Stakeholder Study: Resource Management of Wairarapa Moana

Total Page:16

File Type:pdf, Size:1020Kb

Stakeholder Study: Resource Management of Wairarapa Moana Natalie Diltz Jena Mazzucco Austin Scott Jeffrey Sirocki March 2, 2016 STAKEHOLDER STUDY: RESOURCE MANAGEMENT OF WAIRARAPA MOANA Identification and Analysis of Wairarapa Moana Stakeholder Opinions Regarding the Management of the Blundell Barrage Gates Abstract This project aided the Greater Wellington Regional Council (GWRC) in collecting opinions from five stakeholder groups concerning management of the naturally flooding Lake Wairarapa in New Zealand. Our team conducted a total of twenty-nine interviews with the Rangitāne (Māori), Department of Conservation, South Wairarapa District Council, landowners, and recreational water users regarding the Blundell Barrage Gates which play a vital role in flood management. Interview discussions indicate that water quality, sources of pollution, water levels, flood management, and future operation of the barrage gates are controversial. We identified communication, collaboration, and education as three areas of focus for the GWRC as they continue to improve their management of the region. i Executive Summary This project is concerned with Wairarapa Moana, a water system located in the Wairarapa region, situated on the North Island of New Zealand. Wairarapa Moana consists of the three main water bodies, shown in Figure 1; the coastal lake is Lake Onoke, the inland lake is Lake Wairarapa, and the main river is the Ruamahanga. The system is dynamic, which means water can flow in both directions. Both tidal movements and rainfall affect the direction of flow. The area is low-lying and sits between two mountain ranges exposing much of the land to seasonal flooding. The Greater Wellington Regional Council, the governing body for the Wellington region, developed the Lower Wairarapa Valley Development Scheme (LWVDS), to control flooding in the 1960s. This scheme includes the diversion of the Ruamahanga River around Lake Wairarapa and the implementation of the Blundell Barrage Gates as shown in Figure 1. Figure 1 - The Lower Wairarapa Valley Development Scheme, which contains the diversion of the Ruamahanga straight into Lake Onoke and the Blundell Barrage Gates, dramatically reduced the extent of flooding, as shown in light blue (Google, 2015). The Wairarapa community is currently experiencing a resource management conflict regarding the flood prevention scheme. The conflict involves many different stakeholders within the region. The tensions stem from the historic difference in lifestyle between the Pakeha and the indigenous Māori. Pakeha refers to non-Māori individuals, primarily English colonists who began settling in the Wairarapa region in the 1840s. The British Crown and the Māori signed the Treaty of Waitangi in 1840, which established British sovereignty over New Zealand. Over the years, it became clear that the Māori and the Pakeha valued the land differently. Where the Māori value the land for its intrinsic value, the Pakeha generally value the land for its economic value. In Wairarapa Moana, the land would routinely flood and drain. Conflicts arose around ownership of the lake bed and who would control the flooding of the lake. The farmers desired flood control in order to protect their assets, land and animals, and the Māori desired higher water levels for catching eels. Inevitably, pressure from the British Crown to sell, left the Māori no choice but to gift their land to the Crown in 1896. In 1975, the government formed the Waitangi Tribunal in ii order to hear claims of breaches in the Treaty of Waitangi. Rangitāne o Wairarapa, a local Māori tribe or iwi, initiated a settlement claim with the Office of Treaty Settlements and is currently working to settle overlapping claims with a second iwi, the Kahungunu ki Wairarapa. The outcome from this settlement may result in the Crown gifting the lake bed back to both tribes. This could lead to greater iwi involvement, affecting the scheme the Greater Wellington Regional Council currently uses to manage the lake. The Greater Wellington Regional Council (GWRC) dramatically altered the landscape over the last fifty years with the implementation of the Lower Wairarapa Valley Development Scheme. The New Zealand Resource Management Act of 1991 mandates