Genome-Wide Rnai Screening Identifies Human Proteins with A

Total Page:16

File Type:pdf, Size:1020Kb

Genome-Wide Rnai Screening Identifies Human Proteins with A RESOURCES Genome-wide RNAi screening identifies human proteins with a regulatory function in the early secretory pathway Jeremy C. Simpson1,7, Brigitte Joggerst2, Vibor Laketa2, Fatima Verissimo2, Cihan Cetin2, Holger Erfle2,6, Mariana G. Bexiga1, Vasanth R. Singan1, Jean-Karim Hériché3, Beate Neumann3, Alvaro Mateos2, Jonathon Blake4, Stephanie Bechtel5, Vladimir Benes4, Stefan Wiemann5, Jan Ellenberg2,3 and Rainer Pepperkok2,7 The secretory pathway in mammalian cells has evolved to facilitate the transfer of cargo molecules to internal and cell surface membranes. Use of automated microscopy-based genome-wide RNA interference screens in cultured human cells allowed us to identify 554 proteins influencing secretion. Cloning, fluorescent-tagging and subcellular localization analysis of 179 of these proteins revealed that more than two-thirds localize to either the cytoplasm or membranes of the secretory and endocytic pathways. The depletion of 143 of them resulted in perturbations in the organization of the COPII and/or COPI vesicular coat complexes of the early secretory pathway, or the morphology of the Golgi complex. Network analyses revealed a so far unappreciated link between early secretory pathway function, small GTP-binding protein regulation, actin cytoskeleton organization and EGF-receptor-mediated signalling. This work provides an important resource for an integrative understanding of global cellular organization and regulation of the secretory pathway in mammalian cells. Within higher eukaryotic cells membrane traffic pathways connect the Extensive efforts over many years have revealed a significant number various membrane-bounded organelles, thereby ensuring that they of regulators associated with the secretory pathway. Early biochemical retain the correct complement of proteins and lipids to maintain approaches to identify individual machinery components have started cellular homeostasis. Typically, membrane traffic steps do not work to make way for more systematic strategies, including organellar in isolation, but rather are linked together in a carefully ordered proteomics and high-throughput imaging-based methods, in an sequence of events. The paradigm of this is the constitutive secretory effort to complete the cataloguing process5,6. More recently, RNA pathway, which ensures that newly synthesized material originating interference (RNAi)-mediated gene knockdown has been the method at the endoplasmic reticulum (ER) is correctly modified as it passes of choice, including two genome-wide secretion screens, in Drosophila through the Golgi complex and ultimately out to the cell surface. This cells7,8. Although these screens revealed several regulatory candidates, a pathway has the capacity to cope with a variety of cargo molecules, significant fraction (approximately 40%) do not seem to have a human and as such utilizes an extensive array of regulatory machinery1,2. At orthologue. Therefore, to discover how the secretion process is finely the heart of this machinery are cytoplasmic coat protein complexes tuned in human cells, we ideally require use of a human cell system. that identify cargo, reshape membranes into transport carriers and Largely as a result of the complex genetic architecture of mammalian provide links to other accessory proteins. In the early secretory systems, genome-wide RNAi screens in human cells are still relatively pathway it is the COPII and COPI coat complexes that perform these few in number. Indeed with regard to membrane traffic, the screens roles3,4, and therefore a greater understanding of their functional reported so far have targeted specific gene families9,10. We have previ- networks is a vital step towards understanding the regulation of the ously described a fully automated high content screening RNAi-based entire secretion process. approach to quantitatively monitor membrane transport in cultured 1School of Biology and Environmental Science & Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Dublin 4, Ireland. 2Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany. 3MitoCheck Project Group, EMBL, Meyerhofstrasse 1, 69117 Heidelberg, Germany. 4Gene Core, EMBL, Meyerhofstrasse 1, 69117 Heidelberg, Germany. 5Division of Molecular Genome Analysis, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany. 6Present address: BioQuant Centre, University of Heidelberg, Im Neuenheimer Feld, 69120 Heidelberg, Germany. 