(VL for Attrid
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Aircraft Engine Performance Study Using Flight Data Recorder Archives
Aircraft Engine Performance Study Using Flight Data Recorder Archives Yashovardhan S. Chati∗ and Hamsa Balakrishnan y Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA Aircraft emissions are a significant source of pollution and are closely related to engine fuel burn. The onboard Flight Data Recorder (FDR) is an accurate source of information as it logs operational aircraft data in situ. The main objective of this paper is the visualization and exploration of data from the FDR. The Airbus A330 - 223 is used to study the variation of normalized engine performance parameters with the altitude profile in all the phases of flight. A turbofan performance analysis model is employed to calculate the theoretical thrust and it is shown to be a good qualitative match to the FDR reported thrust. The operational thrust settings and the times in mode are found to differ significantly from the ICAO standard values in the LTO cycle. This difference can lead to errors in the calculation of aircraft emission inventories. This paper is the first step towards the accurate estimation of engine performance and emissions for different aircraft and engine types, given the trajectory of an aircraft. I. Introduction Aircraft emissions depend on engine characteristics, particularly on the fuel flow rate and the thrust. It is therefore, important to accurately assess engine performance and operational fuel burn. Traditionally, the estimation of fuel burn and emissions has been done using the ICAO Aircraft Engine Emissions Databank1. However, this method is approximate and the results have been shown to deviate from the measured values of emissions from aircraft in operation2,3. -
E6bmanual2016.Pdf
® Electronic Flight Computer SPORTY’S E6B ELECTRONIC FLIGHT COMPUTER Sporty’s E6B Flight Computer is designed to perform 24 aviation functions and 20 standard conversions, and includes timer and clock functions. We hope that you enjoy your E6B Flight Computer. Its use has been made easy through direct path menu selection and calculation prompting. As you will soon learn, Sporty’s E6B is one of the most useful and versatile of all aviation computers. Copyright © 2016 by Sportsman’s Market, Inc. Version 13.16A page: 1 CONTENTS BEFORE USING YOUR E6B ...................................................... 3 DISPLAY SCREEN .................................................................... 4 PROMPTS AND LABELS ........................................................... 5 SPECIAL FUNCTION KEYS ....................................................... 7 FUNCTION MENU KEYS ........................................................... 8 ARITHMETIC FUNCTIONS ........................................................ 9 AVIATION FUNCTIONS ............................................................. 9 CONVERSIONS ....................................................................... 10 CLOCK FUNCTION .................................................................. 12 ADDING AND SUBTRACTING TIME ....................................... 13 TIMER FUNCTION ................................................................... 14 HEADING AND GROUND SPEED ........................................... 15 PRESSURE AND DENSITY ALTITUDE ................................... -
The Difference Between Higher and Lower Flap Setting Configurations May Seem Small, but at Today's Fuel Prices the Savings Can Be Substantial
THE DIFFERENCE BETWEEN HIGHER AND LOWER FLAP SETTING CONFIGURATIONS MAY SEEM SMALL, BUT AT TODAY'S FUEL PRICES THE SAVINGS CAN BE SUBSTANTIAL. 24 AERO QUARTERLY QTR_04 | 08 Fuel Conservation Strategies: Takeoff and Climb By William Roberson, Senior Safety Pilot, Flight Operations; and James A. Johns, Flight Operations Engineer, Flight Operations Engineering This article is the third in a series exploring fuel conservation strategies. Every takeoff is an opportunity to save fuel. If each takeoff and climb is performed efficiently, an airline can realize significant savings over time. But what constitutes an efficient takeoff? How should a climb be executed for maximum fuel savings? The most efficient flights actually begin long before the airplane is cleared for takeoff. This article discusses strategies for fuel savings But times have clearly changed. Jet fuel prices fuel burn from brake release to a pressure altitude during the takeoff and climb phases of flight. have increased over five times from 1990 to 2008. of 10,000 feet (3,048 meters), assuming an accel Subse quent articles in this series will deal with At this time, fuel is about 40 percent of a typical eration altitude of 3,000 feet (914 meters) above the descent, approach, and landing phases of airline’s total operating cost. As a result, airlines ground level (AGL). In all cases, however, the flap flight, as well as auxiliarypowerunit usage are reviewing all phases of flight to determine how setting must be appropriate for the situation to strategies. The first article in this series, “Cost fuel burn savings can be gained in each phase ensure airplane safety. -