that most activities that affect the environment obtain a resource consent. The GWRC flood protection department is responsible for renewing their two resource consents for maintaining the entire scheme and operating the Blundell Barrage Gates. The resource consent that permits the usage of the barrage gates will be up for renewal in 2019 and the resource consent that permits the management of the entire Lower Wairarapa Valley Development Scheme will require renewal in 2025. The aim of the Greater Wellington Regional Council is to utilize our team as a third party to investigate and discover the thoughts and opinions of the concerned stakeholders in the region. They tasked us with speaking to the Rangitāne o Wairarapa, the Department of Conservation, South Wairarapa District Council, landowners, and recreational water users so that they may better prepare for the resource consent renewal. This project’s focus was to detail the points of view of each stakeholder group and improve communication within the Wairarapa Moana community regarding the management of Lake Wairarapa. In order to achieve this goal, our team developed three objectives: 1. To observe and gain understanding of the current political, ecological, economic, and cultural situation in Wairarapa Moana 2. To identify the perspectives and needs of each stakeholder group regarding the management of Lake Wairarapa 3. To determine common interests, concerns, and major differences by highlighting recurring themes regarding the Blundell Barrage Gates. To achieve our main goal of detailing the points of view of each stakeholder group, we utilized three methods: background research, interviews, and data analysis. Through observing Lake Wairarapa, a Wairarapa Coordinating Committee meeting, and a welcoming ceremony at the Kohunui Marae, the project group developed a thorough understanding of the region and community. We interviewed David Boone, the section leader of the Flood Protection Department at the GWRC, who provided us with intricate knowledge of the flood protection scheme. These activities allowed us to align our project objectives to better match the needs of the flood protection department. After familiarizing ourselves with the region and its people, our team identified the perspectives and needs of each stakeholder group by conducting and transcribing twenty-four semi-structured interviews with twenty-nine individuals as shown in Table 1. Semi-structured interviews allow free discussion, containing a set list of questions, while offering flexibility to ask supplemental questions. Each stakeholder group had a unique interview protocol, which inquired about the same topics but the wording of the questions varied depending on the specific interest of the group interviewed. iii Table 1 - Stakeholder Breakdown Stakeholder Interviewee Breakdown (29 total): Department of Conservation: 7 Rangitāne o Wairarapa: 4 South Wairarapa District Council: 6 Landowners: 8 Recreational Water Users: 4 After we completed the interviews, we coded the information by recurring themes in the responses. Independently, three group members each coded roughly a third of the transcripts from the interviews and the last member reviewed, summarized and sorted the coded data into the respective topics. This allowed us to transform our qualitative raw data into quantitative data and draw conclusions regarding common and differing interests of each stakeholder group. Our data and analysis highlights five key points of contention: water quality perceptions, sources of pollution, flood management, future operation of the scheme and water levels. For stakeholder perceptions of water quality, only two respondents indicated that the current quality of the water was good. The breakdown of responses by stakeholder is shown below in Figure 2, which indicates that generally, interviewees thought that the water quality was poor or neutral. Figure 2 - Table of water quality perceptions It was brought to our attention, before the start of the interviews, that the public generally considered farming practices as a main cause for the poor water quality in the region. However, the interviewees noted several other factors that affect the quality of the water. If at least fifty percent of a stakeholder group mentioned a factor of water quality, we noted it and included it in