostic: Please contact us prior to sending samples. A blood sample from the pregnant woman E-mail: [email protected] must accompany the prenatal sample to Tel: +45 3093 9932 allow analysis for maternal contamination. Layout: Department of Aarhus University Hospital EV0114HN Date and Signature Department of Clinical Genetics Aarhus University Hospital Brendstrupgårdsvej 21 C, DK-8200 Aarhus N Tel. +45 7845 5510 • Fax: +45 8678 3181 • www.kga.auh.dk 2/2.
Recommended publications
  • The National Economic Burden of Rare Disease Study February 2021
    Acknowledgements This study was sponsored by the EveryLife Foundation for Rare Diseases and made possible through the collaborative efforts of the national rare disease community and key stakeholders. The EveryLife Foundation thanks all those who shared their expertise and insights to provide invaluable input to the study including: the Lewin Group, the EveryLife Community Congress membership, the Technical Advisory Group for this study, leadership from the National Center for Advancing Translational Sciences (NCATS) at the National Institutes of Health (NIH), the Undiagnosed Diseases Network (UDN), the Little Hercules Foundation, the Rare Disease Legislative Advocates (RDLA) Advisory Committee, SmithSolve, and our study funders. Most especially, we thank the members of our rare disease patient and caregiver community who participated in this effort and have helped to transform their lived experience into quantifiable data. LEWIN GROUP PROJECT STAFF Grace Yang, MPA, MA, Vice President Inna Cintina, PhD, Senior Consultant Matt Zhou, BS, Research Consultant Daniel Emont, MPH, Research Consultant Janice Lin, BS, Consultant Samuel Kallman, BA, BS, Research Consultant EVERYLIFE FOUNDATION PROJECT STAFF Annie Kennedy, BS, Chief of Policy and Advocacy Julia Jenkins, BA, Executive Director Jamie Sullivan, MPH, Director of Policy TECHNICAL ADVISORY GROUP Annie Kennedy, BS, Chief of Policy & Advocacy, EveryLife Foundation for Rare Diseases Anne Pariser, MD, Director, Office of Rare Diseases Research, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health Elisabeth M. Oehrlein, PhD, MS, Senior Director, Research and Programs, National Health Council Christina Hartman, Senior Director of Advocacy, The Assistance Fund Kathleen Stratton, National Academies of Science, Engineering and Medicine (NASEM) Steve Silvestri, Director, Government Affairs, Neurocrine Biosciences Inc.
    [Show full text]
  • Increased Nuchal Translucency Precision Panel
    Increased Nuchal Translucency Precision Panel Overview Increased Nuchal Translucency (NT) is defined as an abnormal accumulation of fluid in the nuchal area, which is visualized as a thickened sonolucent area. It is a standardized measure obtained between 11 and 14 weeks of gestation to calculate the risk of a fetus being affected by a chromosomal aneuploidy. NT>3.5mm has been found to be associated with fetal chromosomal abnormalities and single-gene disorders as well as cardiac defects and other structural abnormalities in euploid and aneuploid fetuses. Proportionally as NT increases, even with a normal karyotype, there is a higher risk of adverse pregnancy outcomes such as miscarriage, intrauterine death, congenital heart defects and numerous other structural and genetic syndromes. There is not one single cause of increased NT, it is based on a complex and multifactorial process, linked to one or more embryonic processes. It has been shown that a persistently increased NT with a normal karyotype and aCGH has a 4-10% probability of being associated to Noonan Syndrome and/or other RASopathies using Whole Exome Sequencing (WES). However, the general tendency following detection of isolated enlarged NT in an euploid fetus is that most babies with normal detailed ultrasound examination and echocardiography will have uneventful outcomes. The Igenomix Increased Nuchal Translucency Precision Panel can be used to make a directed and accurate prenatal differential diagnosis of increased nuchal translucency in patients with or without a normal karyotype ultimately leading to a better management and prognosis of the associated comorbidities. It provides a comprehensive analysis of the genes involved in this disease using next-generation sequencing (NGS) to fully understand the spectrum of relevant genes involved.
