Mouse Rgs18 Conditional Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Rgs18 Conditional Knockout Project (CRISPR/Cas9) http://beta.alphaknockout.cyagen.net Mouse Rgs18 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Rgs18 conditional knockout mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Rgs18 gene ( NCBI Reference Sequence: NM_022881 ; Ensembl: ENSMUSG00000026357 ) is located on mouse chromosome 1. 5 exons are identified , with the ATG start codon in exon 1 and the TGA stop codon in exon 5 (Transcript Rgs18- 201: ENSMUST00000027603). Exon 3 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the mouse Rgs18 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-340I20 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Homozygotes for a null allele show reduced thermal nociception threshold, increased startle reflex, thrombocytopenia, defective megakaryopoiesis, and increased platelet aggregation. Homozygotes for a different null allele show decreased bleeding time, increased platelet aggregation, and thrombosis. The knockout of Exon 3 will result in frameshift of the gene, and covers 8.79% of the coding region. The size of intron 2 for 5'-loxP site insertion: 984 bp, and the size of intron 3 for 3'-loxP site insertion: 17431 bp. The size of effective cKO region: ~1061 bp. This strategy is designed based on genetic information in existing databases. Due to the complexity of biological processes, all risk of loxP insertion on gene transcription, RNA splicing and protein translation cannot be predicted at existing technological level. Page 1 of 7 http://beta.alphaknockout.cyagen.net Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 2 3 5 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Homology arm Exon of mouse Rgs18 cKO region loxP site Page 2 of 7 http://beta.alphaknockout.cyagen.net Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. Tandem repeats are found in the dot plot matrix. It may be difficult to construct this targeting vector. Overview of the GC Content Distribution Window size: 300 bp Sequence 12 Summary: Full Length(7062bp) | A(33.18% 2343) | C(15.59% 1101) | G(16.79% 1186) | T(34.44% 2432) Note: The sequence of homologous arms and cKO region is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Page 3 of 7 http://beta.alphaknockout.cyagen.net BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN -------------------------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr1 - 144773833 144776832 3000 browser details YourSeq 144 30 314 3000 88.9% chr9 + 32248885 32249423 539 browser details YourSeq 133 30 314 3000 87.8% chr17 + 94478859 94479395 537 browser details YourSeq 119 27 314 3000 87.5% chr18 - 46147827 46148381 555 browser details YourSeq 115 70 314 3000 84.6% chrX + 23638792 23639308 517 browser details YourSeq 113 39 337 3000 84.8% chr14 - 102857210 102857795 586 browser details YourSeq 112 32 285 3000 90.0% chr15 - 6633775 6634327 553 browser details YourSeq 110 27 288 3000 80.8% chr1 - 84978393 84978890 498 browser details YourSeq 110 27 188 3000 85.9% chr2 + 77711535 77711697 163 browser details YourSeq 110 27 192 3000 87.3% chr12 + 78984583 78984753 171 browser details YourSeq 109 27 279 3000 84.8% chr7 - 112435901 112436434 534 browser details YourSeq 107 39 188 3000 89.1% chr6 - 33549522 33549671 150 browser details YourSeq 106 84 288 3000 83.6% chr1_GL456221_random - 11876 12325 450 What is ch rom_random? browser details YourSeq 103 27 188 3000 87.6% chr11 - 35757696 35757860 165 browser details YourSeq 102 27 192 3000 88.1% chrX + 157866915 157867084 170 browser details YourSeq 100 44 188 3000 84.9% chr8 + 47344160 47344305 146 browser details YourSeq 99 49 187 3000 86.3% chr1 + 72153793 72153932 140 browser details YourSeq 98 29 184 3000 86.7% chr13 - 93271425 93271582 158 browser details YourSeq 98 39 279 3000 83.0% chr8 + 34482617 34483100 484 browser details YourSeq 98 27 188 3000 80.7% chr19 + 60175710 60175874 165 Note: The 3000 bp section upstream of Exon 3 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr1 - 144770271 144773270 3000 