Figure 3, below. Nineteen out of the twenty-nine interviewees acknowledged the impact farming practices has, however they also noted that the natural behavior of the lake, reduced flow, and wastewater discharge have a significant impact. iv Figure 3 - Diagram of flood management perceptions The team identified flood management as another point of contention. We analyzed whether each interviewee thought the GWRC well manages the scheme or not. The breakdown of responses by stakeholder is shown below in Figure 4, which shows that generally, interviewees thought that the GWRC manages flooding well. The only stakeholder with 50% or more who thought the GWRC did not manage the flooding well was the Rangitāne. Figure 4 - Table of flood management perceptions When asked how the GWRC could improve their management of the Lower Wairarapa Valley Development Scheme, the interviewees expressed different priorities for the future. Twenty-three out of twenty-nine interviewees expressed that they wanted the GWRC to address
Recommended publications
  • Geology of the Wairarapa Area
    GEOLOGY OF THE WAIRARAPA AREA J. M. LEE J.G.BEGG (COMPILERS) New International NewZOaland Age International New Zealand 248 (Ma) .............. 8~:~~~~~~~~ 16 il~ M.- L. Pleistocene !~ Castlecliffian We £§ Sellnuntian .~ Ozhulflanl Makarewan YOm 1.8 100 Wuehlaplngien i ~ Gelaslan Cl Nukumaruan Wn ~ ;g '"~ l!! ~~ Mangapanlan Ql -' TatarianiMidian Ql Piacenzlan ~ ~;: ~ u Wai i ian 200 Ian w 3.6 ,g~ J: Kazanlan a.~ Zanetaan Opoitian Wo c:: 300 '"E Braxtonisn .!!! .~ YAb 256 5.3 E Kunaurian Messinian Kapitean Tk Ql ~ Mangapirian YAm 400 a. Arlinskian :;; ~ l!!'" 500 Sakmarian ~ Tortonisn ,!!! Tongaporutuan Tt w'" pre-Telfordian Ypt ~ Asselian 600 '" 290 11.2 ~ 700 'lii Serravallian Waiauan 5w Ql ." i'l () c:: ~ 600 J!l - fl~ '§ ~ 0'" 0 0 ~~ !II Lillburnian 51 N 900 Langhian 0 ~ Clifdenian 5e 16.4 ca '1000 1 323 !II Z'E e'" W~ A1tonian PI oS! ~ Burdigalian i '2 F () 0- w'" '" Dtaian Po ~ OS Waitakian Lw U 23.8 UI nlan ~S § "t: ." Duntroonian Ld '" Chattian ~ W'" 28.5 P .Sll~ -''" Whalngaroan Lwh O~ Rupelian 33.7 Late Priabonian ." AC 37.0 n n 0 I ~~ ~ Bortonian Ab g; Lutetisn Paranaen Do W Heretauncan Oh 49.0 354 ~ Mangaorapan Om i Ypreslan .;;: w WalD8wsn Ow ~ JU 54.8 ~ Thanetlan § 370 t-- §~ 0'" ~ Selandian laurien Dt ." 61.0 ;g JM ~"t: c:::::;; a.os'"w Danian 391 () os t-- 65.0 '2 Maastrichtian 0 - Emslsn Jzl 0 a; -m Haumurian Mh :::;; N 0 t-- Campanian ~ Santonian 0 Pragian Jpr ~ Piripauan Mp W w'" -' t-- Coniacian 1ij Teratan Rt ...J Lochovlan Jlo Turonian Mannaotanean Rm <C !II j Arowhanan Ra 417 0- Cenomanian '" Ngaterian Cn Prldoli
    [Show full text]
  • RUAMĀHANGA RIVER RUAMĀHANGA REACH 2: Mount Bruce X
    RUAMAHANGA RIVER REACH 1: Ruamahanga Headwaters RUAMĀHANGA RIVER RUAMĀHANGA REACH 2: Mount Bruce x VOLUME 2 VOLUME REACH 3: Hidden Lakes DRAFT TE KĀURU UPPER RUAMĀHANGA UPPERRUAMĀHANGA KĀURU TE DRAFT REACH 4: Double Bridges to FLOODPLAIN MANAGEMENT PLAN MANAGEMENT FLOODPLAIN Te Ore Ore REACH 5: Te Ore Ore to Waingawa Confluence REACH 6: Waingawa Confluence to Gladstone Bridge REACH 8: Kokotau Rd Bridge to Waiohine River Confluence REACH 7: Gladstone Bridge to Kototau Rd Bridge Ruamāhanga River RUAMĀHANGA RIVER RUAMĀHANGA 1 2. Ruamāhanga River General Issues The Ruamāhanga flows from its source in the Tararua Ranges down through steep mountainous terrain and native The Ruamāhanga River is well known to the Wairarapa community for its flood flows. The relatively entrenched upper 2 VOLUME forests, running through rock-lined gorges and boulder garden rapids before leaving the foothills close to Pukaha / reaches of the Ruamāhanga River contain much of the flood water, confining it between old river terraces, and its Mount Bruce. From there, it flows through a number of steep-sided gorges where historic river terracing can be seen passage is controlled in several locations by prominent rocky outcrops. As it turns to the south at its confluence with through the fringes of patchy native and exotic vegetation, before opening out into the pastoral Wairarapa Plains. Here the Kopuaranga River it opens into a broader floodplain, and the modelled flood events show a greater extent of the it turns to a more southerly direction flowing downstream through confluences with all of the other rivers which flow adjacent land under water.