    [Show full text]
  • FGFR2 Mutations in Pfeiffer Syndrome
    © 1995 Nature Publishing Group http://www.nature.com/naturegenetics correspondent FGFR2 mutations in Pfeiffer syndrome Sir-In the past few months, several genetic diseases have been ascribed to mutations in genes of the fibroblast growth factor receptor (FGFR) family, including achondroplasia (FGFR3) J-z, Crouzon syndrome (FGFR2)3 and 4 m/+ Pfeiffer syndrome (FGFR1) • In D321A addition, two clinically distinct N:Jl GIJ; AM craniosynostotic conditions, Jackson­ ~ Weiss and Crouzon syndromes, have c been ascribed to allelic mutations in the FGFR2 gene, suggesting that FGFR2mutations might have variable 5 phenotypic effects • We have recently FGFR2 found point mutations in the m/+ gene in two unrelated cases of Pfeiffer syndrome supporting the view that this craniosynostotic syndrome, is a 4 6 genetically heterogenous condition • • Pfeiffer syndrome is an autosomal dominant form of acrocephalo­ Fig. 1 Mutations of FGFR2 in two unrelated patients with craniofacial, hand syndactyly (ACS) characterized by and foot anomalies characteristic of Pfeiffer syndrome. Note midface craniosynostosis (brachycephaly retrusion, hypertelorism, proptosis and radiological evidence of enlargement type) with deviation and enlargement of thumb, with ankylosis of the second and third phalanges and the short, broad and deviated great toes. m, mutation; +, wild type sequence. The of the thumbs and great toes, sequence of wild type and mutant genes are shown and the arrow indicates brachymesophalangy, with pha­ the base substitution resulting in the mutation. langeal ankylosis and a varying degree of soft tissue syndactyly7.8. One of our sporadic cases and one familial form of ACS fulfilled the clinical criteria ofthe Pfeiffer syndrome, with particular respect to interphalangeal an aspartic acid into an alanine in the Elisabeth Lajeunie ankylosis (Fig.
    [Show full text]
  • Supporting Information
    Supporting Information Torkamani et al. 10.1073/pnas.0802403105 Materials and Methods kinase sequences used to generate conserved motifs, as in Kannan Kinase Identifiers. Kinase protein and DNA reference sequences et al. (3), the Gibbs motif sampling method identifies characteristic were obtained from Kinbase. These reference sequences were motifs for each individual subdomain of the kinase catalytic core, used as the basis to assign various gene identifiers (including which are then used to generate high confidence motif-based Ensembl gene IDs, HGNC gene symbols, and Entrez gene IDs) Markov chain Monte Carlo multiple alignments based upon these to every known human protein kinase. Ultimately, only eukary- motifs (4). These subdomains compromise the core structural otic protein kinases, that is, all human protein kinases except components of the protein kinase catalytic core. Intervening re- those belonging to the atypical protein kinase family, were gions between these subdomains were not aligned. considered in this study. The various gene identifiers were assigned as follows: Ensembl Mapping to Multiple Alignments and Generation of Logo Figures. A Gene ID’s were determined for each protein kinase by BLAST- nonredundant set of SNPs was generated to be mapped to the ing the reference Kinbase protein sequence against the Ensembl alignment computationally. That is, if multiple disease or com- ࿝ database (www.ensembl.org/Homo sapiens/blastview). The En- mon SNPs have been observed at a particular position within a sembl Gene ID of the top hit was assigned to the protein kinase. particular protein kinase, it is only considered once in our The Ensembl Gene ID was then used as a query in Biomart analysis.
    [Show full text]
  • Advances in Understanding the Genetics of Syndromes Involving Congenital Upper Limb Anomalies
    Review Article Page 1 of 10 Advances in understanding the genetics of syndromes involving congenital upper limb anomalies Liying Sun1#, Yingzhao Huang2,3,4#, Sen Zhao2,3,4, Wenyao Zhong1, Mao Lin2,3,4, Yang Guo1, Yuehan Yin1, Nan Wu2,3,4, Zhihong Wu2,3,5, Wen Tian1 1Hand Surgery Department, Beijing Jishuitan Hospital, Beijing 100035, China; 2Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China; 3Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing 100730, China; 4Department of Orthopedic Surgery, 5Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China Contributions: (I) Conception and design: W Tian, N Wu, Z Wu, S Zhong; (II) Administrative support: All authors; (III) Provision of study materials or patients: All authors; (IV) Collection and assembly of data: Y Huang; (V) Data analysis and interpretation: L Sun; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Wen Tian. Hand Surgery Department, Beijing Jishuitan Hospital, Beijing 100035, China. Email: [email protected]. Abstract: Congenital upper limb anomalies (CULA) are a common birth defect and a significant portion of complicated syndromic anomalies have upper limb involvement. Mostly the mortality of babies with CULA can be attributed to associated anomalies. The cause of the majority of syndromic CULA was unknown until recently. Advances in genetic and genomic technologies have unraveled the genetic basis of many syndromes- associated CULA, while at the same time highlighting the extreme heterogeneity in CULA genetics. Discoveries regarding biological pathways and syndromic CULA provide insights into the limb development and bring a better understanding of the pathogenesis of CULA.
