Processing Plant Like an Oasis, the Processing Plant Lights up the Coastal Landscape in Late Summer Evenings

Total Page:16

File Type:pdf, Size:1020Kb

Processing Plant Like an Oasis, the Processing Plant Lights up the Coastal Landscape in Late Summer Evenings FACTS Kollsnes Processing Plant Like an oasis, the processing plant lights up the coastal landscape in late summer evenings. The Kollsnes processing plant plays a key role in the transport of large quanti- ties of gas from fields in the Norwegian sector of the North Sea to customers in Europe. Gas from Kollsnes accounts for around 40 per cent of all Norwegian gas deliveries. The enormous quantities of gas in the Troll field started it all. Today, Kollsnes processing plant acts as goes further treatment and is fractioned Troll is the very corner- a centre for processing of gas from the into propane, butane and naphtha. stone of Norwegian Troll, Fram, Visund and Kvitebjørn fields. At Kollsnes, the gas is cleaned, dried and The processing plant itself consists gas production. When compressed before being transported as primarily of three dew point plants for dry gas through export pipes to Europe. treating gas, condensate and mono- the field was declared In addition, some gas is transported ethylene glycol (MEG) respectively. in separate pipes to Naturgassparken There is also a separate plant for the commercially viable in western Øygarden, where Gassnor production of Natural Gas Liquids in 1983, the question treats and distributes gas for domestic (NGL). In the plant, the wet gas (NGL) use. Condensate, or wet gas, which is is separated out first, and then the dry arose of what route made up of heavier components in the gas is pressurised using the six export gas, is transported via the Sture ter- compressors and sent into the transport the enormous quanti- minal through a pipeline to Mongstad system via the export pipelines Zeepipe ties of gas should take (Vestprosess). Here, the product under- IIA and IIB. to safely find its way to customers. The solution was a receiving plant at Kollsnes in Øygarden 40% Gas from Kollsnes accounts for Municipality north-west around 40 per cent of all Norwegian of Bergen. gas deliveries. How gas came to Plenty of Kollsnes capacity The expansion that has taken place since the plant opened in 1996 has The plant was originally resulted in the Kollsnes processing plant now having a capacity of 143 part of Troll Gass. Troll million standard cubic metres per day (Sm3/d). The plant’s capacity is optimally utilised. Gass originally also The gas that is processed at Kollsnes accounts for almost 40 per cent of consisted of the Troll A total Norwegian gas deliveries to Europe and meets the energy require- ment for households and businesses in a number of European countries. platform and the two pipe- After the gas leaves the processing plant, Gassco’s transport control lines between the platform centre on Karmøy manages its transportation to receiving terminals for Norwegian gas on the Continent and in the UK. and the onshore facility. The Kollsnes area covers an area of 500 acres, of which 175 have been The decision to build a processing plant for the levelled. This allows room for potential expansion. The plant is subject to gas from Troll at Kollsnes was made after the Troll ongoing technological upgrading in order to ensure safe operation and partners decided to move the processing plant to high gas deliveries. The plant’s operation is based on the use of electric an onshore location. power via the distribution system in the region. Kollsnes is, therefore, an industrial facility with minimal emissions to air and sea. The area is under Shell was the development operator for the constant environmental monitoring. processing plant at Kollsnes, while Statoil took over operator responsibility when the plant The Kollsnes processing plant is a 24-hour site – a machine that can oper- started operations in 1996. At that time, gas ate all day and all night. And the safety of employees going about their treatment capacity was 84 million standard cubic work at the plant is also a constant focus. In the work on health, safety metres per day (Sm3/d). Shortly after, the gas and the environment, risk management, risk control and the prevention of from Troll B, C and later Fram were connected accidents are given top priority. to this system. In 2004 and 2005, gas from Kvitebjørn and Visund, respectively, were trans- A processing plant for gas should also be a good, pleasant neighbour. ported in a separate pipe to Kollsnes. A separate The company enterprise regularly provides information about the plant’s facility for the production of wet gas was also built activities and is in constant contact with the local authorities. and put into operation in 2004, treating gas from Kvitebjørn and Visund. 