7Correspondence should be addressed to J.C.S. or R.P. (e-mail: [email protected] or [email protected]) Received 13 January 2012; accepted 26 April 2012; published online 3 June 2012; DOI: 10.1038/ncb2510 764 NATURE CELL BIOLOGY VOLUME 14 j NUMBER 7 j JULY 2012 © 2012 Macmillan Publishers Limited. All rights reserved. RESOURCES a b No effect Mild inhibitorStrong inhibitor Secretion accelerator Preparation of siRNA-spotted chambers (22,627 genes/51,758 siRNAs/149 chambers) Plate HeLa Kyoto cells—reverse transfection (1.0×106 cells per chamber) 33 h at 37 °C Infect with recombinant adenoviruses (express CFP–tsO45G) 16 h at 39.5 °C Total CFP–tsO45G DAPI–nuclei Release tsO45G from ER 1 h at 32 °C Cell surface Fix cells, immunostain, image acquisition CFP–tsO45G (stain cell surface tsO45G, DAPI-stain nuclei) dev = +0.29 dev = +0.85 dev = +2.03 dev = –1.87 c Mild inhibitors Replicates QC siRNA mapping QC 4,551 siRNAs 3,005 siRNAs 2,469 siRNAs Primary secretion screen 4,176 genes 2,818 genes 2,308 genes Secretion inhibitors 700,000 images 4,120 siRNAs 4.1 replicates Strong inhibitors Replicates QC siRNA mapping QC 3,629 genes 3,587 siRNAs 2,050 siRNAs 1,651 siRNAs 3,273 genes 1,910 genes 1,531 genes e Strong inhibitors Validation screen Val. screen inhibitors d Strong inhibitors, dev >1.0 1,651 siRNAs 46,000 images 973 siRNAs 3,587 siRNAs 1,531 genes 4.6 replicates 757 genes Mild inhibitors, dev 0.75-1.0 4,551 siRNAs 3 ENSEMBL e!61 1,570 siRNAs 2 697 genes 1 Transcriptome sequencing 0 siRNA (1 – 51,758) Deviation –1 Expressed n.d. Not expressed 514 genes 40 genes 143 genes –2 –3 Further analysis 554 genes Figure 1 Primary and validation secretion screens in HeLa cells. (a) Overview inhibitors. (e) Results pipeline from validation secretion screens employing of experimental approach to monitor cell surface arrival of tsO45G in further siRNA sequences against each target gene identified in the primary downregulated cells. (b) Example images of cells showing either no effect, screen. Genes were considered as validated hits (697 genes) when secretion mild inhibition, strong inhibition or acceleration of secretion. Scale bar, could be inhibited by deviation values >1.0 with two or more independent 10 µm. (c) Results pipeline from primary secretion screens indicating quality siRNAs. Whole transcriptome sequencing established that 143 of these were control (QC) steps employed. From 22,627 genes, a total of 3,629 genes not expressed at detectable levels within the cells, and these candidates were found to inhibit secretion on knockdown. See also Supplementary were not included in further analyses. The remaining expressed genes (514) Table S1. (d) Graphical overview of effect on secretion of genome-wide and those that were not analysed in the transcriptome sequencing (40) were siRNA set used in this study (primary screen). Deviation values of 0.75–1.0 taken into secondary screens for further analysis. See also Supplementary were considered mild inhibitors; deviations >1.0 were considered strong Tables S4 and S5. human cells11, specifically assessing the arrival of a fluorescently labelled 22,000 human genes12 for interference with ER-to-plasma membrane transmembrane cargo protein at the cell surface. Here we apply and transport of the well-characterized secretory cargo membrane protein extend this approach, providing the first systematic survey of the human tsO45G (ref. 13). This approach allows single-cell quantification of genome with respect to the constitutive secretion process. the relative levels of fluorescently labelled tsO45G both inside the cell and at the plasma membrane (Fig. 1a,b). In total 700,000 images RESULTS (representing on average 4.1 replicates per siRNA) containing in total Genome-wide cell-based secretion screening 8.3 million cells were automatically acquired and transport of tsO45G We used our previously described RNAi-based high content screening to the plasma membrane was quantified11. We classified the secretion microscopy platform11 to screen a genome-wide library of over inhibitors as either mild (deviation 0.75–1.0) or strong (deviation >1.0) 51,000 small interfering RNAs (siRNAs) targeting approximately inhibitors (Fig. 1c,d). After taking account of replicate reproducibility NATURE CELL BIOLOGY VOLUME 14 j NUMBER 7 j JULY 2012 765 © 2012 Macmillan Publishers Limited. All rights reserved. RESOURCES and siRNA mapping (to ENSEMBL 61), the number of mild inhibitory inhibition of tsO45G transport (Fig. 2b and Supplementary Table S6). siRNAs was determined to be 2,469 siRNAs targeting 2,308 genes, and This increased detection of COPI subunits, compared with COPII the number of strong inhibitory siRNAs was 1,651 siRNAs targeting subunits, most likely reflects that isoforms exist for only two of the 1,531 genes. Compiling these data together revealed a final list of COPI subunits, and that all conventional secretory cargo must pass 3,629 genes, which on downregulation resulted in a marked inhibition through the Golgi
