Quaternary Deformation Along the Wharekauhau Fault System, North
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stakeholder Study: Resource Management of Wairarapa Moana
Natalie Diltz Jena Mazzucco Austin Scott Jeffrey Sirocki March 2, 2016 STAKEHOLDER STUDY: RESOURCE MANAGEMENT OF WAIRARAPA MOANA Identification and Analysis of Wairarapa Moana Stakeholder Opinions Regarding the Management of the Blundell Barrage Gates Abstract This project aided the Greater Wellington Regional Council (GWRC) in collecting opinions from five stakeholder groups concerning management of the naturally flooding Lake Wairarapa in New Zealand. Our team conducted a total of twenty-nine interviews with the Rangitāne (Māori), Department of Conservation, South Wairarapa District Council, landowners, and recreational water users regarding the Blundell Barrage Gates which play a vital role in flood management. Interview discussions indicate that water quality, sources of pollution, water levels, flood management, and future operation of the barrage gates are controversial. We identified communication, collaboration, and education as three areas of focus for the GWRC as they continue to improve their management of the region. i Executive Summary This project is concerned with Wairarapa Moana, a water system located in the Wairarapa region, situated on the North Island of New Zealand. Wairarapa Moana consists of the three main water bodies, shown in Figure 1; the coastal lake is Lake Onoke, the inland lake is Lake Wairarapa, and the main river is the Ruamahanga. The system is dynamic, which means water can flow in both directions. Both tidal movements and rainfall affect the direction of flow. The area is low-lying and sits between two mountain ranges exposing much of the land to seasonal flooding. The Greater Wellington Regional Council, the governing body for the Wellington region, developed the Lower Wairarapa Valley Development Scheme (LWVDS), to control flooding in the 1960s. -
Transpressional Rupture Cascade of the 2016 Mw 7.8
PUBLICATIONS Journal of Geophysical Research: Solid Earth RESEARCH ARTICLE Transpressional Rupture Cascade of the 2016 Mw 10.1002/2017JB015168 7.8 Kaikoura Earthquake, New Zealand Key Points: Wenbin Xu1 , Guangcai Feng2, Lingsen Meng3 , Ailin Zhang3, Jean Paul Ampuero4 , • Complex coseismic ground 5 6 deformation can be explained by slip Roland Bürgmann , and Lihua Fang on six crustal fault segments 1 2 • Rupture process across multiple faults Department of Land Surveying and Geo-informatics, Hong Kong Polytechnic University, Hong Kong, China, School of 3 likely resulted from a triggering Geosciences and Info-Physics, Central South University, Changsha, China, Department of Earth Planetary and Space cascade between crustal faults Sciences, University of California, Los Angeles, CA, USA, 4Seismological Laboratory, California Institute of Technology, • Rupture speed was overall slow, but Pasadena, CA, USA, 5Department of Earth and Planetary Science, University of California, Berkeley, CA, USA, 6Institute of locally faster along individual fault segments Geophysics, China Earthquake Administration, Beijing, China Supporting Information: Abstract Large earthquakes often do not occur on a simple planar fault but involve rupture of multiple • Supporting Information S1 • Data Set S1 geometrically complex faults. The 2016 Mw 7.8 Kaikoura earthquake, New Zealand, involved the rupture of • Data Set S2 at least 21 faults, propagating from southwest to northeast for about 180 km. Here we combine space • Data Set S3 geodesy and seismology techniques to study subsurface fault geometry, slip distribution, and the kinematics of the rupture. Our finite-fault slip model indicates that the fault motion changes from predominantly Correspondence to: W. Xu, G. Feng, and L. Meng, right-lateral slip near the epicenter to transpressional slip in the northeast with a maximum coseismic surface [email protected]; displacement of about 10 m near the intersection between the Kekerengu and Papatea faults. -
Contest 2015 Title: “Slip Rate and Paleoseismicity of the Kekerengu Fault: an Anchor Point for Deformation Rates and Seismic H
