A Project to Understand Earthquake Risk in the Wellington Region
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Regional Overview
Air, land and water in the Wellington region – state and trends Regional overview This summary highlights the key findings from State of the Environment monitoring we carry out of natural resources across the Wellington region. It is drawn from eight technical reports which give the full picture of the health of the Wellington region’s air, land, fresh waters and coast. The reports, published every five years, are based on environmental monitoring and investigations over the past five to ten years (and longer for some resources). The findings are informing the current review of Greater Wellington’s regional plans – the ‘rule books’ for ensuring our region’s natural resources are sustainably managed. These plans are now more than ten years old and we are developing a new integrated plan. Community input to the review is critical – you can find out how to have a say on the back page. How do we measure the health of the region’s air, land and water resources? Regional councils have a legal responsibility under section 35 of the Resource Management Act 1991 to monitor the state of the environment – this essentially means tracking the quality and quantity of the region’s natural resources over time. Greater Wellington does this through long-term monitoring programmes across the region focusing on: ● Air quality at 6 locations ● Soil quality (118 sites under a range of different land uses) and stability ● Rainfall (at 50 sites) and river flows/levels (at 45 sites) ● Groundwater levels (at 146 sites) and quality (at 71 sites) ● Water quality at popular river and beach recreation spots (100 sites) ● River/stream water quality and ecosystem health (at 55 sites) ● The health of selected estuaries and our two harbours Measuring river flow We also carry out short-term investigations where our routine monitoring identifies gaps or potential problems, such as poor air or water quality. -
Geology of the Wairarapa Area
GEOLOGY OF THE WAIRARAPA AREA J. M. LEE J.G.BEGG (COMPILERS) New International NewZOaland Age International New Zealand 248 (Ma) .............. 8~:~~~~~~~~ 16 il~ M.- L. Pleistocene !~ Castlecliffian We £§ Sellnuntian .~ Ozhulflanl Makarewan YOm 1.8 100 Wuehlaplngien i ~ Gelaslan Cl Nukumaruan Wn ~ ;g '"~ l!! ~~ Mangapanlan Ql -' TatarianiMidian Ql Piacenzlan ~ ~;: ~ u Wai i ian 200 Ian w 3.6 ,g~ J: Kazanlan a.~ Zanetaan Opoitian Wo c:: 300 '"E Braxtonisn .!!! .~ YAb 256 5.3 E Kunaurian Messinian Kapitean Tk Ql ~ Mangapirian YAm 400 a. Arlinskian :;; ~ l!!'" 500 Sakmarian ~ Tortonisn ,!!! Tongaporutuan Tt w'" pre-Telfordian Ypt ~ Asselian 600 '" 290 11.2 ~ 700 'lii Serravallian Waiauan 5w Ql ." i'l () c:: ~ 600 J!l - fl~ '§ ~ 0'" 0 0 ~~ !II Lillburnian 51 N 900 Langhian 0 ~ Clifdenian 5e 16.4 ca '1000 1 323 !II Z'E e'" W~ A1tonian PI oS! ~ Burdigalian i '2 F () 0- w'" '" Dtaian Po ~ OS Waitakian Lw U 23.8 UI nlan ~S § "t: ." Duntroonian Ld '" Chattian ~ W'" 28.5 P .Sll~ -''" Whalngaroan Lwh O~ Rupelian 33.7 Late Priabonian ." AC 37.0 n n 0 I ~~ ~ Bortonian Ab g; Lutetisn Paranaen Do W Heretauncan Oh 49.0 354 ~ Mangaorapan Om i Ypreslan .;;: w WalD8wsn Ow ~ JU 54.8 ~ Thanetlan § 370 t-- §~ 0'" ~ Selandian laurien Dt ." 61.0 ;g JM ~"t: c:::::;; a.os'"w Danian 391 () os t-- 65.0 '2 Maastrichtian 0 - Emslsn Jzl 0 a; -m Haumurian Mh :::;; N 0 t-- Campanian ~ Santonian 0 Pragian Jpr ~ Piripauan Mp W w'" -' t-- Coniacian 1ij Teratan Rt ...J Lochovlan Jlo Turonian Mannaotanean Rm <C !II j Arowhanan Ra 417 0- Cenomanian '" Ngaterian Cn Prldoli -
Transpressional Rupture Cascade of the 2016 Mw 7.8
PUBLICATIONS Journal of Geophysical Research: Solid Earth RESEARCH ARTICLE Transpressional Rupture Cascade of the 2016 Mw 10.1002/2017JB015168 7.8 Kaikoura Earthquake, New Zealand Key Points: Wenbin Xu1 , Guangcai Feng2, Lingsen Meng3 , Ailin Zhang3, Jean Paul Ampuero4 , • Complex coseismic ground 5 6 deformation can be explained by slip Roland Bürgmann , and Lihua Fang on six crustal fault segments 1 2 • Rupture process across multiple faults Department of Land Surveying and Geo-informatics, Hong Kong Polytechnic University, Hong Kong, China, School of 3 likely resulted from a triggering Geosciences and Info-Physics, Central South University, Changsha, China, Department of Earth Planetary and Space cascade between crustal faults Sciences, University of California, Los Angeles, CA, USA, 4Seismological Laboratory, California Institute of Technology, • Rupture speed was overall slow, but Pasadena, CA, USA, 5Department of Earth and Planetary Science, University of California, Berkeley, CA, USA, 6Institute of locally faster along individual fault segments Geophysics, China Earthquake Administration, Beijing, China Supporting Information: Abstract Large earthquakes often do not occur on a simple planar fault but involve rupture of multiple • Supporting Information S1 • Data Set S1 geometrically complex faults. The 2016 Mw 7.8 Kaikoura earthquake, New Zealand, involved the rupture of • Data Set S2 at least 21 faults, propagating from southwest to northeast for about 180 km. Here we combine space • Data Set S3 geodesy and seismology techniques to study subsurface fault geometry, slip distribution, and the kinematics of the rupture. Our finite-fault slip model indicates that the fault motion changes from predominantly Correspondence to: W. Xu, G. Feng, and L. Meng, right-lateral slip near the epicenter to transpressional slip in the northeast with a maximum coseismic surface [email protected]; displacement of about 10 m near the intersection between the Kekerengu and Papatea faults. -