Guidance for the Implementation of Fdm Precursors
EUROPEAN OPERATORS FLIGHT DATA MONITORING WORKING GROUP B SAFETY PROMOTION Good Practice document GUIDANCE FOR THE IMPLEMENTATION OF FDM PRECURSORS June 2019 Rev 02 Guidance for the Implementation of FDM Precursors | Rev 02 Contents Table of Revisions .............................................................................................................................5 Introduction ......................................................................................................................................6 Occurrence Reporting and FDM interaction ............................................................................................ 6 Precursor Description ................................................................................................................................ 6 Methodology for Flight Data Monitoring ................................................................................................. 9 Runway Excursions (RE) ..................................................................................................................11 RE01 – Incorrect Performance Calculation ............................................................................................. 12 RE02 – Inappropriate Aircraft Configuration .......................................................................................... 14 RE03 – Monitor CG Position .................................................................................................................... 16 RE04 – Reduced Elevator Authority ....................................................................................................... -
Constraints for STOL Operations in South Florida Conurbation Cedric Y
Constraints for STOL Operations in South Florida Conurbation Cedric Y. Justin June 2021 Based on research previously published: Development of a Methodology for Parametric Analysis of STOL Airpark Geo-Density, Robinson et al. AIAA AVIATION 2018 Door-to-Door Travel Time Comparative Assessment for Conventional Transportation Methods and Short Takeoff and Landing On Demand Mobility Concepts, Wei et al. AIAA AVIATION 2018 Wind and Obstacles Impact on Airpark Placement for STOL-based Sub-Urban Air Mobility, Somers et al., AIAA AVIATION 2019 Optimal Siting of Sub-Urban Air Mobility (sUAM) Ground Architectures using Network Flow Formulation, Venkatesh et al, AIAA AVIATION 2020 Comparative Assessment of STOL-based Sub-Urban Air Mobility Operations in Massachusetts and South Florida, Justin et al. AIAA AVIATION 2020 Current Market Segmentation ? VTOL CTOL CTOL CTOL CTOL Capacity ? 200-400+ pax Twin Aisle Are there 120-210 pax scenarios where Single Aisle an intermediate solution using 50-90 pax STOL vehicles and Regional Aircraft sitting in- Design range below 300 nm Commuters between UAM 9-50 pax Flight time below 1.5 hours Thin-Haul and thin-haul 9 to 50 seat capacity operations exists? 4-9 pax Sub-Urban Missions 50-150 nm Air Mobility 4 to 9 revenue-seats Missions below 50 nm Urban Air Mobility 1-4 pax 1 to 4 revenue-seats 50 nm 300 nm 500 nm 3000 nm 6000+ nm Artwork Credit Uber Design Range 2 Introduction • Population, urbanization, and congestion Atlanta, GA Miami, FL Dallas, TX Los Angeles, CA have increased steadily over the past several decades • Increasing delays damage the environment and substantially impact the economy Driving time: 8 min. -
Using an Autothrottle to Compare Techniques for Saving Fuel on A
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2010 Using an autothrottle ot compare techniques for saving fuel on a regional jet aircraft Rebecca Marie Johnson Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Electrical and Computer Engineering Commons Recommended Citation Johnson, Rebecca Marie, "Using an autothrottle ot compare techniques for saving fuel on a regional jet aircraft" (2010). Graduate Theses and Dissertations. 11358. https://lib.dr.iastate.edu/etd/11358 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Using an autothrottle to compare techniques for saving fuel on A regional jet aircraft by Rebecca Marie Johnson A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Electrical Engineering Program of Study Committee: Umesh Vaidya, Major Professor Qingze Zou Baskar Ganapathayasubramanian Iowa State University Ames, Iowa 2010 Copyright c Rebecca Marie Johnson, 2010. All rights reserved. ii DEDICATION I gratefully acknowledge everyone who contributed to the successful completion of this research. Bill Piche, my supervisor at Rockwell Collins, was supportive from day one, as were many of my colleagues. I also appreciate the efforts of my thesis committee, Drs. Umesh Vaidya, Qingze Zou, and Baskar Ganapathayasubramanian. I would also like to thank Dr. -
Advisory Circular (AC)