Recommended publications
  • FK506-Binding Protein 12.6/1B, a Negative Regulator of [Ca2+], Rescues Memory and Restores Genomic Regulation in the Hippocampus of Aging Rats
    This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. A link to any extended data will be provided when the final version is posted online. Research Articles: Neurobiology of Disease FK506-Binding Protein 12.6/1b, a negative regulator of [Ca2+], rescues memory and restores genomic regulation in the hippocampus of aging rats John C. Gant1, Eric M. Blalock1, Kuey-Chu Chen1, Inga Kadish2, Olivier Thibault1, Nada M. Porter1 and Philip W. Landfield1 1Department of Pharmacology & Nutritional Sciences, University of Kentucky, Lexington, KY 40536 2Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294 DOI: 10.1523/JNEUROSCI.2234-17.2017 Received: 7 August 2017 Revised: 10 October 2017 Accepted: 24 November 2017 Published: 18 December 2017 Author contributions: J.C.G. and P.W.L. designed research; J.C.G., E.M.B., K.-c.C., and I.K. performed research; J.C.G., E.M.B., K.-c.C., I.K., and P.W.L. analyzed data; J.C.G., E.M.B., O.T., N.M.P., and P.W.L. wrote the paper. Conflict of Interest: The authors declare no competing financial interests. NIH grants AG004542, AG033649, AG052050, AG037868 and McAlpine Foundation for Neuroscience Research Corresponding author: Philip W. Landfield, [email protected], Department of Pharmacology & Nutritional Sciences, University of Kentucky, 800 Rose Street, UKMC MS 307, Lexington, KY 40536 Cite as: J. Neurosci ; 10.1523/JNEUROSCI.2234-17.2017 Alerts: Sign up at www.jneurosci.org/cgi/alerts to receive customized email alerts when the fully formatted version of this article is published.
    [Show full text]
  • Mouse Rabac1 Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Rabac1 Knockout Project (CRISPR/Cas9) Objective: To create a Rabac1 knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Rabac1 gene (NCBI Reference Sequence: NM_010261 ; Ensembl: ENSMUSG00000003380 ) is located on Mouse chromosome 7. 5 exons are identified, with the ATG start codon in exon 1 and the TAA stop codon in exon 5 (Transcript: ENSMUST00000076961). Exon 1~5 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 1 starts from about 0.18% of the coding region. Exon 1~5 covers 100.0% of the coding region. The size of effective KO region: ~2657 bp. The KO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 4 5 Legends Exon of mouse Rabac1 Knockout region Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of start codon is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section downstream of stop codon is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Relevance Network Between Chemosensitivity and Transcriptome in Human Hepatoma Cells1
    Vol. 2, 199–205, February 2003 Molecular Cancer Therapeutics 199 Relevance Network between Chemosensitivity and Transcriptome in Human Hepatoma Cells1 Masaru Moriyama,2 Yujin Hoshida, topoisomerase II ␤ expression, whereas it negatively Motoyuki Otsuka, ShinIchiro Nishimura, Naoya Kato, correlated with expression of carboxypeptidases A3 Tadashi Goto, Hiroyoshi Taniguchi, and Z. Response to nimustine was associated with Yasushi Shiratori, Naohiko Seki, and Masao Omata expression of superoxide dismutase 2. Department of Gastroenterology, Graduate School of Medicine, Relevance networks identified several negative University of Tokyo, Tokyo 113-8655 [M. M., Y. H., M. O., N. K., T. G., H. T., Y. S., M. O.]; Cellular Informatics Team, Computational Biology correlations between gene expression and resistance, Research Center, Tokyo 135-0064 [S. N.]; and Department of which were missed by hierarchical clustering. Our Functional Genomics, Graduate School of Medicine, Chiba University, results suggested the necessity of systematically Chiba 260-8670 [N. S.], Japan evaluating the transporting systems that may play a major role in resistance in hepatoma. This may provide Abstract useful information to modify anticancer drug action in Generally, hepatoma is not a chemosensitive tumor, hepatoma. and the mechanism of resistance to anticancer drugs is not fully elucidated. We aimed to comprehensively Introduction evaluate the relationship between chemosensitivity and Hepatoma is a major cause of death even in developed gene expression profile in human hepatoma cells, by countries, and its incidence is increasing (1). Despite the using microarray analysis, and analyze the data by progress of therapeutic technique (2), the efficacy of radical constructing relevance networks. therapy is hampered by frequent recurrence and advance of In eight hepatoma cell lines (HLE, HLF, Huh7, Hep3B, the tumor (3).