    [Show full text]
  • RUAMAHANGA RIVER FISHERY ACCESS POINTS ACCESS POINTS the Ruamahanga River Is the Principal Trout Fishery in the Wairarapa
    Wellington Region Wellington your left. This sign marks the turn off onto a track that runs about about runs that track a onto off turn the marks sign This left. your Photo: AndrewHarding website Game & Fish Wellington Road for 3.3km until you see a Fish & Game ‘Angler Access’ sign on on sign Access’ ‘Angler Game & Fish a see you until 3.3km for Road the from map detailed more a get to this Scan Road (this is sign posted as “Kahutara Canoes”). Follow Pahuatea Pahuatea Follow Canoes”). “Kahutara as posted sign is (this Road When travelling south along Kahutara Road, turn left onto Pahuatea Pahuatea onto left turn Road, Kahutara along south travelling When 13) Pahautea Road Access Road Pahautea 13) ACCESS POINTS ACCESS www.fishandgame.org.nz fishing is an excellent way to catch fish here. fish catch to way excellent an is fishing Telephone: 06 359 0409 359 06 Telephone: fishing in our region is found here with fish up to 2kg caught. Bait Bait caught. 2kg to up fish with here found is region our in fishing Palmerston North Palmerston when sea run brown trout move into the river. Some of the best perch perch best the of Some river. the into move trout brown run sea when P O Box 1325 Box O P Below the Tuhitarata Bridge trolling is popular, especially in autumn autumn in especially popular, is trolling Bridge Tuhitarata the Below LOWER RUAMAHANGA RIVER RUAMAHANGA LOWER on Regi gton in ll We fish the next 1km of river on the true right side of the riverbed.
    [Show full text]
  • Hydrological Monitoring Technical Report
    JUNE 2005 Hydrological monitoring technical report Laura Watts Resource Investigations Department Greater Wellington Regional Council Contents 1. Introduction 1 1.1 What is this report about? 1 1.2 Scope of analysis 1 1.3 Report structure 2 2. Pressures on surface water quantity in the Wellington Region 3 2.1 Climate cycles 3 2.1.1 El Nino Southern Oscillation (ENSO) 3 2.1.2 Influences of ENSO on Wellington’s water resources 4 2.1.3 Interdecadal Pacific Oscillation (IPO) 4 2.2 Climate change 6 2.3 Land use change 7 2.4 Abstractive demand 8 2.4.1 Current extent of water allocation and use 8 2.4.2 Trends in demand 13 2.5 Summary points 14 3. Monitoring surface water quantity 16 3.1 Monitoring rainfall 16 3.2 Monitoring river flows and lake levels 16 4. Surface water quantity in the region – on average 20 4.1 Variation across the region 20 4.2 Seasonal variations in water quantity 22 4.3 Summary points 25 5. Surface water quantity 1999 to 2004 26 5.1 Annual rainfall 26 5.2 Monthly rainfall and river flows 27 5.2.1 Kapiti Coast 27 5.2.2 Central Wellington Region 29 5.2.3 Wairarapa 31 5.3 Low flows 34 5.4 Minimum flows and target lake levels 37 5.5 Floods 40 5.6 Summary points 42 6. Long-term perspective 44 th 6.1 Climate patterns of the 20 century 44 6.2 Trends and variability in annual rainfall 44 6.3 Droughts and low flows 51 6.4 Extreme rainfall and floods 55 6.5 Summary points 61 7.
    [Show full text]
  • A Gravity Survey of the Wharekauhau Thrust, Palliser Bay, New Zealand
    New Zealand Journal of Geology and Geophysics ISSN: 0028-8306 (Print) 1175-8791 (Online) Journal homepage: http://www.tandfonline.com/loi/tnzg20 A gravity survey of the Wharekauhau Thrust, Palliser Bay, New Zealand Alastair F. McClymont To cite this article: Alastair F. McClymont (2000) A gravity survey of the Wharekauhau Thrust, Palliser Bay, New Zealand, New Zealand Journal of Geology and Geophysics, 43:2, 303-306, DOI: 10.1080/00288306.2000.9514888 To link to this article: http://dx.doi.org/10.1080/00288306.2000.9514888 Published online: 23 Mar 2010. Submit your article to this journal Article views: 117 View related articles Citing articles: 2 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tnzg20 Download by: [121.75.88.191] Date: 27 March 2017, At: 18:58 New Zealand Journal of Geology & Geophysics, 2000, Vol. 43: 303-306 303 0028-8306/00/4302-0303 $7.00/0 © The Royal Society of New Zealand 2000 Short communication A gravity survey of the Wharekauhau Thrust, Palliser Bay, New Zealand ALASTAIR F. McCLYMONT TECTONIC SETTING School of Earth Sciences The Wairarapa Fault is one of six major faults of the North Victoria University of Wellington Island Dextral Fault Belt (Beanland 1995), a zone of P.O. Box 600 dominantly dextral strike-slip faults that lie within, and strike Wellington, New Zealand parallel to, the Australia-Pacific plate boundary along the southern North Island of New Zealand (Fig. 1). The M+8 earthquake in 1855 caused surface rupturing along the Abstract A gravity survey undertaken at Wharekauhau, Wairarapa Fault for a distance of at least 148 km (Grapes Palliser Bay, New Zealand, determines the geometry of the 1999).