browser details YourSeq 172 191 424 3000 90.2% chr2 + 117672825 117673058 234 browser details YourSeq 171 192 408 3000 91.8% chrX - 41516037 41516256 220 browser details YourSeq 167 191 430 3000 89.0% chr4 - 94833042 94833306 265 browser details YourSeq 166 191 408 3000 90.3% chr4 + 116375971 116376193 223 browser details YourSeq 165 198 425 3000 89.1% chr13 - 63785692 63785929 238 browser details YourSeq 164 192 421 3000 90.3% chr3 - 58307660 58307901 242 browser details YourSeq 164 191 415 3000 87.1% chrX + 73902079 73902301 223 browser details YourSeq 164 192 408 3000 91.1% chr2 + 155325121 155325341 221 browser details YourSeq 163 191 408 3000 89.9% chr11 - 18250771 18250990 220 browser details YourSeq 163 192 409 3000 87.6% chr12 + 91991306 92151172 159867 browser details YourSeq 161 192 416 3000 87.4% chr9 - 86102175 86102400 226 browser details YourSeq 161 197 416 3000 89.7% chr3 + 146668861 146669087 227 browser details YourSeq 159 197 421 3000 92.5% chr14 - 73169068 73169295 228 browser details YourSeq 159 191 407 3000 88.4% chr7 + 102945204 102945418 215 browser details YourSeq 158 191 424 3000 89.8% chr14 + 106496398 106496628 231 browser details YourSeq 157 204 424 3000 89.5% chrX - 60193802 60194026 225 browser details YourSeq 157 192 424 3000 88.5% chr19 - 23860453 23860831 379 browser details YourSeq 157 197 408 3000 89.9% chr12 - 113965204 113965420 217 browser details YourSeq 157 191 424 3000 85.8% chr2 + 39801068 39801299 232 Note: The 3000 bp section downstream of Exon 3 is BLAT searched against the genome. No significant similarity is found. Page 4 of 7 http://beta.alphaknockout.cyagen.net Gene and protein information: Rgs18 regulator of G-protein signaling 18 [ Mus musculus (house mouse) ] Gene ID: 64214, updated on 12-Aug-2019 Gene summary Official Symbol Rgs18 provided by MGI Official Full Name regulator of G-protein signaling 18 provided by MGI Primary source MGI:MGI:1927498 See related Ensembl:ENSMUSG00000026357 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Expression Biased expression in liver E14 (RPKM 3.7), liver E18 (RPKM 2.8) and 7 other tissues See more Orthologs human all Genomic context Location: 1 F; 1 62.99 cM See Rgs18 in Genome Data Viewer Exon count: 6 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 1 NC_000067.6 (144752683..144775427, complement) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 1 NC_000067.5 (146599971..146622551, complement) Chromosome 1 - NC_000067.6 Page 5 of 7 http://beta.alphaknockout.cyagen.net Transcript information: This gene has 1 transcript Gene: Rgs18 ENSMUSG00000026357 Description regulator of G-protein signaling 18 [Source:MGI Symbol;Acc:MGI:1927498] Location Chromosome 1: 144,752,683-144,775,435 reverse strand. GRCm38:CM000994.2 About this gene This gene has 1 transcript (splice variant), 128 orthologues, 23 paralogues, is a member of 1 Ensembl protein family and is associated with 10 phenotypes. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Rgs18-201 ENSMUST00000027603.3 2031 235aa ENSMUSP00000027603.3 Protein coding CCDS15350 Q544K2 Q99PG4 TSL:1 GENCODE basic APPRIS P1 42.75 kb Forward strand 144.62Mb 144.63Mb 144.64Mb 144.65Mb 144.66Mb Contigs < AC102163.14 Genes (Comprehensive set from GENCODE M... < Rgs18-201protein coding Regulatory Build 144.62Mb 144.63Mb 144.64Mb 144.65Mb 144.66Mb Reverse strand 42.75 kb Gene Legend Protein Coding merged Ensembl/Havana Regulation Legend Open Chromatin Promoter Promoter Flank Page 6 of 7 http://beta.alphaknockout.cyagen.net Transcript: ENSMUST00000027603 < Rgs18-201protein coding Reverse strand 22.75 kb ENSMUSP000000276... Superfamily RGS domain superfamily SMART RGS domain Prints RGS domain Pfam RGS domain PROSITE profiles RGS domain PANTHER PTHR10845 Regulator of G-protein signalling 18 Gene3D RGS, subdomain 1/3 1.10.167.10 All sequence SNPs/in... Sequence variants (dbSNP and all other sources) Variant Legend missense variant synonymous variant Scale bar 0 20 40 60 80 100 120 140 160 180 200 235 We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC, VectorBuilder. Page 7 of 7.