Contest 2015 Title: “Slip Rate and Paleoseismicity of the Kekerengu Fault: An anchor point for deformation rates and seismic hazard through central New Zealand” Leader: Timothy A. Little Organisation: Victoria University of Wellington Total funding (GST ex): $182,778 Title: Slip Rate and Paleoseismicity of the Kekerengu Fault: An anchor point for deformation rates and seismic hazard through central New Zealand Programme Leader: Timothy A. Little Affiliation: Victoria University of Wellington Co-P.I.: Russ Van Dissen (GNS Science) A.I.: Kevin Norton (VUW) Has this report been peer reviewed? Provide name and affiliation. Part of it: the paper by Little et al. was published in 2018 in the Bulletin of Seismological Society of America, which is a peer-reviewed international journal. Table of Contents: 1. Key Message for Media 2. Abstract 3. Introduction/ Background 4. Research Aim 1: Determining Kekerengu Fault Paleoseismic History 5. Research Aim 2: Determining the Late Quaternary Slip Rate of the Kekerengu Fault 6. Conclusions & Recommendations 7. Acknowledgments 8. References 9. Appendices Key Message for Media: [Why are these findings important? Plain language; 5 sentences.] Prior to this study, little scientific data existed about the rate of activity and earthquake hazard posed by the active Kekerengu Fault near the Marlborough coast in northeastern South Island. Our study was designed to test the hypothesis that this fault carries most of the Pacific-Australia plate motion through central New Zealand, and is a major source of seismic hazard for NE South Island and adjacent regions straddling Cook Strait—something that had previously been encoded in the NZ National Seismic Hazard Model. -
A Gravity Survey of the Wharekauhau Thrust, Palliser Bay, New Zealand
New Zealand Journal of Geology and Geophysics ISSN: 0028-8306 (Print) 1175-8791 (Online) Journal homepage: http://www.tandfonline.com/loi/tnzg20 A gravity survey of the Wharekauhau Thrust, Palliser Bay, New Zealand Alastair F. McClymont To cite this article: Alastair F. McClymont (2000) A gravity survey of the Wharekauhau Thrust, Palliser Bay, New Zealand, New Zealand Journal of Geology and Geophysics, 43:2, 303-306, DOI: 10.1080/00288306.2000.9514888 To link to this article: http://dx.doi.org/10.1080/00288306.2000.9514888 Published online: 23 Mar 2010. Submit your article to this journal Article views: 117 View related articles Citing articles: 2 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tnzg20 Download by: [121.75.88.191] Date: 27 March 2017, At: 18:58 New Zealand Journal of Geology & Geophysics, 2000, Vol. 43: 303-306 303 0028-8306/00/4302-0303 $7.00/0 © The Royal Society of New Zealand 2000 Short communication A gravity survey of the Wharekauhau Thrust, Palliser Bay, New Zealand ALASTAIR F. McCLYMONT TECTONIC SETTING School of Earth Sciences The Wairarapa Fault is one of six major faults of the North Victoria University of Wellington Island Dextral Fault Belt (Beanland 1995), a zone of P.O. Box 600 dominantly dextral strike-slip faults that lie within, and strike Wellington, New Zealand parallel to, the Australia-Pacific plate boundary along the southern North Island of New Zealand (Fig. 1). The M+8 earthquake in 1855 caused surface rupturing along the Abstract A gravity survey undertaken at Wharekauhau, Wairarapa Fault for a distance of at least 148 km (Grapes Palliser Bay, New Zealand, determines the geometry of the 1999). -
Quantifying the Incompleteness of New Zealand's Prehistoric
Quantifying the incompleteness of New Zealand’s prehistoric earthquake record A. Nicol, R.J. Van Dissen, M.W. Stirling, M.C. Gerstenberger BIBLIOGRAPHIC REFERENCE Nicol, A.; Van Dissen, R.J.; Stirling, M.W., Gerstenberger, M.C. 2017. Quantifying the incompleteness of New Zealand’s prehistoric earthquake record. EQC project 14/668 Final Report, 25 p. A. Nicol, University of Canterbury, Private Bag 4800, Christchurch, New Zealand R.J. Van Dissen, PO Box 30368, Lower Hutt 5040, New Zealand M.W. Stirling, University of Otago, PO Box 56, Dunedin 9054, New Zealand M.C. Gerstenberger, PO Box 30368, Lower Hutt 5040, New Zealand EQC Project 14/668 Final Report 2 CONTENTS LAYMANS ABSTRACT ....................................................................................................... IV TECHNICAL ABSTRACT ..................................................................................................... V KEYWORDS ......................................................................................................................... V 1.0 INTRODUCTION ........................................................................................................ 6 2.0 DATA SOURCES ....................................................................................................... 8 2.1 Historical Earthquakes .................................................................................................. 8 2.2 active fault earthquake source identification ............................................................... 10 3.0 PROBABILITY OF -