    [Show full text]
  • Wairarapa Moana Whakaora Te Repo, Ka Ora Te Taonga Wai Restoring Our Wetland Treasure
    Wairarapa Moana Whakaora te repo, ka ora te taonga Wai Restoring our wetland treasure Barton’s Lagoon on the north Lake Wairarapa The Wairarapa Moana Wetlands Project began in 2008 to enhance the native ecology, recreation and cultural opportunities on the public land in the area. The project partners are Greater Wellington, Department of Conservation, Rangitane o Wairarapa, Kahungunu ki Wairarapa, local hapu and South Wairarapa District Council. They in turn are working with community groups, farmers and environmental and recreational groups to restore our wetland treasure. Everyone recognises you can’t succeed in a project this size without all interested parties being involved. Restoring the edge wetlands The project got a major shot in the arm with a successful bid for funding from the Government’s Fresh Start for Freshwater Clean Up Fund to improve the water quality of the edge wetlands. The Ministry for the Environment will contribute $1 million over the next three years. This funding will be matched by the following funding partners in cash or in kind – Ducks Unlimited, Dairy NZ, Department of Conservation and Greater Wellington Regional Council. The priority for the fresh start project is to enhance the wetland habitat around the edge of Lake Wairarapa and Lake Onoke by improving water quality through restoring selected wetland areas – Boggy Pond, Matthews Lagoon, Wairio Wetlands, JK Donald Reserve and Barton’s Lagoon stand out as priorities. This booklet is a very simplified look at Wairarapa Moana and what this funding sets out to achieve. 1 2 3 Poor water quality – our inherited problem Lake Wairarapa is among New Zealand’s 10 dirtiest lakes.
    [Show full text]
  • Archaeology of the Wellington Conservancy: Wairarapa
    Archaeology of the Wellington Conservancy: Wairarapa A study in tectonic archaeology Archaeology of the Wellington Conservancy: Wairarapa A study in tectonic archaeology Bruce McFadgen Published by Department of Conservation P.O. Box 10-420 Wellington, New Zealand To the memory of Len Bruce, 1920–1999, A tireless fieldworker and a valued critic. Cover photograph shows a view looking north along the Wairarapa coastline at Te Awaiti. (Photograph by Lloyd Homer, © Insititute of Geological and Nuclear Sciences.) This report was prepared for publication by DOC Science Publishing, Science & Research Unit; editing by Helen O’Leary and layout by Ruth Munro. Publication was approved by the Manager, Science & Research Unit, Science Technology and Information Services, Department of Conservation, Wellington. All DOC Science publications are listed in the catalogue which can be found on the departmental website http://www.doc.govt.nz © May 2003, New Zealand Department of Conservation ISBN 0–478–22401–X National Library of New Zealand Cataloguing-in-Publication Data McFadgen, B. G. Archaeology of the Wellington Conservancy : Wairarapa : a study in tectonic archaeology / Bruce McFadgen. Includes bibliographical references. ISBN 0-478-22401-X 1. Archaeological surveying—New Zealand—Wairarapa. 2. Maori (New Zealand people)—New Zealand—Wairarapa— Antiquities. 3. Wairarapa (N.Z.)—Antiquities. I. New Zealand. Dept. of Conservation. II. Title. 993.6601—dc 21 ii Contents Abstract 1 1. Introduction 3 2. Geology and geomorphology 6 3. Sources of information 8 4. Correlation and dating 9 5. Off-site stratigraphy in the coastal environment 11 5.1 Sand dunes 12 5.2 Stream alluvium and colluvial fan deposits 13 5.3 Uplifted shorelines 14 5.4 Tsunami deposits 15 5.5 Coastal lagoon deposits 15 5.6 Correlation of off-site stratigraphy and adopted ages for events 16 6.