Recommended publications
  • Table 2. Functional Classification of Genes Differentially Regulated After HOXB4 Inactivation in HSC/Hpcs
    Table 2. Functional classification of genes differentially regulated after HOXB4 inactivation in HSC/HPCs Symbol Gene description Fold-change (mean ± SD) Signal transduction Adam8 A disintegrin and metalloprotease domain 8 1.91 ± 0.51 Arl4 ADP-ribosylation factor-like 4 - 1.80 ± 0.40 Dusp6 Dual specificity phosphatase 6 (Mkp3) - 2.30 ± 0.46 Ksr1 Kinase suppressor of ras 1 1.92 ± 0.42 Lyst Lysosomal trafficking regulator 1.89 ± 0.34 Mapk1ip1 Mitogen activated protein kinase 1 interacting protein 1 1.84 ± 0.22 Narf* Nuclear prelamin A recognition factor 2.12 ± 0.04 Plekha2 Pleckstrin homology domain-containing. family A. (phosphoinosite 2.15 ± 0.22 binding specific) member 2 Ptp4a2 Protein tyrosine phosphatase 4a2 - 2.04 ± 0.94 Rasa2* RAS p21 activator protein 2 - 2.80 ± 0.13 Rassf4 RAS association (RalGDS/AF-6) domain family 4 3.44 ± 2.56 Rgs18 Regulator of G-protein signaling - 1.93 ± 0.57 Rrad Ras-related associated with diabetes 1.81 ± 0.73 Sh3kbp1 SH3 domain kinase bindings protein 1 - 2.19 ± 0.53 Senp2 SUMO/sentrin specific protease 2 - 1.97 ± 0.49 Socs2 Suppressor of cytokine signaling 2 - 2.82 ± 0.85 Socs5 Suppressor of cytokine signaling 5 2.13 ± 0.08 Socs6 Suppressor of cytokine signaling 6 - 2.18 ± 0.38 Spry1 Sprouty 1 - 2.69 ± 0.19 Sos1 Son of sevenless homolog 1 (Drosophila) 2.16 ± 0.71 Ywhag 3-monooxygenase/tryptophan 5- monooxygenase activation protein. - 2.37 ± 1.42 gamma polypeptide Zfyve21 Zinc finger. FYVE domain containing 21 1.93 ± 0.57 Ligands and receptors Bambi BMP and activin membrane-bound inhibitor - 2.94 ± 0.62
    [Show full text]
  • Global H3k4me3 Genome Mapping Reveals Alterations of Innate Immunity Signaling and Overexpression of JMJD3 in Human Myelodysplastic Syndrome CD34 Þ Cells
    Leukemia (2013) 27, 2177–2186 & 2013 Macmillan Publishers Limited All rights reserved 0887-6924/13 www.nature.com/leu ORIGINAL ARTICLE Global H3K4me3 genome mapping reveals alterations of innate immunity signaling and overexpression of JMJD3 in human myelodysplastic syndrome CD34 þ cells YWei1, R Chen2, S Dimicoli1, C Bueso-Ramos3, D Neuberg4, S Pierce1, H Wang2, H Yang1, Y Jia1, H Zheng1, Z Fang1, M Nguyen3, I Ganan-Gomez1,5, B Ebert6, R Levine7, H Kantarjian1 and G Garcia-Manero1 The molecular bases of myelodysplastic syndromes (MDS) are not fully understood. Trimethylated histone 3 lysine 4 (H3K4me3) is present in promoters of actively transcribed genes and has been shown to be involved in hematopoietic differentiation. We performed a genome-wide H3K4me3 CHIP-Seq (chromatin immunoprecipitation coupled with whole genome sequencing) analysis of primary MDS bone marrow (BM) CD34 þ cells. This resulted in the identification of 36 genes marked by distinct higher levels of promoter H3K4me3 in MDS. A majority of these genes are involved in nuclear factor (NF)-kB activation and innate immunity signaling. We then analyzed expression of histone demethylases and observed significant overexpression of the JmjC-domain histone demethylase JMJD3 (KDM6b) in MDS CD34 þ cells. Furthermore, we demonstrate that JMJD3 has a positive effect on transcription of multiple CHIP-Seq identified genes involved in NF-kB activation. Inhibition of JMJD3 using shRNA in primary BM MDS CD34 þ cells resulted in an increased number of erythroid colonies in samples isolated from patients with lower-risk MDS. Taken together, these data indicate the deregulation of H3K4me3 and associated abnormal activation of innate immunity signals have a role in the pathogenesis of MDS and that targeting these signals may have potential therapeutic value in MDS.