1433 million standard cubic metres per day (Sm /d). Cornerstone enterprise in the west of Norway Today, 350 people work at Kollsnes on a The gas processing plant at Kollsnes is by Gassled, a partnership consisting of daily basis. In addition to the functions per- a cornerstone enterprise in Øygarden several oil and gas companies that oper- formed by permanent Statoil employees, Municipality and the Bergen region. ate on the Norwegian continental shelf. modification and maintenance services, Three hundred and fifty man-years cre- Gassled also owns the pipeline network security services, cleaning services, ate considerable ripple effects for the that transports Norwegian gas to Europe. catering and camp operation are pro- local business community in the form vided by external service suppliers. The of jobs and income and property tax. Gassco took over operator responsibility occupations represented at Kollsnes Different development projects and at Kollsnes on behalf of Gassled in 2004. include engineers and skilled workers day-to-day operations provide welcome Statoil is responsible for the day-to-day such as process operators, electricians, assignments for industrial companies operation of the plant on the basis of an mechanics and laboratory personnel and and firms both locally and at a national operating agreement with Gassco. mercantile and administrative personnel. level. Kollsnes processing plant is owned Facts Production: Gassled’s owners: Treats gas from Troll, Fram, Visund Petoro and Kvitebjørn Statoil Petroleum AS Total Development clearance: ExxonMobil Expl. & Prod. Norway AS 1990 Mobil Development Norway AS Norske Shell pipelines AS Production start: Norsea Gas AS October 1996 ConocoPhillips Skandinavia AS Eni Norge AS Operator: A/S Norske Shell Gassco Dong E&P Norge AS Technical service provider: Statoil Snøhvit Daily capacity: Melkøya 143 million standard cubic metres (Sm3) of gas and 8,500 Sm3 or 69,000 barrels of condensate Visund Pipeline systems: Troll Statpipe, Zeepipe, Europipe and Mongstad Franpipe Sture Kvitebjørn Norne Kollsnes Naturgass- Heidrun parken Haltenpipe Man-years: Åsgard 350 Åsgard Ormen Lange transport Total area: Tjeldbergodden 500 acres Nyhamna Statfjord Troll Gassled: Kollsnes Gassled, which was established in 2003, Tampen Link is a partnership owned by the oil and gas Kårstø companies on the Norwegian continental Vesterled shelf. Gassled is the formal owner of the Sleipner Draupner St Fergus Europipe II infrastructure for gas transport from the Ekofisk Norwegian continental shelf. The partner- ship has no employees and is organised Europipe I through various committees with specific Norpipe tasks. Langeled Easington Dornum Zeepipe Emden Franpipe Zeebrugge Dunkerque www.gassco.no www.statoil.com COS_091540. Illustration: Statoil. December 2009. Photos: ???.
Recommended publications
  • Preparing for Carbon Pricing: Case Studies from Company Experience
    TECHNICAL NOTE 9 | JANUARY 2015 Preparing for Carbon Pricing Case Studies from Company Experience: Royal Dutch Shell, Rio Tinto, and Pacific Gas and Electric Company Acknowledgments and Methodology This Technical Note was prepared for the PMR Secretariat by Janet Peace, Tim Juliani, Anthony Mansell, and Jason Ye (Center for Climate and Energy Solutions—C2ES), with input and supervision from Pierre Guigon and Sarah Moyer (PMR Secretariat). The note comprises case studies with three companies: Royal Dutch Shell, Rio Tinto, and Pacific Gas and Electric Company (PG&E). All three have operated in jurisdictions where carbon emissions are regulated. This note captures their experiences and lessons learned preparing for and operating under policies that price carbon emissions. The following information sources were used during the research for these case studies: 1. Interviews conducted between February and October 2014 with current and former employees who had first-hand knowledge of these companies’ activities related to preparing for and operating under carbon pricing regulation. 2. Publicly available resources, including corporate sustainability reports, annual reports, and Carbon Disclosure Project responses. 3. Internal company review of the draft case studies. 4. C2ES’s history of engagement with corporations on carbon pricing policies. Early insights from this research were presented at a business-government dialogue co-hosted by the PMR, the International Finance Corporation, and the Business-PMR of the International Emissions Trading Association (IETA) in Cologne, Germany, in May 2014. Feedback from that event has also been incorporated into the final version. We would like to acknowledge experts at Royal Dutch Shell, Rio Tinto, and Pacific Gas and Electric Company (PG&E)—among whom Laurel Green, David Hone, Sue Lacey and Neil Marshman—for their collaboration and for sharing insights during the preparation of the report.