    [Show full text]
  • Repercussions of Inborn Errors of Immunity on Growth☆ Jornal De Pediatria, Vol
    Jornal de Pediatria ISSN: 0021-7557 ISSN: 1678-4782 Sociedade Brasileira de Pediatria Goudouris, Ekaterini Simões; Segundo, Gesmar Rodrigues Silva; Poli, Cecilia Repercussions of inborn errors of immunity on growth☆ Jornal de Pediatria, vol. 95, no. 1, Suppl., 2019, pp. S49-S58 Sociedade Brasileira de Pediatria DOI: https://doi.org/10.1016/j.jped.2018.11.006 Available in: https://www.redalyc.org/articulo.oa?id=399759353007 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative J Pediatr (Rio J). 2019;95(S1):S49---S58 www.jped.com.br REVIEW ARTICLE ଝ Repercussions of inborn errors of immunity on growth a,b,∗ c,d e Ekaterini Simões Goudouris , Gesmar Rodrigues Silva Segundo , Cecilia Poli a Universidade Federal do Rio de Janeiro (UFRJ), Faculdade de Medicina, Departamento de Pediatria, Rio de Janeiro, RJ, Brazil b Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Puericultura e Pediatria Martagão Gesteira (IPPMG), Curso de Especializac¸ão em Alergia e Imunologia Clínica, Rio de Janeiro, RJ, Brazil c Universidade Federal de Uberlândia (UFU), Faculdade de Medicina, Departamento de Pediatria, Uberlândia, MG, Brazil d Universidade Federal de Uberlândia (UFU), Hospital das Clínicas, Programa de Residência Médica em Alergia e Imunologia Pediátrica, Uberlândia, MG, Brazil e Universidad del Desarrollo,
    [Show full text]
  • Genes in Eyecare Geneseyedoc 3 W.M
    Genes in Eyecare geneseyedoc 3 W.M. Lyle and T.D. Williams 15 Mar 04 This information has been gathered from several sources; however, the principal source is V. A. McKusick’s Mendelian Inheritance in Man on CD-ROM. Baltimore, Johns Hopkins University Press, 1998. Other sources include McKusick’s, Mendelian Inheritance in Man. Catalogs of Human Genes and Genetic Disorders. Baltimore. Johns Hopkins University Press 1998 (12th edition). http://www.ncbi.nlm.nih.gov/Omim See also S.P.Daiger, L.S. Sullivan, and B.J.F. Rossiter Ret Net http://www.sph.uth.tmc.edu/Retnet disease.htm/. Also E.I. Traboulsi’s, Genetic Diseases of the Eye, New York, Oxford University Press, 1998. And Genetics in Primary Eyecare and Clinical Medicine by M.R. Seashore and R.S.Wappner, Appleton and Lange 1996. M. Ridley’s book Genome published in 2000 by Perennial provides additional information. Ridley estimates that we have 60,000 to 80,000 genes. See also R.M. Henig’s book The Monk in the Garden: The Lost and Found Genius of Gregor Mendel, published by Houghton Mifflin in 2001 which tells about the Father of Genetics. The 3rd edition of F. H. Roy’s book Ocular Syndromes and Systemic Diseases published by Lippincott Williams & Wilkins in 2002 facilitates differential diagnosis. Additional information is provided in D. Pavan-Langston’s Manual of Ocular Diagnosis and Therapy (5th edition) published by Lippincott Williams & Wilkins in 2002. M.A. Foote wrote Basic Human Genetics for Medical Writers in the AMWA Journal 2002;17:7-17. A compilation such as this might suggest that one gene = one disease.