Contest 2015 Title: “Slip Rate and Paleoseismicity of the Kekerengu Fault: an Anchor Point for Deformation Rates and Seismic H
Contest 2015 Title: “Slip Rate and Paleoseismicity of the Kekerengu Fault: An anchor point for deformation rates and seismic hazard through central New Zealand” Leader: Timothy A. Little Organisation: Victoria University of Wellington Total funding (GST ex): $182,778 Title: Slip Rate and Paleoseismicity of the Kekerengu Fault: An anchor point for deformation rates and seismic hazard through central New Zealand Programme Leader: Timothy A. Little Affiliation: Victoria University of Wellington Co-P.I.: Russ Van Dissen (GNS Science) A.I.: Kevin Norton (VUW) Has this report been peer reviewed? Provide name and affiliation. Part of it: the paper by Little et al. was published in 2018 in the Bulletin of Seismological Society of America, which is a peer-reviewed international journal. Table of Contents: 1. Key Message for Media 2. Abstract 3. Introduction/ Background 4. Research Aim 1: Determining Kekerengu Fault Paleoseismic History 5. Research Aim 2: Determining the Late Quaternary Slip Rate of the Kekerengu Fault 6. Conclusions & Recommendations 7. Acknowledgments 8. References 9. Appendices Key Message for Media: [Why are these findings important? Plain language; 5 sentences.] Prior to this study, little scientific data existed about the rate of activity and earthquake hazard posed by the active Kekerengu Fault near the Marlborough coast in northeastern South Island. Our study was designed to test the hypothesis that this fault carries most of the Pacific-Australia plate motion through central New Zealand, and is a major source of seismic hazard for NE South Island and adjacent regions straddling Cook Strait—something that had previously been encoded in the NZ National Seismic Hazard Model. -
Quantifying the Incompleteness of New Zealand's Prehistoric
Quantifying the incompleteness of New Zealand’s prehistoric earthquake record A. Nicol, R.J. Van Dissen, M.W. Stirling, M.C. Gerstenberger BIBLIOGRAPHIC REFERENCE Nicol, A.; Van Dissen, R.J.; Stirling, M.W., Gerstenberger, M.C. 2017. Quantifying the incompleteness of New Zealand’s prehistoric earthquake record. EQC project 14/668 Final Report, 25 p. A. Nicol, University of Canterbury, Private Bag 4800, Christchurch, New Zealand R.J. Van Dissen, PO Box 30368, Lower Hutt 5040, New Zealand M.W. Stirling, University of Otago, PO Box 56, Dunedin 9054, New Zealand M.C. Gerstenberger, PO Box 30368, Lower Hutt 5040, New Zealand EQC Project 14/668 Final Report 2 CONTENTS LAYMANS ABSTRACT ....................................................................................................... IV TECHNICAL ABSTRACT ..................................................................................................... V KEYWORDS ......................................................................................................................... V 1.0 INTRODUCTION ........................................................................................................ 6 2.0 DATA SOURCES ....................................................................................................... 8 2.1 Historical Earthquakes .................................................................................................. 8 2.2 active fault earthquake source identification ............................................................... 10 3.0 PROBABILITY OF -
Employment Analysis Report
Employment Analysis October 2020 Wellington Regional Growth Framework | 0 Introduction Ka ora te wai If the water is healthy Purpose of this report More detailed work, than has been undertaken in the Ka ora te whenua the land will be nourished The purpose of this report is to summarise existing Framework, will need to be undertaken to Ka ora te whenua If the land is nourished research and data to assist with regional spatial understand in more detail: Ka ora te tangata the people will be provided planning. No new analysis has been undertaken. This 1. How many jobs do we expect in each for report should be read as an input into other work, geographical area as of 2050? and not as a final conclusion on the spatial direction 2. What change is that from the current situation? for the Framework or as policy for any of the partner Mo te iti - mo te rahi For the little - for the large 3. What type of jobs are they? organisations. 4. What do we need to do to make this change? 1 As outlined in the Foundation Report for the This report builds upon the Foundation Report to Wellington Regional Growth Framework (the 2 provide background information to assist in analysing Framework), employment in the region is employment patterns and information and concentrated in central Wellington and a significant determine what changes may/could occur with number of commuters travel into central Wellington regards to employment and the Framework. from other parts of the region for employment. A key direction during development of the Regional employment is dominated by knowledge- Framework with regards to employment has been to based sector employment. -