    [Show full text]
  • Identifying Resource Management Conflicts: Stakeholder Study Regarding Flood Protection in Wairarapa Moana
    Identifying Resource Management Conflicts: Stakeholder Study Regarding Flood Protection in Wairarapa Moana Sponsored By: Breanne Happell René Jacques Elizabeth van Zyl Elizabeth Walfield Identifying Resource Management Conflicts: Stakeholder Study Regarding Flood Protection in Wairarapa Moana An Interactive Qualifying Project Submitted to the Faculty of Worcester Polytechnic Institute In partial fulfillment of the requirements for the Degree of Bachelor of Science In cooperation with The Greater Wellington Regional Council Submitted on March 1st, 2016 Submitted By: Breanne Happell René Jacques Elizabeth van Zyl Elizabeth Walfield Project Advisors: Bethel Eddy Robert Kinicki This report represents work of WPI undergraduate students submitted to the faculty as evidence of a degree requirement. WPI routinely publishes these reports on its web site without editorial or peer review. For more information about the projects program at WPI, see http://www.wpi.edu/Academics/Projects i Abstract This project aided the Greater Wellington Regional Council (GWRC) in gathering the opinions of stakeholders in regards to two flood protection methods in the Lower Wairarapa Valley of New Zealand: the Geoffrey Blundell Barrage Gates and the Ruamahanga River Cutoff. These methods regulate water levels in Lake Wairarapa. The team conducted 25 interviews with flood protection managers, farmers that live in the valley, and members of Ngāti Kahungunu, a Māori iwi (tribe). Our analysis found that fish passage through the gates, lake water levels, and whether the GWRC incorporated stakeholder opinions fairly were areas of concern to the stakeholder groups. This information will help to facilitate further communication between the stakeholder groups and the GWRC. ii Executive Summary This project evaluated the various views on the management of the Geoffrey Blundell Barrage Gates and the Ruamahanga River Cutoff, two flood protection methods implemented in Wairarapa Moana.
    [Show full text]
  • Former Faunal Areas: Some Sub-Fossil Evidence
    N.Z. ECOLOGICAL SOCIETY 17 Former Faunal Areas: Some Sub-Fossil Evidence R. J. Scarlett. Any discussion of former faunal areas described small Euryapteryx which I collect- based on the distribution of fossil or sub- ed on Stewart Island in Nov. 1954. Zelornis fossil bones is complicated when those bones haasti is known from Takaka, Canterbury, are of various geological ages. Nevertheless, Otago and Southland. study of the regions in which the genera and In the North Island, four closely related species of moa are found makes possible small species, Zelornis exilis, Euryapteryx some tentative conclusions. curtus (Owen), E. tane, and E. geranoides The evidence is unevenly distributed be- are recognised. The first three range from cause some areas--the best sources are caves, N. Auckland to Wanganui and Napier, and swamps and sandhilIs--are better suited to geranoides from Tom Bowling Bay, N. the preservation of bones, or have been Auckland, to Takaka. better explored. The 'South Island Megalap- Emeus crassus (Owen) and Emeus huttoni teryx didinus (Owen) ranged down the west coast to Inangahua Junction, from Takaka (Owen) are known from Marlborough, and to coastal Marlborough, down the East are common in Canterbury and Otago. Coast to Southland and the Te Anau-Lake Pachyornis elephantopus Owen ranged from Wakatipu area. egegalapteryx benhami Takaka to Marlborough and from Canter- Archey is known only from the Nelson area. bury to Southland. P. murihiku Oliver was found near InvercargilI, and P. australis Anomalopteryx didiformis (Owen) has Oliver in Southland and Nelson. The-North virtually the same South Island distribution Island P.
    [Show full text]
  • Late Holocene Sediment Deposition in Lake Wairarapa
    Late Holocene Sediment Deposition in Lake Wairarapa Martha Ingrid Trodahl A thesis submitted to Victoria University of Wellington in partial fulfilment of the requirements for the degree of Master of Science in Physical Geography December 2010 -1- Abstract Lake Wairarapa is a highly modified lacustrine system at the southern end of the North Island, New Zealand. Not only is it situated in a region that is affected by catchment altering natural phenomena such as earthquakes, storms and fire, but both the catchment and hydrology of the lake have also been significantly altered by humans. Polynesian settlers arrived in the area approximately 700BP and proceeded to deforest the lowlands. European settlers began arriving from 1844AD onwards, completing deforestation of the lowlands and Eastern Uplands. In 1964 the Lower Wairarapa Valley Development Scheme was commissioned in an effort to alleviate flooding. This scheme significantly altered the hydrological regime of the lake. Interest in the condition of the lake and associated wetlands, and the realization that it has important recreational, cultural and ecological value, began to develop in the 1990‟s. This has led to a desire to see the lake restored to a more natural condition while still maintaining its flood protection capabilities. However, the lake has only been monitored over the last several decades. Any evidence of the lakes condition prior to this time is anecdotal and little is known of its natural tendencies and functions. This research has investigated and quantified morphological changes to Lake Wairarapa at the decadal and millenial scale using a combination of aerial photograph analysis, bathymetric survey comparison and lakebed core analysis.