    [Show full text]
  • Genome-Wide Enrichment Analysis Between Endometriosis and Obesity-Related Traits Reveals Novel Susceptibility Loci
    Human Molecular Genetics, 2015, Vol. 24, No. 4 1185–1199 doi:10.1093/hmg/ddu516 Advance Access published on October 8, 2014 Genome-wide enrichment analysis between endometriosis and obesity-related traits reveals novel susceptibility loci Nilufer Rahmioglu1, Stuart Macgregor2, Alexander W. Drong1,A˚ sa K. Hedman1,5, Holly R. Harris6,7, Joshua C. Randall8, Inga Prokopenko1,9,10, The International Endogene Consortium (IEC), The GIANT Consortium, Dale R. Nyholt3, Andrew P. Morris1,11,{, Grant W. Montgomery4,{, Downloaded from https://academic.oup.com/hmg/article/24/4/1185/617584 by guest on 05 February 2021 Stacey A. Missmer6,{, Cecilia M. Lindgren1,12,{ and Krina T. Zondervan1,13,∗,{ 1Wellcome Trust Center for Human Genetics, University of Oxford, Oxford OX3 7BN, UK, 2Statistical Genetics, 3Neurogenetics, 4Molecular Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia, 5Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden, 6Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA, 7Unit of Nutritional Epidemiology, Institute for Environmental Medicine, Karolinska Institutet, PO Box 210, SE-171 77 Stockholm, Sweden, 8Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK, 9Department of Genomics of Common Disease, Imperial College London, London W12 0NN, UK, 10Oxford Centre for Diabetes, Endocrinology and Metabolism, University
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • PRA1 (RABAC1) Rabbit Monoclonal Antibody [Clone ID: EPR1747Y] Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TA301019 PRA1 (RABAC1) Rabbit Monoclonal Antibody [Clone ID: EPR1747Y] Product data: Product Type: Primary Antibodies Clone Name: EPR1747Y Applications: WB Recommended Dilution: WB: 1:1000 - 1:20000; IP: 1:30; FC: 1:100 Reactivity: Human, Mouse, Rat Host: Rabbit Isotype: IgG Clonality: Monoclonal Immunogen: A synthetic peptide corresponding to residues near the C-terminus of human PRA1 was used as an immunogen. Formulation: PBS 49%,Sodium azide 0.01%,Glycerol 50%,BSA 0.05% Purification: Tissue culture supernatant Conjugation: Unconjugated Storage: Store at -20°C as received. Stability: Stable for 12 months from date of receipt. Predicted Protein Size: 21 kDa Gene Name: Rab acceptor 1 Database Link: NP_006414 Entrez Gene 14470 MouseEntrez Gene 83583 RatEntrez Gene 10567 Human Q9UI14 Background: PRA1 (prenylated Rab acceptor) is a general regulator of Rab proteins. It has been shown that PRA1 interacts with Rab proteins and with VAMP2. Therefore PRA1 is probably an important factor for membrane traffic, linking together the function of Rab proteins and SNAREs (1). Human cells contain more than 60 small G proteins of the Rab family, which are localized to the surfaces of distinct membrane compartments and regulate transport vesicle formation, motility, docking and fusion. Prenylated Rabs also occur in the cytosol bound to GDI (guanine nucleotide dissociation inhibitor), which binds to Rabs in their inactive state (2). Synonyms: PRA1; PRAF1; YIP3 This product is to be used for laboratory only.