    [Show full text]
  • Hypochondroplasia
    Arch Dis Child: first published as 10.1136/adc.53.11.868 on 1 November 1978. Downloaded from Arch Dis Child: first published as 10.1136/adc.53.11.868 on 1 November 1978. Downloaded from Archives of Disease in Childhood, 1978, 53, 868-872 Hypochondroplasia J. F. T. GLASGOW, N. C. NEVIN, AND P. S. THOMAS From the Departments of Child Health and Medical Genetics, Queen's University ofBelfast, and Department of Radiology, Royal Belfast Hospitalfor Sick Children SUMMARY Clinical, radiological, and genetic features are described in 3 patients with hypo- chondroplasia. Early recognition of this disorder is possible from the abnormal body proportions with short limbs and lumbar lordosis without facial stigmata of achondroplasia. Radiological confirmation is possible provided a full skeletal survey is made. Two of our patients had a large head. Hypochondroplasia is one of the milder varieties of Table 1 Anthropometric data in patients with chondrodystrophy, resembling a mild form of hypochondroplasia achondroplasia. Affected individuals are slightly Anthropometric data Case I Case 2 Case 3 short in stature with short arms and legs (Kozlowski, 1965, 1973; Beals, 1969; Dorst, 1969; Hall, 1969; At 3 At 7 Murdock, 1969; Walker et al., 1971). Although Age at measurement (years) 8-75 3.0 7.5 9-0 hypochondroplasia appears to be fairly common Height (cm) 107.7 (3) 92.7 (50) 113.7 (10) 119.0 (3) (Rimoin, 1975) there have been few cases described. Weight (kg) 21.6 (10) 16.4 (90) 20.0 (10) 35.6 (90) Skull circumference copyright. We describe the clinical, radiological, and genetic (cm) 53-7 52-5 56-0 50.5 features in 3 patients.
    [Show full text]
  • SKELETAL DYSPLASIA Dr Vasu Pai
    SKELETAL DYSPLASIA Dr Vasu Pai Skeletal dysplasia are the result of a defective growth and development of the skeleton. Dysplastic conditions are suspected on the basis of abnormal stature, disproportion, dysmorphism, or deformity. Diagnosis requires Simple measurement of height and calculation of proportionality [<60 inches: consideration of dysplasia is appropriate] Dysmorphic features of the face, hands, feet or deformity A complete physical examination Radiographs: Extremities and spine, skull, Pelvis, Hand Genetics: the risk of the recurrence of the condition in the family; Family evaluation. Dwarf: Proportional: constitutional or endocrine or malnutrition Disproportion [Trunk: Extremity] a. Height < 42” Diastrophic Dwarfism < 48” Achondroplasia 52” Hypochondroplasia b. Trunk-extremity ratio May have a normal trunk and short limbs (achondroplasia), Short trunk and limbs of normal length (e.g., spondylo-epiphyseal dysplasia tarda) Long trunk and long limbs (e.g., Marfan’s syndrome). c. Limb-segment ratio Normal: Radius-Humerus ratio 75% Tibia-Femur 82% Rhizomelia [short proximal segments as in Achondroplastics] Mesomelia: Dynschondrosteosis] Acromelia [short hands and feet] RUBIN CLASSIFICATION 1. Hypoplastic epiphysis ACHONDROPLASTIC Autosomal Dominant: 80%; 0.5-1.5/10000 births Most common disproportionate dwarfism. Prenatal diagnosis: 18 weeks by measuring femoral and humeral lengths. Abnormal endochondral bone formation: zone of hypertrophy. Gene defect FGFR fibroblast growth factor receptor 3 . chromosome 4 Rhizomelic pattern, with the humerus and femur affected more than the distal extremities; Facies: Frontal bossing; Macrocephaly; Saddle nose Maxillary hypoplasia, Mandibular prognathism Spine: Lumbar lordosis and Thoracolumbar kyphosis Progressive genu varum and coxa valga Wedge shaped gaps between 3rd and 4th fingers (trident hands) Trident hand 50%, joint laxity Pathology Lack of columnation Bony plate from lack of growth Disorganized metaphysis Orthopaedics 1.
    [Show full text]
  • Hypochondroplasia and Acanthosis Nigricans
    European Journal of Endocrinology (2008) 159 243–249 ISSN 0804-4643 CLINICAL STUDY Hypochondroplasia and acanthosis nigricans: a new syndrome due to the p.Lys650Thr mutation in the fibroblast growth factor receptor 3 gene? Lidia Castro-Feijo´o*, Lourdes Loidi1,*, Anxo Vidal2, Silvia Parajes1, Elena Roso´n3,AnaA´ lvarez4, Paloma Cabanas, Jesu´s Barreiro, Adela Alonso4, Fernando Domı´nguez1,2 and Manuel Pombo Unidad de Endocrinologı´a Pedia´trica, Crecimiento y Adolescencia, Departamento de Pediatrı´a, Hospital Clı´nico Universitario y Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain, 1Unidad de Medicina Molecular, Fundacio´nPu´blica Galega de Medicina Xeno´mica, 15706 Santiago de Compostela, Spain, 2Departamento de Fisiologı´a, Universidad de Santiago de Compostela, 15702 Santiago de Compostella, Spain, 3Servicio de Dermatologı´a, Complejo Hospitalario de Pontevedra, 36001 Pontevedra, Spain and 4Servicio de Radiologı´a, Hospital Clı´nico Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain (Correspondence should be addressed to M Pombo; Email: [email protected]) *L Castro-Feijo´o and L Loidi contributed equally to this work Abstract Background: Hypochondroplasia (HCH) is a skeletal dysplasia inherited in an autosomal dominant manner due, in most cases, to mutations in the fibroblast growth factor receptor 3 (FGFR3). Acanthosis nigricans (AN) is a velvety and papillomatous pigmented hyperkeratosis of the skin, which has been recognized in some genetic disorders more severe than HCH involving the FGFR3 gene. Objective and design: After initial study of the proband, who had been consulted for short stature and who also presented AN, the study was extended to the patient’s mother and to 12 additional family members.