    [Show full text]
  • Mongstad Mongstad
    North Sea Sweden Project Profile Norway Mongstad Mongstad The Mongstad facilities in western Norway have been in operation since the mid-1970’s and today encompass a refinery, a crude oil terminal, a technical development center and a wet gas processing factory. Throughout decades of expansion and modernization, ABB has kept pace with Mongstad’s dynamic process control and electrification requirements by providing advanced, flexible solutions designed to meet both current and future needs. A key link in the Norwegian oil supply chain OilUpstream & andGas Midstream Comprising Norway’s largest oil refinery, a high-traffic shipping port and storage facilities for around one-third of the crude oil produced by the Norwegian state, Mongstad is vital to the Norwegian oil industry. Keeping the oil flowing in and out of Mongstad in a safe, efficient and environmental manner takes state-of-the-art technology, including electric power and process Facts about Mongstad: automation systems from ABB. ABB is the leading supplier of integrated The oil refinery is the largest of its kind electrotechnical solutions to the oil and gas industry, and has provided in Norway with an annual capacity of innovative solutions to the Mongstad facilities for over 30 years. 10 million tons of crude. It is owned by By consistently providing reliable, high performance process control capabilities Mongstad Refining (79% StatoilHydro to Mongstad, the scope of ABB automation technology has steadily increased. and 21% Shell). Today, ABB automation technology at Mongstad encompasses: The crude oil terminal provides inter- 2,700 I/O boards with over 25,000 I/O´s 4 INFINET rings mediate storage of more than 1/3 of 150 redundant controllers distributed 13 HMI servers, 33 dual-VDU consoles over 17 equipment outstations all crude oil produced on the Norwegian 500 process graphics continental shelf.
    [Show full text]
  • CCS from the Gas-Fired Power Station at Kårstø? a Commercial Analysis1
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Research Papers in Economics CCS from the gas-fired power station at Kårstø? A commercial analysis1 by Petter Osmundsen* and Magne Emhjellen** * University of Stavanger ** Petoro AS Summary The article presents a commercial investment analysis of the carbon capture project at the Kårstø gas processing plant in south-western Norway. We update an earlier analysis and critically review the methods used including those applied for cost estimating. Our conclusion is that carbon capture and storage (CCS) at Kårstø would be a very unprofitable climate measure with poor cost efficiency. It would require more than USD 1.7 billion2 in subsidies, or in excess of USD 133 million per year. That corresponds to a subsidy of roughly USD 0.1 per kilowatt-hour on the power station s electricity output. The cost per tonne of carbon emissions abated is about USD 333, which is about 20 times the international carbon emission allowance price and many times higher than alternative domestic climate measures. * Petter Osmundsen, department of industrial economics and risk management, University of Stavanger, NO-4036 Stavanger, Norway E-mail: [email protected], home page: http://www5.uis.no/kompetansekatalog/visCV.aspx?ID=08643&sprak=BOKMAL ** Magne Emhjellen, Petoro AS, P O Box 300 Sentrum, NO- 4002 Stavanger, Norway. E-mail: [email protected] 1 Thanks are due to Johan Gjærum, Per Ivar Gjærum, Kåre Petter Hagen and Knut Einar Rosendahl for constructive comments. We would also like to thank a number of specialists in business and the civil service for useful comments and proposals.