    [Show full text]
  • Identification of Key Pathways and Genes in Dementia Via Integrated Bioinformatics Analysis
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.18.440371; this version posted July 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Identification of Key Pathways and Genes in Dementia via Integrated Bioinformatics Analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2021.04.18.440371; this version posted July 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract To provide a better understanding of dementia at the molecular level, this study aimed to identify the genes and key pathways associated with dementia by using integrated bioinformatics analysis. Based on the expression profiling by high throughput sequencing dataset GSE153960 derived from the Gene Expression Omnibus (GEO), the differentially expressed genes (DEGs) between patients with dementia and healthy controls were identified. With DEGs, we performed a series of functional enrichment analyses. Then, a protein–protein interaction (PPI) network, modules, miRNA-hub gene regulatory network and TF-hub gene regulatory network was constructed, analyzed and visualized, with which the hub genes miRNAs and TFs nodes were screened out. Finally, validation of hub genes was performed by using receiver operating characteristic curve (ROC) analysis.
    [Show full text]
  • Genome Sequencing Unveils a Regulatory Landscape of Platelet Reactivity
    ARTICLE https://doi.org/10.1038/s41467-021-23470-9 OPEN Genome sequencing unveils a regulatory landscape of platelet reactivity Ali R. Keramati 1,2,124, Ming-Huei Chen3,4,124, Benjamin A. T. Rodriguez3,4,5,124, Lisa R. Yanek 2,6, Arunoday Bhan7, Brady J. Gaynor 8,9, Kathleen Ryan8,9, Jennifer A. Brody 10, Xue Zhong11, Qiang Wei12, NHLBI Trans-Omics for Precision (TOPMed) Consortium*, Kai Kammers13, Kanika Kanchan14, Kruthika Iyer14, Madeline H. Kowalski15, Achilleas N. Pitsillides4,16, L. Adrienne Cupples 4,16, Bingshan Li 12, Thorsten M. Schlaeger7, Alan R. Shuldiner9, Jeffrey R. O’Connell8,9, Ingo Ruczinski17, Braxton D. Mitchell 8,9, ✉ Nauder Faraday2,18, Margaret A. Taub17, Lewis C. Becker1,2, Joshua P. Lewis 8,9,125 , 2,14,125✉ 3,4,125✉ 1234567890():,; Rasika A. Mathias & Andrew D. Johnson Platelet aggregation at the site of atherosclerotic vascular injury is the underlying patho- physiology of myocardial infarction and stroke. To build upon prior GWAS, here we report on 16 loci identified through a whole genome sequencing (WGS) approach in 3,855 NHLBI Trans-Omics for Precision Medicine (TOPMed) participants deeply phenotyped for platelet aggregation. We identify the RGS18 locus, which encodes a myeloerythroid lineage-specific regulator of G-protein signaling that co-localizes with expression quantitative trait loci (eQTL) signatures for RGS18 expression in platelets. Gene-based approaches implicate the SVEP1 gene, a known contributor of coronary artery disease risk. Sentinel variants at RGS18 and PEAR1 are associated with thrombosis risk and increased gastrointestinal bleeding risk, respectively. Our WGS findings add to previously identified GWAS loci, provide insights regarding the mechanism(s) by which genetics may influence cardiovascular disease risk, and underscore the importance of rare variant and regulatory approaches to identifying loci contributing to complex phenotypes.