U.S. Department Advisory of Transportation Federal Aviation Administration Circular Subject: Parts 91, 121, 125, and 135 Date: 7/30/12 AC No: 120-74B Flightcrew Procedures During Taxi Initiated by: Change: Operations AFS-200/800 1. PURPOSE. This advisory circular (AC) provides guidelines for the development and implementation of standard operating procedures (SOP) for conducting safe aircraft operations during taxiing to avoid causing a runway incursion. In accordance with Federal Aviation Administration (FAA) Order 7050.1, Runway Safety Program, the definition of a runway incursion is any occurrence at an aerodrome involving the incorrect presence of an aircraft, vehicle, or person on the protected area of a surface designated for the landing and takeoff of aircraft. It is intended for use by persons operating aircraft with two or more pilots on the flight deck under Title 14 of the Code of Federal Regulations (14 CFR) parts 91, 121, 125, and 135. The FAA recommends that these guidelines become an integral part of all SOPs, flight operations manuals (FOM), and formal flightcrew member training programs. The use of flightcrew SOPs should be emphasized and employed during all phases of flight, including ground operations. Appendices 1 and 2 of this AC contain examples of SOPs that are identical or similar to some SOPs currently in use. These appendices are not directive or prescriptive in nature and do not represent a rigid FAA view of Best Practices. SOPs may vary among fleets and among certificate holders and may change over time. Operators may integrate the information contained in Appendices 1 and 2 into their fleet-specific, route-specific, and equipment-specific operations and checklists. -
N87- 19393 CE Bith Ab AUTCEETIC TESMINAL EM (BASA) 21 P CSCL 17Ti Unclas H1/06 43501 NASA Tech Ni Ca I Paper 2669
) A SIPSCLATICL EVALUATION GP A N87- 19393 CE bITH Ab AUTCEETIC TESMINAL EM (BASA) 21 p CSCL 17ti Unclas H1/06 43501 NASA Tech ni ca I Paper 2669 1987 A Simulation Evaluation of a Pilot Interface With an Automatic Terminal Approach System David A. Hinton Langley Research Center Hampt o n, Virginia National Aeronautics and Space Administration Scientific and Technical Information Branch Summary with a high potential for mistakes and has limited time to detect and correct any errors. A successful A piloted-simulation study was performed to arrival depends on the correct interpretation of ap- evaluate the pilot interface with an automatic termi- proach chart details, the correct setting of numerous nal approach system (ATAS). The ATAS was con- cockpit controls, and precise aircraft guidance near ceived as a concept for improving the pilot inter- the ground. face with high levels of automation. It consists of Automation in the form of an autopilot has been instrument approach data storage, automatic radio used to reduce pilot work load and improve pilot tuning, autopilot, autothrottle, and annunciation of performance in the terminal area. Research studies These components allow the ATAS flight status. (ref. 2) and airplane accident and incident reports to automatically execute instrument approaches, in- suggest, however, that the probability of pilot error cluding procedure turns, altitude changes, missed actually increases with an increase in automation, approaches, and holding patterns, without requir- partially because of design limitations of the pilot- ing the pilot to set up navigation radios or change machine interface. Conventional autopilot interfaces autopilot modes. provide the pilot with many opportunities to make The results show that fewer pilot blunders were errors because of the requirements to change radio made during approaches when using the ATAS than frequencies and autopilot modes as the approach when using a baseline, heading-select autopilot. -
CRUISE FLIGHT OPTIMIZATION of a COMMERCIAL AIRCRAFT with WINDS a Thesis Presented To
CRUISE FLIGHT OPTIMIZATION OF A COMMERCIAL AIRCRAFT WITH WINDS _______________________________________ A Thesis presented to the Faculty of the Graduate School at the University of Missouri-Columbia _______________________________________________________ In Partial Fulfillment of the Requirements for the Degree Master of Science _____________________________________________________ by STEPHEN ANSBERRY Dr. Craig Kluever, Thesis Supervisor MAY 2015 The undersigned, appointed by the dean of the Graduate School, have examined the thesis entitled CRUISE FLIGHT OPTMIZATION OF A COMMERCIAL AIRCRAFT WITH WINDS presented by Stephen Ansberry, a candidate for the degree of Master of Science, and hereby certify that, in their opinion, it is worthy of acceptance. Professor Craig Kluever Professor Roger Fales Professor Carmen Chicone ACKNOWLEDGEMENTS I would like to thank Dr. Kluever for his help and guidance through this thesis. I would like to thank my other panel professors, Dr. Chicone and Dr. Fales for their support. I would also like to thank Steve Nagel for his assistance with the engine theory and Tyler Shinn for his assistance with the computer program. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS………………………………...………………………………………………ii LIST OF FIGURES………………………………………………………………………………………..iv LIST OF TABLES…………………………………………………………………………………….……v SYMBOLS....................................................................................................................................................vi ABSTRACT……………………………………………………………………………………………...viii 1. INTRODUCTION.....................................................................................................................................1 -