    [Show full text]
  • CYCLE TRAIL PETONE ORONGORONGO RIMUTAKA 2-3 DAYS 115Km Cycle Trail
    RIMUTAKA CYCLE TRAIL RIMUTAKA PETONE ORONGORONGO RIMUTAKA 2-3 DAYS 115km Cycle Trail Trail Info Summit Tunnel © Caleb Smith BELOW LEFT: Caspian terns © Rod Morris, Department of Conservation BELOW RIGHT: Seal Colony at Cape Palliser © Destination Wairarapa 2-3 Days Starting on Wellington’s doorstep, this trail winds the Rimutaka Rail Trail, one of the most 115km through the Rimutaka Ranges to the Wairarapa popular and historic trails in the region. Valley and the mouth of the Orongorongo River. After emerging in the Wairarapa, famous for vineyards and sheep farming, TRAIL GRADES: the trail follows a country road past rom the head of Wellington large river and great swimming spots to PETONE FORESHORE TO Lake Wairarapa to Ocean Beach. The Harbour, the Rimutaka Cycle cool off on a hot summer’s day as the MAYMORN - GRADE 2 (EASY). fi nal section is the shortest, but also 35km trail with an easy grade. Trail cuts through the trail gradually climbs to the head of the F the most adventurous. Aptly named The MAYMORN TO CROSS CREEK bush- clad Rimutaka Mountain Range, Hutt Valley. Wild Coast, it skirts around Turakirae - GRADE 2-3 (EASY TO passing through tunnels on an old INTERMEDIATE) 25km into New Beyond the valley the trail enters the Head, where the Rimutaka Range rail trail, and skirting around the wild Zealand’s bush-clad past. Tunnel Gully area in the Pakuratahi dives into the pounding Pacifi c Ocean. southern coast. CROSS CREEK TO OCEAN BEACH - Forest on what was once the main The trail then runs west to the mouth GRADE 3 (INTERMEDIATE) The fi rst stage is an easy riverside cycle railway line between Wellington and the of the Orongorongo River where the 36km on-road ride alongside Lake path called the Hutt River Trail.
    [Show full text]
  • Palliser Bay & Cape Palliser
    Executive Summary The Heritage Technical Report is one of eight reports written to feed into the preparation of the Wairarapa Coastal Strategy. The process, which includes the development of a Discussion Document, the technical reports, an Issues and Options Paper and extensive public consultation, is being undertaken by the Wairarapa Coastal Strategy Group. This group consists of representatives from Masterton, Carterton and South Wairarapa District Councils, the Wellington Regional Council and local Iwi, and was formed after concerns that development was proceeding along the Wairarapa coast in an ad hoc and fragmented way. The Heritage Technical Report provides an overview of the statutory framework of heritage provisions. It includes a timeline of occupation over the past 1000 years as well as an inventory of sites along the Wairarapa coast. It provides an analysis of what heritage is important, and what pressures currently threaten heritage. It also comments on what methods are used to protect heritage in the Wairarapa and recommends improvements to existing responses, and new responses. The principal legislation for heritage resources in New Zealand is the Historic Places Act 1993 (HPA). The purpose of the Act is to “promote the identification, protection, preservation, and conservation of the historical and cultural heritage of New Zealand.” The Resource Management Act 1991 (RMA) also recognises and provides for the protection of heritage. It sets out the principles of Matters of National Importance (Section 6), Other Matters (Section 7), and Treaty of Waitangi (Section 8). All three sections have implications for heritage on the coast. In particular, “the relationship of Maori and their…ancestral lands, waahi tapu and other taonga ” is identified as a matter of national importance.
    [Show full text]