    [Show full text]
  • The Abundance of Cis-Acting Loci Leading to Differential Allele
    Yeo et al. BMC Genomics (2016) 17:620 DOI 10.1186/s12864-016-2922-9 RESEARCH ARTICLE Open Access The abundance of cis-acting loci leading to differential allele expression in F1 mice and their relationship to loci harboring genes affecting complex traits Seungeun Yeo1, Colin A. Hodgkinson1, Zhifeng Zhou1, Jeesun Jung2, Ming Leung1, Qiaoping Yuan1 and David Goldman1* Abstract Background: Genome-wide surveys have detected cis-acting quantitative trait loci altering levels of RNA transcripts (RNA-eQTLs) by associating SNV alleles to transcript levels. However, the sensitivity and specificity of detection of cis- expression quantitative trait loci (eQTLs) by genetic approaches, reliant as it is on measurements of transcript levels in recombinant inbred strains or offspring from arranged crosses, is unknown, as is their relationship to QTL’s for complex phenotypes. Results: We used transcriptome-wide differential allele expression (DAE) to detect cis-eQTLs in forebrain and kidney from reciprocal crosses between three mouse inbred strains, 129S1/SvlmJ, DBA/2J, and CAST/EiJ and C57BL/6 J. Two of these crosses were previously characterized for cis-eQTLs and QTLs for various complex phenotypes by genetic analysis of recombinant inbred (RI) strains. 5.4 %, 1.9 % and 1.5 % of genes assayed in forebrain of B6/ 129SF1, B6/DBAF1, and B6/CASTF1 mice, respectively, showed differential allelic expression, indicative of cis-acting alleles at these genes. Moreover, the majority of DAE QTLs were observed to be tissue-specific with only a small fraction showing cis-effects in both tissues. Comparing DAE QTLs in F1 mice to cis-eQTLs previously mapped in RI strains we observed that many of the cis-eQTLs were not confirmed by DAE.
    [Show full text]
  • CHML Promotes Liver Cancer Metastasis by Facilitating Rab14 Recycle
    ARTICLE https://doi.org/10.1038/s41467-019-10364-0 OPEN CHML promotes liver cancer metastasis by facilitating Rab14 recycle Tian-Wei Chen1,2,3, Fen-Fen Yin1,2, Yan-Mei Yuan1,2, Dong-Xian Guan1, Erbin Zhang1,2, Feng-Kun Zhang1,2, Hao Jiang1,2, Ning Ma1,2, Jing-Jing Wang1, Qian-Zhi Ni1,2, Lin Qiu1, Jing Feng3, Xue-Li Zhang3, Ying Bao4, Kang Wang5, Shu-Qun Cheng5, Xiao-Fan Wang6, Xiang Wang7, Jing-Jing Li1,2 & Dong Xie1,2,8,9 Metastasis-associated recurrence is the major cause of poor prognosis in hepatocellular 1234567890():,; carcinoma (HCC), however, the underlying mechanisms remain largely elusive. In this study, we report that expression of choroideremia-like (CHML) is increased in HCC, associated with poor survival, early recurrence and more satellite nodules in HCC patients. CHML promotes migration, invasion and metastasis of HCC cells, in a Rab14-dependent manner. Mechanism study reveals that CHML facilitates constant recycling of Rab14 by escorting Rab14 to the membrane. Furthermore, we identify several metastasis regulators as cargoes carried by Rab14-positive vesicles, including Mucin13 and CD44, which may contribute to metastasis- promoting effects of CHML. Altogether, our data establish CHML as a potential promoter of HCC metastasis, and the CHML-Rab14 axis may be a promising therapeutic target for HCC. 1 CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Xuhui district 200031, China. 2 University of Chinese Academy of Sciences, Chinese Academy of Sciences, Xuhui district 200031, China. 3 Department of General Surgery, Fengxian Hospital Affiliated to Southern Medical University, 6600 Nanfeng Road, Shanghai 201499, China.