Variability in Single Event Slip and Recurrence Intervals for Large
Variability of single event slip and recurrence intervals for large magnitude paleoearthquakes on New Zealand’s active faults A. Nicol R. Robinson R. J. Van Dissen A. Harvison GNS Science Report 2012/41 December 2012 BIBLIOGRAPHIC REFERENCE Nicol, A.; Robinson, R.; Van Dissen, R. J.; Harvison, A. 2012. Variability of single event slip and recurrence intervals for large magnitude paleoearthquakes on New Zealand’s active faults, GNS Science Report 2012/41. 57 p. A. Nicol, GNS Science, PO Box 30368, Lower Hutt 5040, New Zealand R. Robinson, PO Box 30368, Lower Hutt 5040, New Zealand R. J. Van Dissen, PO Box 30368, Lower Hutt 5040, New Zealand A. Harvison, PO Box 30368, Lower Hutt 5040, New Zealand © Institute of Geological and Nuclear Sciences Limited, 2012 ISSN 1177-2425 ISBN 978-1-972192-29-0 CONTENTS LAYMANS ABSTRACT ....................................................................................................... IV TECHNICAL ABSTRACT ..................................................................................................... V KEYWORDS ......................................................................................................................... V 1.0 INTRODUCTION ........................................................................................................ 1 2.0 GEOLOGICAL EARTHQUAKES ................................................................................ 2 2.1 Data Sources ................................................................................................................. 2 2.2 -
Archaeology of the Wellington Conservancy: Wairarapa
Archaeology of the Wellington Conservancy: Wairarapa A study in tectonic archaeology Archaeology of the Wellington Conservancy: Wairarapa A study in tectonic archaeology Bruce McFadgen Published by Department of Conservation P.O. Box 10-420 Wellington, New Zealand To the memory of Len Bruce, 1920–1999, A tireless fieldworker and a valued critic. Cover photograph shows a view looking north along the Wairarapa coastline at Te Awaiti. (Photograph by Lloyd Homer, © Insititute of Geological and Nuclear Sciences.) This report was prepared for publication by DOC Science Publishing, Science & Research Unit; editing by Helen O’Leary and layout by Ruth Munro. Publication was approved by the Manager, Science & Research Unit, Science Technology and Information Services, Department of Conservation, Wellington. All DOC Science publications are listed in the catalogue which can be found on the departmental website http://www.doc.govt.nz © May 2003, New Zealand Department of Conservation ISBN 0–478–22401–X National Library of New Zealand Cataloguing-in-Publication Data McFadgen, B. G. Archaeology of the Wellington Conservancy : Wairarapa : a study in tectonic archaeology / Bruce McFadgen. Includes bibliographical references. ISBN 0-478-22401-X 1. Archaeological surveying—New Zealand—Wairarapa. 2. Maori (New Zealand people)—New Zealand—Wairarapa— Antiquities. 3. Wairarapa (N.Z.)—Antiquities. I. New Zealand. Dept. of Conservation. II. Title. 993.6601—dc 21 ii Contents Abstract 1 1. Introduction 3 2. Geology and geomorphology 6 3. Sources of information 8 4. Correlation and dating 9 5. Off-site stratigraphy in the coastal environment 11 5.1 Sand dunes 12 5.2 Stream alluvium and colluvial fan deposits 13 5.3 Uplifted shorelines 14 5.4 Tsunami deposits 15 5.5 Coastal lagoon deposits 15 5.6 Correlation of off-site stratigraphy and adopted ages for events 16 6. -
Massey University
BUSINESSMEASURE PERSPECTIVES FROM NEW ZEALAND SMALL FIRMS: CRISIS MANAGEMENT AND THE IMPACT OF THE CANTERBURY EARTHQUAKES Report from BusinesSMEasure 2011 Prepared for Tom West, Ministry of Economic Development By Martina Battisti & David Deakins New Zealand Centre for Small & Medium Enterprise Research Massey University 17 February 2012 Contents Contents ................................................................................................................................. 2 Executive summary ................................................................................................................ 3 BusinesSMEasure .................................................................................................................. 5 Defining SMEs .................................................................................................................... 5 Research focus ...................................................................................................................... 6 Impact of Canterbury earthquakes on small firms in New Zealand ...................................... 6 Methodological background .................................................................................................... 8 Sample and response rate .................................................................................................. 8 Data collection .................................................................................................................... 8 Data quality .........................................................................................................................9 -