Wairarapa Moana Whakaora Te Repo, Ka Ora Te Taonga Wai Restoring Our Wetland Treasure
Wairarapa Moana Whakaora te repo, ka ora te taonga Wai Restoring our wetland treasure Barton’s Lagoon on the north Lake Wairarapa The Wairarapa Moana Wetlands Project began in 2008 to enhance the native ecology, recreation and cultural opportunities on the public land in the area. The project partners are Greater Wellington, Department of Conservation, Rangitane o Wairarapa, Kahungunu ki Wairarapa, local hapu and South Wairarapa District Council. They in turn are working with community groups, farmers and environmental and recreational groups to restore our wetland treasure. Everyone recognises you can’t succeed in a project this size without all interested parties being involved. Restoring the edge wetlands The project got a major shot in the arm with a successful bid for funding from the Government’s Fresh Start for Freshwater Clean Up Fund to improve the water quality of the edge wetlands. The Ministry for the Environment will contribute $1 million over the next three years. This funding will be matched by the following funding partners in cash or in kind – Ducks Unlimited, Dairy NZ, Department of Conservation and Greater Wellington Regional Council. The priority for the fresh start project is to enhance the wetland habitat around the edge of Lake Wairarapa and Lake Onoke by improving water quality through restoring selected wetland areas – Boggy Pond, Matthews Lagoon, Wairio Wetlands, JK Donald Reserve and Barton’s Lagoon stand out as priorities. This booklet is a very simplified look at Wairarapa Moana and what this funding sets out to achieve. 1 2 3 Poor water quality – our inherited problem Lake Wairarapa is among New Zealand’s 10 dirtiest lakes. -
Variability in Single Event Slip and Recurrence Intervals for Large
Variability of single event slip and recurrence intervals for large magnitude paleoearthquakes on New Zealand’s active faults A. Nicol R. Robinson R. J. Van Dissen A. Harvison GNS Science Report 2012/41 December 2012 BIBLIOGRAPHIC REFERENCE Nicol, A.; Robinson, R.; Van Dissen, R. J.; Harvison, A. 2012. Variability of single event slip and recurrence intervals for large magnitude paleoearthquakes on New Zealand’s active faults, GNS Science Report 2012/41. 57 p. A. Nicol, GNS Science, PO Box 30368, Lower Hutt 5040, New Zealand R. Robinson, PO Box 30368, Lower Hutt 5040, New Zealand R. J. Van Dissen, PO Box 30368, Lower Hutt 5040, New Zealand A. Harvison, PO Box 30368, Lower Hutt 5040, New Zealand © Institute of Geological and Nuclear Sciences Limited, 2012 ISSN 1177-2425 ISBN 978-1-972192-29-0 CONTENTS LAYMANS ABSTRACT ....................................................................................................... IV TECHNICAL ABSTRACT ..................................................................................................... V KEYWORDS ......................................................................................................................... V 1.0 INTRODUCTION ........................................................................................................ 1 2.0 GEOLOGICAL EARTHQUAKES ................................................................................ 2 2.1 Data Sources ................................................................................................................. 2 2.2 -
Identifying Resource Management Conflicts: Stakeholder Study Regarding Flood Protection in Wairarapa Moana