    [Show full text]
  • LHCGR (Luteinizing Hormone/Choriogonadotropin Receptor); LPHN2 (Latrophilin 2) (1P31.1)
    Atlas of Genetics and Cytogenetics in Oncology and Haematology Home Genes Leukemias Solid Tumours Cancer-Prone Deep Insight Portal Teaching X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA Atlas Journal Atlas Journal versus Atlas Database: the accumulation of the issues of the Journal constitutes the body of the Database/Text-Book. TABLE OF CONTENTS Volume 8, Number 1, Jan-Mar 2004 Previous Issue / Next Issue Genes ATBF1 (AT-binding transcription factor 1) (16q22.3-q23.1). Nadine Van Roy, Frank Speleman. Atlas Genet Cytogenet Oncol Haematol 2004; 8 (1): 1-7. [Full Text] [PDF] URL : http://AtlasGeneticsOncology.org/Genes/ATBF1ID357.html DIRC2 (3q21). Anita Bonné, Danièlle Bodmer, Marc Eleveld, Eric Schoenmakers, Ad Geurts van Kessel.. Atlas Genet Cytogenet Oncol Haematol 2004; 8 (1): 8-11. [Full Text] [PDF] URL : http://AtlasGeneticsOncology.org/Genes/DIRC2ID497.html DIRC3 (2q35). Anita Bonné, Danièlle Bodmer, Marc Eleveld, Eric Schoenmakers, Ad Geurts van Kessel.. Atlas Genet Cytogenet Oncol Haematol 2004; 8 (1): 12-14. [Full Text] [PDF] URL : http://AtlasGeneticsOncology.org/Genes/DIRC3ID498..html RAP1GDS1 (4q22.3). Franck Viguié. Atlas Genet Cytogenet Oncol Haematol 2004; 8 (1): 15-18. [Full Text] [PDF] URL : http://AtlasGeneticsOncology.org/Genes/RAP1GDS1ID400.html RET (REarranged during Transfection) (10q11.2). Patricia Niccoli-Sire. Atlas Genet Cytogenet Oncol Haematol 2004; 8 (1): 19-25. [Full Text] [PDF] URL : http://AtlasGeneticsOncology.org/Genes/RETID76.html LHCGR (luteinizing hormone/choriogonadotropin receptor); LPHN2 (latrophilin 2) (1p31.1). Jim Heighway. Atlas Genet Cytogenet Oncol Haematol 2004; 8 (1): 26-36.
    [Show full text]
  • Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
    Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing
    [Show full text]
  • Expression Pattern of the PRDX2, RAB1A, RAB1B, RAB5A and RAB25 Genes in Normal and Cancer Cervical Tissues
    INTERNATIONAL JOURNAL OF ONCOLOGY 46: 107-112, 2015 Expression pattern of the PRDX2, RAB1A, RAB1B, RAB5A and RAB25 genes in normal and cancer cervical tissues ANDREJ NIKOSHKOV1, KRISTINA BROLIDEN2, SANAZ ATTARHA1,3, VITALI SVIATOHA3, ANN-CATHRIN HELLSTRÖM4, MIRIAM MINTS1 and SONIA ANDERSSON1 1Department of Women's and Children's Health, Division of Obstetrics and Gynecology, Karolinska Institute, Karolinska University Hospital Solna, 171 76 Stockholm; 2Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, 171 76 Stockholm; 3Department of Oncology-Pathology, Karolinska Institute, 171 76 Stockholm; 4Department of Gynecological Oncology, Radiumhemmet, Karolinska University Hospital, 171 76 Stockholm, Sweden Received July 11, 2014; Accepted August 28, 2014 DOI: 10.3892/ijo.2014.2724 Abstract. Cervical cancer is the second most prevalent RAB1B transcript occurs in normal cervical tissue and in malignancy among women worldwide, and additional preinvasive cervical lesions; not in invasive cervical tumors. objective diagnostic markers for this disease are needed. Given the link between cancer development and alternative Introduction splicing, we aimed to analyze the splicing patterns of the PRDX2, RAB1A, RAB1B, RAB5A and RAB25 genes, which Alternative splicing is a process in which either different are associated with different cancers, in normal cervical combinations of exons or parts of exons are employed to tissue, preinvasive cervical lesions and invasive cervical generate new transcripts through the use of alternative-splicing tumors, to identify new objective diagnostic markers. Biopsies sites. More than 90% of human intron-containing genes of normal cervical tissue, preinvasive cervical lesions and undergo alternative splicing, which allows a single transcript invasive cervical tumors, were subjected to rapid amplification to encode a number of RNAs that produce various protein of cDNA 3' ends (3' RACE) RT‑PCR.
    [Show full text]