    [Show full text]
  • Uncertainty Analysis of Emissions from the Statoil Mongstad Oil Refinery
    25th International North Sea Flow Measurement Workshop, Oslo, Norway, 16-19 October 2007 Uncertainty analysis of emissions from the Statoil Mongstad oil refinery Kjell-Eivind Frøysa1, Anne Lise Hopland Vågenes2, Bernhard Sørli2 and Helge Jørgenvik2 1Christian Michelsen Research AS, Box 6031 Postterminalen, N-5892 Bergen, Norway. 2Statoil Mongstad, 5954 Mongstad, Norway ABSTRACT In new European and national legislations, there is increased focus on the reporting of the emmissions related to greenhouse gases from process plants. This includes reporting and documentation of uncertainty in the reported emmissions, in addition to specific uncertainty limits depending on the type of emission and type of measurement regime. In a process plant like the Statoil Mongstad oil raffinery, there may be a huge number of measurement points for mass flow. These measured mass flow rates have to be added in order to obtain the total emission for a given source. Typically, orifice plates are used at many of the measurement points. These orifice plate meters are ususally not equipped with individual densitometers. In stead, they are pressure and temperature corrected from a common upstream densitometer. This will give correllations between the individual flow meters. In the present paper, the flow meter set-up for Statoil Mongstad will be briefly addressed. thereafter, an uncertainty model suitable for the CO2 emission from the Statoil Mongstad oil raffinery will be presented, included a practically method for handling the partial correllation between the uncertainty of the various flow meters. This model will comply with the ISO 5168 for measurement uncertainty. Various uncertainty contributions will be reviewed, in order to work out an uncertainty budget for the specific emission sources.
    [Show full text]
  • TYNDP 2017 FID Status (Final Investment Decision) White Sea PCI Status (Project of Common Interest) Submission
    SHTOKMAN SNØHVIT Pechora Sea ASKELADD MELKØYA KEYS ALBATROSS Hammerfest Salekhard Cross-border points / intra-country or intra balancing zone points Transport by pipeline LNG Import Terminals Storage facilities Compressor stations Barents KILDIN N Acquifer Sea 1ACross-border interconnection point Cross-border interconnection point Pipeline diameters : LNG Terminals’ entry point within Europe within Europe Diameter < 600 mm intro transmission system Salt cavity - cavern or export point to non-EU country or export point to non-EU country Operational Under construction or Planned Diameter 600 - 900 mm Depleted (Gas) eld on shore / oshore MURMAN Diameter > 900mm Other type Unknown Cross-border interconnection point Cross-border third country (import) with third country (import) Under construction or Planned Pomorskiy Project categories : Project categories : Project categories : Project categories : Strait Intra-country or Murmansk Third country cross-border FID projects FID projects FID projects intra balancing zone points interconnection point FID projects Non-FID, advanced projects Non-FID, advanced projects Non-FID, advanced projects REYKJAVIK Non-FID, advanced projects Non-FID, non-advanced projects Non-FID, non-advanced projects Non-FID, non-advanced projects Gas Reserve areas Countries Non-FID, non-advanced projects ENTSOG Member Countries ICELAND Project is part of 2nd PCI list : Project is part of 2nd PCI list : Project is part of 2nd PCI list : Project is part of 2nd PCI list : Drilling platform ENTSOG Associated Partner P ENTSOG
    [Show full text]
  • System Development Map 2019 / 2020 Presents Existing Infrastructure & Capacity from the Perspective of the Year 2020