    [Show full text]
  • The First Non-Invasive Prenatal Test That Screens for Single-Gene Disorders
    The first non-invasive prenatal test that screens for single-gene disorders the evolution of NIPT A non-invasive prenatal test that screens multiple genes for mutations causing severe genetic disorders in the fetus analyses circulating cell- free fetal DNA (cfDNA) from a maternal blood sample. The test is performed after 10 weeks of pregnancy. works as a complementary screen to traditional and genome- wide NIPT . It screens for several life-altering genetic disorders that are not screened with current NIPT technology, allowing a complete picture of the risk of a pregnancy being affected by a genetic disorder. 2 facilitates early diagnosis of single-gene disorders. It involves 3 different levels of screening: This test screens for 5 common inherited recessive genetic disorders, such as Cystic Fibrosis, Beta-Thalassemia, Sickle INHERITED cell anaemia, Deafness autosomal recessive type 1A, Deafness autosomal recessive type 1B. Genes screened: CFTR, CX26 (GJB2), CX30 (GJB6), HBB This test screens for 44 severe genetic disorders due to de novo mutations (a gene mutation that is not inherited) in 25 genes DE NOVO Genes screened: ASXL1, BRAF, CBL, CHD7, COL1A1, COL1A2 , COL2A1, FGFR2, FGFR3, HDAC8, JAG1, KRAS, MAP2K1, MAP2K2, MECP2, NIPBL, NRAS, NSD1, PTPN11, RAF1, RIT1, SETBP1, SHOC2, SIX3, SOS1 This test screens for both inherited and de novo single-gene disorders and represents a combination of the tests INHERITED COMPLETE and DE NOVO providing a complete picture of the pregnancy risk. 3 allows detection of common inherited genetic disorders in INHERITED the fetus GENE GENETIC DISORDER CFTR Cystic Fibrosis CX26 (GJB2) Deafness autosomal recessive type 1A CX30 (GJB6) Deafness autosomal recessive type 1B HBB Beta-Thalassemia HBB Sickle cell anemia The inherited recessive disorders screened by INHERITED are the most common in the European population 4 identifies fetal conditions that could be missed by traditional DE NOVO prenatal screening.
    [Show full text]
  • Infant with Thanatophoric Dysplasia: a Clue to the Locus of the Candidate Gene 295
    JMed Genet 1995;32:293-295 293 De novo 1;1O balanced translocation in an infant with thanatophoric dysplasia: a clue to the locus of the candidate gene J Med Genet: first published as 10.1136/jmg.32.4.293 on 1 April 1995. Downloaded from J H Hersh, FF Yen, S C Peiper, M J Barch, 0 A Yacoub, D H Voss, J L Roberts Abstract Histopathologically, the growth plate in TD is A female infant with thanatophoric dys- interrupted by tufts of ossifying tissue, ex- plasia was found to have a de novo trans- hibiting features of both endochondral and location involving chromosomes 1 and 10. membranous ossification.5 The chromosome abnormality may rep- TD is thought to be transmitted in an auto- resent an important clue in identifying the somal dominant fashion.5 Since most cases of locus for the candidate gene responsible TD are sporadic, its occurrence in an infant is for this lethal skeletal dysplasia. presumed to be the result of a new autosomal dominant mutation.6 We report the first case (JMed Genet 1995;32:293-295) of TD in which an apparent de novo balanced reciprocal translocation was present in the affected infant. Thanatophoric dysplasia (TD) is the most com- mon lethal skeletal dysplasia with a livebirth prevalence estimated to be between 0-28 and Case report 0 6/10000.2 Clinically affected infants have A white female, who was the second of twins, marked limb shortening and a small thorax, was born at 36 weeks' gestation to a 29 year and death usually occurs in the neonatal period old G2P1 woman and her 36 year old husband.
    [Show full text]