    [Show full text]
  • Supplementary Information.Pdf
    Supplementary Information Whole transcriptome profiling reveals major cell types in the cellular immune response against acute and chronic active Epstein‐Barr virus infection Huaqing Zhong1, Xinran Hu2, Andrew B. Janowski2, Gregory A. Storch2, Liyun Su1, Lingfeng Cao1, Jinsheng Yu3, and Jin Xu1 Department of Clinical Laboratory1, Children's Hospital of Fudan University, Minhang District, Shanghai 201102, China; Departments of Pediatrics2 and Genetics3, Washington University School of Medicine, Saint Louis, Missouri 63110, United States. Supplementary information includes the following: 1. Supplementary Figure S1: Fold‐change and correlation data for hyperactive and hypoactive genes. 2. Supplementary Table S1: Clinical data and EBV lab results for 110 study subjects. 3. Supplementary Table S2: Differentially expressed genes between AIM vs. Healthy controls. 4. Supplementary Table S3: Differentially expressed genes between CAEBV vs. Healthy controls. 5. Supplementary Table S4: Fold‐change data for 303 immune mediators. 6. Supplementary Table S5: Primers used in qPCR assays. Supplementary Figure S1. Fold‐change (a) and Pearson correlation data (b) for 10 cell markers and 61 hypoactive and hyperactive genes identified in subjects with acute EBV infection (AIM) in the primary cohort. Note: 23 up‐regulated hyperactive genes were highly correlated positively with cytotoxic T cell (Tc) marker CD8A and NK cell marker CD94 (KLRD1), and 38 down‐regulated hypoactive genes were highly correlated positively with B cell, conventional dendritic cell
    [Show full text]
  • The Genetic Basis of Emotional Behaviour in Mice
    European Journal of Human Genetics (2006) 14, 721–728 & 2006 Nature Publishing Group All rights reserved 1018-4813/06 $30.00 www.nature.com/ejhg REVIEW The genetic basis of emotional behaviour in mice Saffron AG Willis-Owen*,1 and Jonathan Flint1 1Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Headington, Oxford, UK The last decade has witnessed a steady expansion in the number of quantitative trait loci (QTL) mapped for complex phenotypes. However, despite this proliferation, the number of successfully cloned QTL has remained surprisingly low, and to a great extent limited to large effect loci. In this review, we follow the progress of one complex trait locus; a low magnitude moderator of murine emotionality identified some 10 years ago in a simple two-strain intercross, and successively resolved using a variety of crosses and fear-related phenotypes. These experiments have revealed a complex underlying genetic architecture, whereby genetic effects fractionate into several separable QTL with some evidence of phenotype specificity. Ultimately, we describe a method of assessing gene candidacy, and show that given sufficient access to genetic diversity and recombination, progression from QTL to gene can be achieved even for low magnitude genetic effects. European Journal of Human Genetics (2006) 14, 721–728. doi:10.1038/sj.ejhg.5201569 Keywords: mouse; emotionality; quantitative trait locus; QTL Introduction tude genetic effects and their interactions (both with other Emotionality is a psychological trait of complex aetiology, genetic loci (ie epistasis) and nongenetic (environmental) which moderates an organism’s response to stress. Beha- factors) ultimately producing a quasi-continuously distrib- vioural evidence of emotionality has been documented uted phenotype.
    [Show full text]
  • Biological Role and Disease Impact of Copy Number Variation in Complex Disease
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2014 Biological Role and Disease Impact of Copy Number Variation in Complex Disease Joseph Glessner University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Bioinformatics Commons, and the Genetics Commons Recommended Citation Glessner, Joseph, "Biological Role and Disease Impact of Copy Number Variation in Complex Disease" (2014). Publicly Accessible Penn Dissertations. 1286. https://repository.upenn.edu/edissertations/1286 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1286 For more information, please contact [email protected]. Biological Role and Disease Impact of Copy Number Variation in Complex Disease Abstract In the human genome, DNA variants give rise to a variety of complex phenotypes. Ranging from single base mutations to copy number variations (CNVs), many of these variants are neutral in selection and disease etiology, making difficult the detection of true common orar r e frequency disease-causing mutations. However, allele frequency comparisons in cases, controls, and families may reveal disease associations. Single nucleotide polymorphism (SNP) arrays and exome sequencing are popular assays for genome-wide variant identification. oT limit bias between samples, uniform testing is crucial, including standardized platform versions and sample processing. Bases occupy single points while copy variants occupy segments.