    7125/1-1 7124/3-1 SNØHVIT ASKELADD ALBATROSS 7122/6-1 7125/4-1 ALBATROSS S ASKELADD W GOLIAT 7128/4-1 Novaya Import & Transmission Capacity Zemlya 17 December 2020 (GWh/d) ALKE JAN MAYEN (Values submitted by TSO from Transparency Platform-the lowest value between the values submitted by cross border TSOs) Key DEg market area GASPOOL Den market area Net Connect Germany Barents Sea Import Capacities Cross-Border Capacities Hammerfest AZ DZ LNG LY NO RU TR AT BE BG CH CZ DEg DEn DK EE ES FI FR GR HR HU IE IT LT LU LV MD MK NL PL PT RO RS RU SE SI SK SM TR UA UK AT 0 AT 350 194 1.570 2.114 AT KILDIN N BE 477 488 965 BE 131 189 270 1.437 652 2.679 BE BG 577 577 BG 65 806 21 892 BG CH 0 CH 349 258 444 1.051 CH Pechora Sea CZ 0 CZ 2.306 400 2.706 CZ MURMAN DEg 511 2.973 3.484 DEg 129 335 34 330 932 1.760 DEg DEn 729 729 DEn 390 268 164 896 593 4 1.116 3.431 DEn MURMANSK DK 0 DK 101 23 124 DK GULYAYEV N PESCHANO-OZER EE 27 27 EE 10 168 10 EE PIRAZLOM Kolguyev POMOR ES 732 1.911 2.642 ES 165 80 245 ES Island Murmansk FI 220 220 FI 40 - FI FR 809 590 1.399 FR 850 100 609 224 1.783 FR GR 350 205 49 604 GR 118 118 GR BELUZEY HR 77 77 HR 77 54 131 HR Pomoriy SYSTEM DEVELOPMENT MAP HU 517 517 HU 153 49 50 129 517 381 HU Strait IE 0 IE 385 385 IE Kanin Peninsula IT 1.138 601 420 2.159 IT 1.150 640 291 22 2.103 IT TO TO LT 122 325 447 LT 65 65 LT 2019 / 2020 LU 0 LU 49 24 73 LU Kola Peninsula LV 63 63 LV 68 68 LV MD 0 MD 16 16 MD AASTA HANSTEEN Kandalaksha Avenue de Cortenbergh 100 Avenue de Cortenbergh 100 MK 0 MK 20 20 MK 1000 Brussels - BELGIUM 1000 Brussels - BELGIUM NL 418 963 1.381 NL 393 348 245 168 1.154 NL T +32 2 894 51 00 T +32 2 209 05 00 PL 158 1.336 1.494 PL 28 234 262 PL Twitter @ENTSOG Twitter @GIEBrussels PT 200 200 PT 144 144 PT [email protected] [email protected] RO 1.114 RO 148 77 RO www.entsog.eu www.gie.eu 1.114 225 RS 0 RS 174 142 316 RS The System Development Map 2019 / 2020 presents existing infrastructure & capacity from the perspective of the year 2020.
    [Show full text]
  • Supreme Court of Norway
    SUPREME COURT OF NORWAY On 28 June 2018, the Supreme Court gave judgment in HR-2018-1258-A (case no. 2017/1891), civil case, appeal against judgment, CapeOmega AS (Counsel Thomas G. Michelet) (Assisting counsel: Kyrre Eggen) Solveig Gas Norway AS Silex Gas Norway AS Infragas Norge AS (Counsel Jan B. Jansen Counsel Thomas K. Svensen) (Assisting counsel: Kyrre Eggen) v. The state represented by the Ministry of Petroleum and Energy (The Attorney-General represented Tolle Stabell and Christian Fredrik Michelet) (Assisting counsel: Håvard H. Holdø) VOTING : (1) Justice Bårdsen: The case concerns the validity of the Ministry of Petroleum and Energy's Regulations 26 June 2013 no. 792 relating to amendment of the Regulations relating to the stipulation of tariffs etc. for certain facilities (the Tariff Regulations), adopted under section 4-8 of the Petroleum Act, among others. 2 (2) The Tariff Regulations 20 December 2002 no. 1724 regulate the tariffs that third parties must pay for shipment of gas in the pipelines owned by the joint venture Gassled. The joint venture was established in 2003, and tariffs were stipulated in the Tariff Regulations for the various areas of the pipeline network. This network is the world’s biggest offshore system for transport and processing of gas, consisting of a number of gas pipelines on the seabed of the North Sea and the Norwegian Sea, some onshore processing plants in Norway and six receiving facilities in the UK, France, Belgium and Germany. The system is subject to licences from the Ministry of Petroleum and Energy pursuant to section 4-3 of the Petroleum Act.