Identifying Resource Management Conflicts: Stakeholder Study Regarding Flood Protection in Wairarapa Moana Sponsored By: Breanne Happell René Jacques Elizabeth van Zyl Elizabeth Walfield Identifying Resource Management Conflicts: Stakeholder Study Regarding Flood Protection in Wairarapa Moana An Interactive Qualifying Project Submitted to the Faculty of Worcester Polytechnic Institute In partial fulfillment of the requirements for the Degree of Bachelor of Science In cooperation with The Greater Wellington Regional Council Submitted on March 1st, 2016 Submitted By: Breanne Happell René Jacques Elizabeth van Zyl Elizabeth Walfield Project Advisors: Bethel Eddy Robert Kinicki This report represents work of WPI undergraduate students submitted to the faculty as evidence of a degree requirement. WPI routinely publishes these reports on its web site without editorial or peer review. For more information about the projects program at WPI, see http://www.wpi.edu/Academics/Projects i Abstract This project aided the Greater Wellington Regional Council (GWRC) in gathering the opinions of stakeholders in regards to two flood protection methods in the Lower Wairarapa Valley of New Zealand: the Geoffrey Blundell Barrage Gates and the Ruamahanga River Cutoff. These methods regulate water levels in Lake Wairarapa. The team conducted 25 interviews with flood protection managers, farmers that live in the valley, and members of Ngāti Kahungunu, a Māori iwi (tribe). Our analysis found that fish passage through the gates, lake water levels, and whether the GWRC incorporated stakeholder opinions fairly were areas of concern to the stakeholder groups. This information will help to facilitate further communication between the stakeholder groups and the GWRC. ii Executive Summary This project evaluated the various views on the management of the Geoffrey Blundell Barrage Gates and the Ruamahanga River Cutoff, two flood protection methods implemented in Wairarapa Moana. -
Former Faunal Areas: Some Sub-Fossil Evidence
N.Z. ECOLOGICAL SOCIETY 17 Former Faunal Areas: Some Sub-Fossil Evidence R. J. Scarlett. Any discussion of former faunal areas described small Euryapteryx which I collect- based on the distribution of fossil or sub- ed on Stewart Island in Nov. 1954. Zelornis fossil bones is complicated when those bones haasti is known from Takaka, Canterbury, are of various geological ages. Nevertheless, Otago and Southland. study of the regions in which the genera and In the North Island, four closely related species of moa are found makes possible small species, Zelornis exilis, Euryapteryx some tentative conclusions. curtus (Owen), E. tane, and E. geranoides The evidence is unevenly distributed be- are recognised. The first three range from cause some areas--the best sources are caves, N. Auckland to Wanganui and Napier, and swamps and sandhilIs--are better suited to geranoides from Tom Bowling Bay, N. the preservation of bones, or have been Auckland, to Takaka. better explored. The 'South Island Megalap- Emeus crassus (Owen) and Emeus huttoni teryx didinus (Owen) ranged down the west coast to Inangahua Junction, from Takaka (Owen) are known from Marlborough, and to coastal Marlborough, down the East are common in Canterbury and Otago. Coast to Southland and the Te Anau-Lake Pachyornis elephantopus Owen ranged from Wakatipu area. egegalapteryx benhami Takaka to Marlborough and from Canter- Archey is known only from the Nelson area. bury to Southland. P. murihiku Oliver was found near InvercargilI, and P. australis Anomalopteryx didiformis (Owen) has Oliver in Southland and Nelson. The-North virtually the same South Island distribution Island P. -
Late Holocene Sediment Deposition in Lake Wairarapa
Late Holocene Sediment Deposition in Lake Wairarapa Martha Ingrid Trodahl A thesis submitted to Victoria University of Wellington in partial fulfilment of the requirements for the degree of Master of Science in Physical Geography December 2010 -1- Abstract Lake Wairarapa is a highly modified lacustrine system at the southern end of the North Island, New Zealand. Not only is it situated in a region that is affected by catchment altering natural phenomena such as earthquakes, storms and fire, but both the catchment and hydrology of the lake have also been significantly altered by humans. Polynesian settlers arrived in the area approximately 700BP and proceeded to deforest the lowlands. European settlers began arriving from 1844AD onwards, completing deforestation of the lowlands and Eastern Uplands. In 1964 the Lower Wairarapa Valley Development Scheme was commissioned in an effort to alleviate flooding. This scheme significantly altered the hydrological regime of the lake. Interest in the condition of the