<<

Accepted Article Funding information E Corpus Christi,TX78412-5800,U.S.A. Department ofLifeSciences,TexasA&MUniv J. BeseresPollack Correspondence 4 Dietary compositionofblackdrum 3 mail: [email protected] UMR Littoral, Environment etSocieties, CNRS– 2 Harte ResearchInstitute forGulfofMexico 1 Florida AtlanticUniversity, Harbor Branch

Department ofLifeSciences,TexasA&MUniv K.S. RUBIO pagination andproofreading process, which version undergone full peer review but has not This article hasbeen accepted for publication intheJournalofFishBiologyand

et del’environnement, 2rueOlympe deGouges,17000LaRochelle,France and the Versionof Record. Please cite this This article isprotectedby copyright. Allrights reserved. 6300 OceanDrive,SL2101CorpusChristi,TX78412-5869,U.S.A. 1 , M.AJEMIAN Corpus Christi,TX78412-5800,U.S.A. 2 quality andpreyavailability , G.W.STUNZ BESERES POLLACK cromis

been through the copyediting, typesetting, U.S.A. U.S.A.

OceanographicInstitute, FortPierce,FL,34946, Studies, TexasA&MUniversity—Corpus Christi,

ersity –Corpus Christi,6300 OceanDrive,

may lead to differencesbetweenlead to this may 3 , T.A.PALMER ersity –CorpusChristi,6300OceanDrive, University of LaRochelle,Institut dulittoral article as doi: 10.1111/jfb.1 inahypersalineestuaryreflectswater 1

1 , B.LEBRETON 3654 4 ANDJ. KEYWORDS KEYWORDS predictions ofecosystemres important information formanagement andcons the effectsofwaterqualityonecosystem function. by acarnivorousfishspecies, relationship betweenwaterquality variables, particularlysalin round. Biomassanddensitiesofthesebivalves that bivalves this may affect were carriedouttodetermine how and determination of Seasonal measurements of waterquality variables, recreational andcommercial fishery forblackdrum The BaffinBayestuaryisahypersalinesystem in Running headline: Award, TexasSeaGrant,andTexa Texas CoastalBendBays&EstuariesProgram The authorsthanktheorganizationsandagencies This articleisprotected bycopyright.Allrightsreserved. Accepted Article P. cromis

Mulinia lateralis reliedonthesebenthicfoodresourcespr P. cromis POGONIAS CROMIS P. cromis diet.Gut-contentanalysis indicated and ity anddissolvedoxygen.Thus, ponse toclimate variability. and emphasizestheneedforinte Anomalocardia auberiana foodsourcesusingstomach-conten P. cromis s A&MUniversity-Corpus Christi. variables, benthicmacrofauna, andtheiruseasfoodresources DIETINAHYPERSALINEESTUARY foodsourceschangewith were influencedbychangesinwaterquality (CBBEP), HarveyWeil(CBBEP), Sportsman Conservation ervation offisheryresourcesandcanimprove that helpedfundthisresearch,includingthe the GulfofMexicothatsupportsanimportant benthicmacrofauna densities andbiomass, Holistic approachessuchasthesecanprovide Pogonias cromis oduced intheBaffinBayestuaryyear- . Isotope compositions demonstrated this paperdemonstrates the P. cromis grated assessments studying when t andstable-isotopeanalyses , abenthicpredator.