    [Show full text]
  • RGS18 (F-5): Sc-390908
    SANTA CRUZ BIOTECHNOLOGY, INC. RGS18 (F-5): sc-390908 BACKGROUND APPLICATIONS The regulators of G protein signaling (RGS) proteins inhibit heterotrimeric G RGS18 (F-5) is recommended for detection of RGS18 of human origin by protein signaling. RGS proteins work by functioning as GTPase-activating Western Blotting (starting dilution 1:100, dilution range 1:100-1:1000), proteins (which increase the GTPase activity of G protein a subunits) thereby immunoprecipitation [1-2 µg per 100-500 µg of total protein (1 ml of cell driving G proteins into their inactive GDP-bound form. RGS18 is a 234 amino lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50- acid peptide expressed mainly in megakaryocyte cells, but also in hemato- 1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30- poietic progenitor and myeloerythroid lineage cells. RGS18 expression is 1:3000). upregulated during megakaryocyte differentiation and may play an important Suitable for use as control antibody for RGS18 siRNA (h): sc-61468, RGS18 role in the mediation of megakaryocyte chemotaxis. Structurally, RGS18 con- shRNA Plasmid (h): sc-61468-SH and RGS18 shRNA (h) Lentiviral Particles: tains phosphorylation sites for casein kinase II, protein kinase C and protein sc-61468-V. kinase A. RGS18 specifically binds to two a subunits of the G protein, Ga i and Ga q. Molecular Weight of RGS18: 26 kDa. Positive Controls: human RGS18 transfected HEK293T whole cell lysate. REFERENCES 1. Yowe, D., et al. 2001. RGS18 is a myeloerythroid lineage-specific regula- RECOMMENDED SUPPORT REAGENTS tor of molecule highly expressed in megakaryocytes.
    [Show full text]
  • Integrated Genetic Diagnosis of Neurofibromatosis Type 1 (NF1) and Molecular Characterization of One Case of Compound Heterozygosity
    Integrated genetic diagnosis of Neurofibromatosis type 1 (NF1) and molecular characterization of one case of compound heterozygosity Coordinator: Prof. Andrea Biondi Tutor: Dr. Gaetano Finocchiaro Dr. Sara MOROSINI Matr. No. 745001 XXVI CYCLE ACADEMIC YEAR 2012-2013 2 A Fabio e Matteo 3 4 TABLE of CONTENTS CHAPTER 1 7 INTRODUCTION 7 Neurofibromatoses 7 Neurofibromatosis type 1 8 Genotype/Phenotype correlation 24 NF1 gene 26 NF1 Protein 30 SCOPE OF THE THESIS 34 REFERENCES 36 CHAPTER 2 49 A TEN YEAR OF ITALIAN EXPERIENCE IN NEUROFIBROMATOSIS TYPE 1: 102 NOVEL MUTATIONS 49 CHAPTER 3 94 INTEGRATED GENETIC STUDIES OF NEUROFIBROMATOSIS TYPE 1. 94 CHAPTER 4 113 A FAMILY CASE REPORT 113 CHAPTER 5 138 SUMMARY 138 5 CONCLUSION 140 FUTURE PERSPECTIVES 142 ACKNOWLEDGEMENTS 146 6 Chapter 1 INTRODUCTION Neurofibromatoses Historically the neurofibromatosis type 1 (NF1), type 2 (NF2) and schwannomatosis were referred with the common terms of Neurofibromatosis. Neurofibromatoses are a group of conditions that predispose to tumors of the nervous system and abnormal skin pigmentation. Each type is defined by the presence/absence of café au lait (CAL) spots and skinfold freckling, what kind of peripheral nerve tumor develops (neurofibromas vs. schwannomas) and other features, particularly in the eye, specific to each form. The neurofibromatoses, predisposing to multiple tumors of the peripheral nervous system, are often considered classical tumor suppressor diseases. Longitudinal care for individuals with neurofibromatosis aims at the early detection and symptomatic treatment of complications as they occur 1. Very much has been elucidated about the complex molecular mechanism leading to these diseases. In the last two decades of the last century, the modern methods of genetic research showed that NF1 and NF2 had distinct clinical and genetic features.