Estimation of Aircraft Taxi-Out Fuel Burn Using Flight Data Recorder Archives
Estimation of Aircraft Taxi-out Fuel Burn using Flight Data Recorder Archives Harshad Khadilkar∗ and Hamsa Balakrishnany Massachusetts Institute of Technology, Cambridge, MA 02139, USA The taxi-out phase of a flight accounts for a significant fraction of total fuel burn for aircraft. In addition, surface fuel burn is also a major contributor to CO2 emissions in the vicinity of airports. It is therefore desirable to have accurate estimates of fuel consumption on the ground. This paper builds a model for estimation of on-ground fuel consumption of an aircraft, given its surface trajectory. Flight Data Recorder archives are used for this purpose. The taxi-out fuel burn is modeled as a linear function of several factors including the taxi-out time, number of stops, number of turns, and number of acceleration events. The statistical significance of each potential factor is investigated. The parameters of the model are estimated using least-squares regression. Since these parameters are estimated using data from operational aircraft, they provide more accurate estimates of fuel burn than methods that use idealized physical models of fuel consumption based on aircraft velocity profiles, or the baseline fuel consumption estimates provided by the International Civil Aviation Organization. Our analysis shows that in addition to the total taxi time, the number of acceleration events is a significant factor in determining taxi fuel consumption. Nomenclature ICAO International Civil Aviation Organization FDR Flight Data Recorder MTOW Maximum TakeOff Weight Tamb Ambient absolute temperature f Total fuel consumed during taxi-out t Taxi-out time ns Number of stops nt Number of turns na Number of acceleration events I. -
Initiating a Missed Approach Below Mda
Issue No. 9 INITIATING A MISSED APPROACH BELOW MDA So there you are, on approach, inside the FAF and below MDA. You saw the runway and began descent, but it is raining, visibility is marginal and things are murky and scuddy (technical terms). Wind is directly across the runway at 11G18 and you are crabbing down, passengers are nervous. But you are holding the CDI in the center and maintaining control. Over the runway you go into your wing-low sideslip for the crosswind landing, things are going pretty well and then whoops a big gust destabilizes you so you abort the landing. Now what do you do, go missed or go around for another landing attempt? To provide some context, let’s attach the scenario to an interesting little airport, Andrews- Murphy Airport, NC (KRHP). The instrument approach procedure (IAP) and the takeoff minima and obstacle departure procedure are shown here. This airport is nestled in a scenic valley surrounded by mountains, which are quite close on the north. A topo map can be viewed here or just go to the TopoZone website and search for Andrews, NC, or go to the airport lat/long of 3512N/08352W. You will notice that the MDA is 2329 feet above the runway. Now remember that obstacle protection on a missed approach procedure is based on going missed at the MAP at MDA with a minimum climb gradient of 200 feet per nautical mile. No obstacle protection is assured when you go missed below MDA or past the MAP. In fact, you are not assured of obstacle protection even above MDA if the missed is initiated below MDA or after the MAP. -
Off Airport Ops Guide
Off Airport Ops Guide TECHNIQUES FOR OFF AIRPORT OPERATIONS weight and balance limitations for your aircraft. Always file a flight plan detailing the specific locations you intend Note: This document suggests techniques and proce- to explore. Make at least 3 recon passes at different levels dures to improve the safety of off-airport operations. before attempting a landing and don’t land unless you’re It assumes that pilots have received training on those sure you have enough room to take off. techniques and procedures and is not meant to replace instruction from a qualified and experienced flight instruc- High Level: Circle the area from different directions to de- tor. termine the best possible landing site in the vicinity. Check the wind direction and speed using pools of water, drift General Considerations: Off-airport operations can be of the plane, branches, grass, dust, etc. Observe the land- extremely rewarding; transporting people and gear to lo- ing approach and departure zone for obstructions such as cations that would be difficult or impossible to reach in trees or high terrain. any other way. Operating off-airport requires high perfor- mance from pilot and aircraft and acquiring the knowledge Intermediate: Level: Make a pass in both directions along and experience to conduct these operations safely takes either side of the runway to check for obstructions and time. Learning and practicing off-airport techniques under runway length. Check for rock size. Note the location of the supervision of an experienced flight instructor will not the touchdown area and roll-out area. Associate land- only make you safer, but also save you time and expense.