Ninth USA/Europe Air Traffic Management Research and Development Seminar (ATM2011) Prediction of Top of Descent Location for Idle-thrust Descents Laurel Stell Aviation Systems Division NASA Ames Research Center Moffett Field, CA, USA
[email protected] Abstract—To enable arriving aircraft to fly optimized descents enabling continuous descents is being pursued by several re- computed by the flight management system (FMS) in congested search groups. Most of the previous research has focused on airspace, ground automation must accurately predict descent tra- prediction of arrival time at a waypoint. While this helps with jectories. Development and assessment of the trajectory predictor lateral separation, accurate prediction of the vertical profile is and the concept of operations requires models of the prediction also essential to ensure vertical separation from aircraft at dif- error due to various error sources. Polynomial approximations ferent altitudes, including crossing traffic. In fact, error in pre- of the along-track distance of the top of descent (TOD) from the diction of the vertical profile is likely to have more impact than meter fix are given in terms of the inputs to the equations of mo- tion. Polynomials with three different levels of complexity are pre- along-track prediction error on procedures and data exchange sented, with the simplest being linear. These approximations were necessary to enable more fuel-efficient descents in congested obtained by analyzing output from one predictor. While this pre- airspace. Only the TOD location is analyzed in this paper, dictor’s thrust and drag models do not seem to agree well with which is the first step in understanding the entire vertical pro- those used by the FMS, both laboratory and operational data us- file.