    [Show full text]
  • Management Meeting with Equinor Low Carbon Solutions 07.05.2020
    European Gas Virtual 2021 Natural gas to blue hydrogen – Pipeline Transportation to Market and Decarbonisation in Multiple Sectors [email protected] .... Developing Clean Energy Solutions Large scale, emission-free production of hydrogen – HyPro-ZeroTM Existing technology in a new combination! Clean and affordable! Air separation unit (ASU) Purified hydrogen Oxygen (99.9-100%) Water / Gas Natural gas Reforming Hydrogen Hydrogen separation Shift by ATR (+GHR) (WGS) + CO2 Palladium-membrane* Cryogenic CO Capture Rate: 98-99% CO2 2 separation ready for transport of CO 2 and storage * Patented by HYDROGEN Mem-Tech AS (subsidiary) Competitive emission-free, blue hydrogen production Hydrogen production cost (incl. CO2 capture)*: 1.2 €/kgH2 + CO2 transport and storage cost: 0.3 - 0.5 €/kgH2 Total production cost**: 1.5 - 1.7 €/kgH2 * Natural gas price assumption: 0.12 €/SM3 ** Net cost, excl. financing, distribution of hydrogen etc. Significant global demand for new blue hydrogen production plants - and associated CCUS capacity 50 8 45 7.5 7 40 Carbon Capture 6.65 6 35 5.8 5 30 Biofuel 4.95 /YEAR 25 4 2 4.1 20 GTCO 3 3.25 15 2.4 2 NO OF NEW WORLD PLANTS/YR SCALE OF NO 10 Direct use and “E-fuel 1.7 1 5 1 0 0.5 0 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 Data from: “World scale plant”: 400.000 tH2/year IAE report; Energy Technology Perspective (Sept. 2020) Concawe report; biofuel and “E-fuel” Sept. 2020 Gas pipelines for efficient hydrogen transportation - Examples Existing gas pipeline New hydrogen pipeline New pipeline
    [Show full text]
  • Europe, Middle East and North Africa Total 99 12 646 219
    Europe, Middle East Europe,and North Africa Middle East andFact Sheet—March North 2021 Africa Fact Sheet—March 2021 ConocoPhillips has operated in Europe for more than 50 years, with significant developments in the 2020 Production Norwegian sector of the North Sea and in the Norwegian Sea. In Qatar, the company has interests in a producing field as well as liquefied natural gas production and export. The company also has Thousand interests in a concession in Libya. barrels of oil Operated assets in Europe include the Greater Ekofisk Area in Norway. The company also conducts 219 equivalent per day exploration activity in Norway. The company has leveraged its existing operations, infrastructure and basin expertise to create incremental growth projects in recent years, and development 2020 Proved Reserves* opportunities still exist in ConocoPhillips’ legacy areas. In Qatar, the Qatargas 3 joint venture continues providing stable production. Billion barrels of oil In Libya, the company has an interest in the Waha Concession in the Sirte Basin. Production equivalent operations in Libya and related oil exports have been periodically interrupted over the last several 0.6 years due to forced shutdowns of the Es Sider terminal. ConocoPhillips—Average Daily Net Production, 2020 Crude Oil NGL Natural Gas Total Area Interest Operator (MBD) (MBD) (MMCFD) (MBOED) Greater Ekofisk Area 30.7%-35.1% ConocoPhillips 46 2 39 55 Heidrun 24.0% Equinor 12 1 32 18 Aasta Hansteen 10.0% Equinor - - 82 14 Troll 1.6% Equinor 2 - 54 11 Visund 9.1% Equinor 2 1 40 10 Alvheim 20.0% Aker BP 8 - 13 10 Other Various Equinor 8 - 10 9 Norway Total 78 4 270 127 Qatargas 3 30.0% Qatargas Operating Co.
    [Show full text]
  • Oil and Gas Fields in Norway
    This book is a work of reference which provides an easily understandable Oil and gas fields in n survey of all the areas, fields and installations on the Norwegian continental shelf. It also describes developments in these waters since the 1960s, Oil and gas fields including why Norway was able to become an oil nation, the role of government and the rapid technological progress made. In addition, the book serves as an industrial heritage plan for the oil in nOrway and gas industry. This provides the basis for prioritising offshore installations worth designating as national monuments and which should be documented. industrial heritage plan The book will help to raise awareness of the oil industry as industrial heritage and the management of these assets. Harald Tønnesen (b 1947) is curator of the O Norwegian Petroleum Museum. rway rway With an engineering degree from the University of Newcastle-upon- Tyne, he has broad experience in the petroleum industry. He began his career at Robertson Radio i Elektro before moving to ndustrial Rogaland Research, and was head of research at Esso Norge AS before joining the museum. h eritage plan Gunleiv Hadland (b 1971) is a researcher at the Norwegian Petroleum Museum. He has an MA, majoring in history, from the University of Bergen and wrote his thesis on hydropower ????????? development and nature conser- Photo: Øyvind Hagen/Statoil vation. He has earlier worked on projects for the Norwegian Museum of Science and Technology, the ????????? Norwegian Water Resources and Photo: Øyvind Hagen/Statoil Energy Directorate (NVE) and others. 152 ThE TROLL aREa The Troll area of the northern North Sea lies in more than 300 metres of water, 65 kilometres west of Kollsnes near Bergen.