    [Show full text]
  • Expression Analysis and Functional Characterization of the Dro1/Cl2 Gene During Zebrafish Somitogenesis
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/271208226 Expression analysis and functional characterization of the dro1/Cl2 gene during zebrafish somitogenesis Conference Paper · July 2009 DOI: 10.13140/2.1.2295.8407 CITATIONS READS 0 159 11 authors, including: Isabella Della Noce Elena Turola Parco Tecnologico Padano Università degli Studi di Modena e Reggio E… 16 PUBLICATIONS 19 CITATIONS 36 PUBLICATIONS 705 CITATIONS SEE PROFILE SEE PROFILE Silvia Carra Rosina Critelli I.R.C.C.S. Istituto Auxologico Italiano Università degli Studi di Modena e Reggio E… 38 PUBLICATIONS 132 CITATIONS 30 PUBLICATIONS 470 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Developmental Biology View project Mitogenome analysis of Sparidae species View project All content following this page was uploaded by Carlo De Lorenzo on 23 January 2015. The user has requested enhancement of the downloaded file. 6th European Zebrafish Genetics and Development Meeting Rome 15th - 19th July 2009 Program & Abstracts *UKVTUDMJDLFE DMJDLTBXBZGSPNQVSF%/" 8IZTBZEFPYZSJCPOVDMFJDBDJEXIFO%/"EPFTUIFKPC 8IZXPSLNJOVUFTPO%/"FYUSBDUJPOXIFOZPVDBOEPJUJO 8IZTQFOENPSFUIBOEPVCMFPOTPNFUIJOHMFTTUIBO(FOF.PMF (FOF.PMFJTBOJEFBMTZTUFNGPSBVUPNBUFE%/"BOE3/"FYUSBDUJPO 4JNQMFUPCVZ TJNQMFUPVTF BOETJNQMFUPNBJOUBJO (FOF.PMFJTWFSJ¾FEGPS[FCSB¾TITBNQMFTCZXPSMEMFBEJOHSFTFBSDIFST 6th European Zebrafish Genetics and Development Meeting Rome 15th - 19th July 2009 Program
    [Show full text]
  • Receptor Signaling Through Osteoclast-Associated Monocyte
    Downloaded from http://www.jimmunol.org/ by guest on September 29, 2021 is online at: average * The Journal of Immunology The Journal of Immunology , 20 of which you can access for free at: 2015; 194:3169-3179; Prepublished online 27 from submission to initial decision 4 weeks from acceptance to publication February 2015; doi: 10.4049/jimmunol.1402800 http://www.jimmunol.org/content/194/7/3169 Collagen Induces Maturation of Human Monocyte-Derived Dendritic Cells by Signaling through Osteoclast-Associated Receptor Heidi S. Schultz, Louise M. Nitze, Louise H. Zeuthen, Pernille Keller, Albrecht Gruhler, Jesper Pass, Jianhe Chen, Li Guo, Andrew J. Fleetwood, John A. Hamilton, Martin W. Berchtold and Svetlana Panina J Immunol cites 43 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Author Choice option Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Freely available online through http://www.jimmunol.org/content/suppl/2015/02/27/jimmunol.140280 0.DCSupplemental This article http://www.jimmunol.org/content/194/7/3169.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Author Choice Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606.
    [Show full text]
  • NF1) Liang Shang1†, Zhen Fang1†, Jin Liu2†, Fengying Du1†, Haiyan Jing3, Yali Xu3, Kangdi Dong1, Xiaoman Zhang4, Hao Wu1, Changqing Jing1,5* and Leping Li1,5*
    Shang et al. BMC Cancer (2019) 19:1196 https://doi.org/10.1186/s12885-019-6375-9 CASE REPORT Open Access Case report of ascending colon cancer and multiple jejunal GISTs in a patient with neurofibromatosis type 1 (NF1) Liang Shang1†, Zhen Fang1†, Jin Liu2†, Fengying Du1†, Haiyan Jing3, Yali Xu3, Kangdi Dong1, Xiaoman Zhang4, Hao Wu1, Changqing Jing1,5* and Leping Li1,5* Abstract Background: NF1(Neurofibromatosis type 1) is an autosomal dominant genetic disorder. Patients with NF1 have an increased risk of developing benign or malignant tumours, such as gastrointestinal stromal tumours (GISTs). However, the coexistence of NF1, GIST and colon cancer is very rare, and few cases have been reported in the literature. Case presentation: We admitted a case of a 64-year-old man with type 1 neurofibromatosis, GISTs, and ascending colon cancer. This case was characterized by café-au-lait macules, discrete cutaneous neurofibromas, nodular neurofibromas, multiple jejunal tumours, and ascending colon cancer. Laparoscopic exploration revealed ascending colon cancer and multiple jejunal tumours. Laparoscopic right hemicolectomy and local excision of the jejunal tumours were performed successfully. The pathological results confirmed moderate differentiated adenocarcinoma of the ascending colon with multiple jejunal GISTs (low risk, very low risk). Moreover, the immunohistochemistry results of multiple jejunal GISTs suggest that NF1 is positive. Whole-exome sequencing (WES) of colon cancer revealed mutations in more than 20 genes, including KRAS, PIK3CA, APC, SMAD4, etc. The results of whole-exome sequencing (WES) of jejunal GISTs revealed an NF1 mutation and no KIT or PDGFR gene mutation. Conclusion: We report a rare case of simultaneous NF1, GIST and colon adenocarcinoma.
    [Show full text]