Regional Community Profile
Regional community profile: Wellington Community Trust October 2020 Contents 1. Summary of Findings 3 2. Background 5 2.1 Indicator data 6 2.2 Interpreting the indicator data tables in this report 7 3. Indicator Data 8 3.1 Population 8 3.2 Socio-economic deprivation 13 3.3 Employment and income 16 3.4 Education 17 3.5 Housing 19 3.6 Children and young people 21 3.7 Community wellbeing 23 3.8 Environment 25 References 26 Centre for Social Impact | Wellington Community Trust – Community Profile September 2020 | Page 2 1. Summary of Findings Population and projections (2018 Census) ● Population: The WCT region is home to around 469,047 people, or 9.8% of New Zealand’s population. It has five territorial authority areas. Two thirds of the people in the WCT region reside in two of these five areas – Wellington City (45%) and Lower Hutt City (22%). Porirua has 12% of the WCT population, followed by 11% in Kapiti Coast District and 9% in Upper Hutt City. ● Population projection: The WCT region’s population will increase by 11% by 2038. Projected population growth in the region is lower than the projected New Zealand average (20%). This means that by 2038, the WCT region is projected to represent a slightly reduced 9.0% of New Zealand’s population. ● Ethnicity: Porirua (22%) and Lower Hutt (10%) have populations with the highest proportion of Pacific Peoples in the WCT region. Both areas also have the populations with the highest proportion of Māori (18% and 16% respectively). Population projections show that Māori and Pacific communities will grow further in proportion in these two areas by 2038. -
Highly Erodible Land in the Manawatu-Wanganui Region
Highly erodible land in the Manawatu-Wanganui region John Dymond and James Shepherd Landcare Research NZ Ltd Private Bag 11 052 Palmerston North New Zealand Landcare Research Contract Report: 0607/027 Prepared for: Horizons Regional Council Private Bag 11025 Palmerston North New Zealand Date: September 2006 © Landcare Research New Zealand Ltd 2006 No part of this work covered by copyright may be reproduced or copied in any form or by any means (graphic, electronic or mechanical, including photocopying, recording, taping, information retrieval systems, or otherwise) without the written permission of the publisher. Contents 1. Summary......................................................................................................................................4 2. Introduction..................................................................................................................................4 3. Methods.......................................................................................................................................5 4. Results..........................................................................................................................................6 5. Bibliography................................................................................................................................8 Map 1: Highly erodible land without protective vegetation in the Manawatu-Wanganui Region 4 1. Summary Highly erodible land is defined as land with the potential for severe erosion if it does not -
Fault Zone Parameter Descriptions, GNS Science Report 2012/19
BIBLIOGRAPHIC REFERENCE Litchfield, N. J.1; Van Dissen, R.1; Sutherland, R.1; Barnes, P. M.2; Cox, S. C.1; Norris, R.3; Beavan, R.J.1; Langridge, R.1; Villamor, P.1; Berryman, K.1; Stirling, M.1; Nicol, A.1; Nodder, S.2; Lamarche, G.2; Barrell, D. J. A.1; 4 5 1 2 1 Pettinga, J. R. ; Little, T. ; Pondard, N. ; Mountjoy, J. ; Clark, K . 2013. A model of active faulting in New Zealand: fault zone parameter descriptions, GNS Science Report 2012/19. 120 p. 1 GNS Science, PO Box 30368, Lower Hutt 5040, New Zealand 2 NIWA, Private Bag 14901, Kilbirnie, Wellington 6241, New Zealand 3 University of Otago, PO Box 56, Dunedin 9054, New Zealand 4 University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand 5 Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand © Institute of Geological and Nuclear Sciences Limited, 2013 ISSN 1177-2425 ISBN 978-1-972192-01-6 CONTENTS ABSTRACT ......................................................................................................................... IX KEYWORDS ........................................................................................................................ IX 1.0 INTRODUCTION ........................................................................................................ 1 2.0 ACTIVE FAULT ZONE AND PARAMETER DEFINITIONS ...................................... 25 2.1 DEFINITION OF AN ACTIVE FAULT ZONE .............................................................25 2.1.1 Definition of active ..........................................................................................