    [Show full text]
  • Last Ned Brosjyre Om Prosessanlegget På Kollsnes
    FAKTA Kollsnes prosessanlegg Som en oase lyser prosessanlegget opp kystlandskapet en sensommerkveld Kollsnesanlegget spiller en nøkkelrolle når det gjelder transport av gass i store mengder fra felt i norsk del av Nordsjøen til kunder i Europa. Gass fra Kollsnes utgjør nærmere 40 prosent av totale norske gass- leveranser. De enorme gassmengdene i Troll-feltet var starten på det hele. Kollsnes prosessanlegg er i dag et Selve prosessanlegget består i hovedsak Troll er selve hjørne- senter for behandling av gass fra feltene av tre duggpunktsanlegg for behand- steinen i norsk gass- Troll, Fram, Visund og Kvitebjørn. På ling av henholdsvis gass, kondensat og Kollsnes blir gassen renset, tørket og monoetylenglykol (MEG). I tillegg finnes produksjon. Da feltet komprimert før den sendes som tørrgass et eget anlegg for utvinning av flytende gjennom eksportrør til Europa. I tillegg våtgass (Natural Gas Liquids -NGL). ble erklært drivverdig i transporteres noe gass i eget rør til I anlegget blir våtgass (NGL) først Naturgassparken, vest i Øygarden, der skilt ut. Deretter blir tørrgass trykket 1983, kom spørsmålet Gasnor behandler og distribuerer gass opp ved hjelp av de seks eksport- om hvilken vei de til innenlands forbruk. Kondensat, eller kompressorene og sendt ut i transport- våtgass, som er tyngre komponenter i systemet via eksportrør-ledningene enorme gassmengdene gassen, føres via Stureterminalen i rør Zeepipe IIA og IIB. til Mongstad (Vestprosess). Her videre- skulle ta for å komme behandles produktet og fraksjoneres til trygt fram til brukerne. propan, butan og nafta. Løsningen ble et mottaksanlegg på Kollsnes i Øygarden kommune nordvest 40% Gass fra Kollsnes utgjør nærmere for Bergen.
    [Show full text]
  • Oil and Gas Delivery to Europe
    Oil and gas delivery to Europe An Overview of Existing and Planned Infrastructures GOUVERNANCE EUROPÉENNE ET GÉOPOLITIQUE DE L’ÉNERGIE 4 bis Susanne NIES l es é tud es The French Institute for International Relations (Ifri) is France’s premier centre for independent research, information, and debates on today’s most important international issues. Founded in 1979 by Thierry de Montbrial, Ifri is an officially recognized organization (1901 law). It is not beholden to any administrative authority, independently chooses its projects, and regularly publishes its works. Ifri brings together, through studies and debates and in an interdisciplinary manner, political and economic decision-makers, researchers and experts from the global level. With its Brussels branch (Ifri Brussels), Ifri is one of the rare French think-tanks that is at the heart of European debates. * Site Int 1 © Ifri Contents ABSTRACT ......................................................................................... 4 INTRODUCTION ................................................................................... 5 I. THE CONSTRUCTION OF GAS AND OIL INFRASTRUCTURES IN EUROPE11 Summary.................................................................................................11 1. From the Discovery of Resources to the Construction of Separate East-West Networks .......................12 2. Developing Infrastructures in the Soviet Block, and their Extension to Western Europe .............................................16 3. Conclusion: Continuity and Ruptures.............................................19
    [Show full text]