lake and associated wetlands, and the realization that it has important recreational, cultural and ecological value, began to develop in the 1990‟s. This has led to a desire to see the lake restored to a more natural condition while still maintaining its flood protection capabilities. However, the lake has only been monitored over the last several decades. Any evidence of the lakes condition prior to this time is anecdotal and little is known of its natural tendencies and functions. This research has investigated and quantified morphological changes to Lake Wairarapa at the decadal and millenial scale using a combination of aerial photograph analysis, bathymetric survey comparison and lakebed core analysis. -
CYCLE TRAIL PETONE ORONGORONGO RIMUTAKA 2-3 DAYS 115Km Cycle Trail
RIMUTAKA CYCLE TRAIL RIMUTAKA PETONE ORONGORONGO RIMUTAKA 2-3 DAYS 115km Cycle Trail Trail Info Summit Tunnel © Caleb Smith BELOW LEFT: Caspian terns © Rod Morris, Department of Conservation BELOW RIGHT: Seal Colony at Cape Palliser © Destination Wairarapa 2-3 Days Starting on Wellington’s doorstep, this trail winds the Rimutaka Rail Trail, one of the most 115km through the Rimutaka Ranges to the Wairarapa popular and historic trails in the region. Valley and the mouth of the Orongorongo River. After emerging in the Wairarapa, famous for vineyards and sheep farming, TRAIL GRADES: the trail follows a country road past rom the head of Wellington large river and great swimming spots to PETONE FORESHORE TO Lake Wairarapa to Ocean Beach. The Harbour, the Rimutaka Cycle cool off on a hot summer’s day as the MAYMORN - GRADE 2 (EASY). fi nal section is the shortest, but also 35km trail with an easy grade. Trail cuts through the trail gradually climbs to the head of the F the most adventurous. Aptly named The MAYMORN TO CROSS CREEK bush- clad Rimutaka Mountain Range, Hutt Valley. Wild Coast, it skirts around Turakirae - GRADE 2-3 (EASY TO passing through tunnels on an old INTERMEDIATE) 25km into New Beyond the valley the trail enters the Head, where the Rimutaka Range rail trail, and skirting around the wild Zealand’s bush-clad past. Tunnel Gully area in the Pakuratahi dives into the pounding Pacifi c Ocean. southern coast. CROSS CREEK TO OCEAN BEACH - Forest on what was once the main The trail then runs west to the mouth GRADE 3 (INTERMEDIATE) The fi rst stage is an easy riverside cycle railway line between Wellington and the of the Orongorongo River where the 36km on-road ride alongside Lake path called the Hutt River Trail. -
Palliser Bay & Cape Palliser
Executive Summary The Heritage Technical Report is one of eight reports written to feed into the preparation of the Wairarapa Coastal Strategy. The process, which includes the development of a Discussion Document, the technical reports, an Issues and Options Paper and extensive public consultation, is being undertaken by the Wairarapa Coastal Strategy Group. This group consists of representatives from Masterton, Carterton and South Wairarapa District Councils, the Wellington Regional Council and local Iwi, and was formed after concerns that development was proceeding along the Wairarapa coast in an ad hoc and fragmented way. The Heritage Technical Report provides an overview of the statutory framework of heritage provisions. It includes a timeline of occupation over the past 1000 years as well as an inventory of sites along the Wairarapa coast. It provides an analysis of what heritage is important, and what pressures currently threaten heritage. It also comments on what methods are used to protect heritage in the Wairarapa and recommends improvements to existing responses, and new responses. The principal legislation for heritage resources in New Zealand is the Historic Places Act 1993 (HPA). The purpose of the Act is to “promote the identification, protection, preservation, and conservation of the historical and cultural heritage of New Zealand.” The Resource Management Act 1991 (RMA) also recognises and provides for the protection of heritage. It sets out the principles of Matters of National Importance (Section 6), Other Matters (Section 7), and Treaty of Waitangi (Section 8). All three sections have implications for heritage on the coast. In particular, “the relationship of Maori and their…ancestral lands, waahi tapu and other taonga ” is identified as a matter of national importance.