waterqualityandhow selectivelyconsumed 2

Baffin Bay (U.S.A.), blackdrum;Baffin Bay(U.S.A.), foodresource This articleisprotected bycopyright.Allrightsreserved. Accepted Article

s; macrofauna; salinity;stableisotopes. 3

(Montagna al., stress andcanleadtonegative effectsonestu complex long-term cycles(Montagna Whitfield, 1999).Freshwaterinflow istypically associated bioticinteractions and richnessoffishesinhypersalinesystems ha salinity stress varies byspecies andscale (Williams Although fisheslivinginestuarie common toestuariescancause distribution (Alber,2002;Harri experiencing environmental stre (Whitfield, 1986;Elliott (Montagna &Kalke,1992;BeseresPollack individual foodresourcesfluctuatesovertime communities (Kennish anthropogenic andenvironmental changesaff et al. ecologically andeconomicallyim supporting highdensityanddivers Estuaries areimportant habitatsforfishesdue 1 |INTRODUCTION This articleisprotected bycopyright.Allrightsreserved. Accepted Article 1993; Scavia , 2001;Levin In coastalecosystems, salinityisanimpor

et al ., 2002)coupledwithpredicted et al., et al. 2002;Nicholson et al. , 2001).Becauseestuariesarelocat et al , 2002;Nixon&Buckley,2002).Inpart ., 2007).Thismay beespecially such asdisappearanceofpartic son &Whitfield, 2006).Theoftenabruptsalinitychanges considerable physiologicaldema ssors suchashypersalinity. s areadaptedtosalinityfluctu portant (Blaber&Blab ity ofprey,andprovidingnurs et al. et al., , 2013).Reducedfreshwater etal. arine biodiversityandpr ect thestructureanddynamics ofbiotic tohighlevelsofpr and spaceinresponsetoenvironmentaland changes 2008). Increasesinupstr increases inar deliveredinpulsesgove s beenattributedtoosmoregulatory stressand , 2009),alteringenergyflowpathways tant factorinfluencingfishabundanceand et al., 1990;Blaber,1997).Lowdiversity ed attheland–ocean interface, ular foodresources(Boltt,1975; thecaseforsystems already idity (Seager ations, individualresponseto nds onfishes(Whitfield, 1999). er, 1980;Whitfield,1999;Beck ery andfeeding groundsfor imary production(Nixon,1982) icular, theavailabilityof oductivity (Fourqurean eam waterwithdrawals inflows increasesalinity rned bystochasticand et al., 2007)and et et 4

increased storminess willleadtostronger andlonger periods ofhypersalineconditions andmore This articleisprotected bycopyright.Allrightsreserved. food resourcescomposed primarily ofsoft tissues( Polunin, 1999).Differentialdigestio Acceptedtaxonomic level,butprovides onlyasnapshot Gut-content analysis this species. reveals community composition (Montagna water quality variables, especiallysalinity, canaf Montagna species whosedensitiesarehi 1962; Dugas,1986).Gutcontentanalyses their strongpharyngealteethto resources. Juvenileandadult (Osburn &Matlock,1984;Ajemian ArticleMexico estuariesisminimal, indicatingpopulat al. Pogonias cromis evaporation rates(Wetz coastline experiencing hypersaline conditionsas effective management andconservationoffisheryresources(Ludwig the responseoffishtoacutesa frequent salinitydisturbances(Pachauri& , 1983;Osburn&Matlock,1984;Olsen,2016).

The BaffinBayestuaryisashallow,subtropi et al. , 1993),asaprimary foodresourceof (L. 1766),supportsanimportant recreat et al. P. cromis , 2017).Within thissystem, the ghly variableover linity fluctuationsinhypersaline crush theshellsof molluscs an information aboutfishfoodresourcesatarelatively precise n ofpreymay causeerrorsin et al. et al. exploitavarietyofbenthi , 2018)andprobablyrelyonlocallyproducedfood , 1995), whichmay affectf have identifiedthe Meyer, 2014).Improved scientificunderstandingof of preyitems recentlyingested(Pinnegar & ions arelargelyisolatedfrom oneanother afunctionofsemi-arid climate andhigh time (Breuer,1962;Simmons&Breuer, fect benthicmacrofauna Pogonias cromis e.g. cal estuarinesystem on theGulfofMexico P. cromis annelids)aremore rapidlydigested ional andcommercialfishery(Ross large-bodied sciaenidblackdrum, dwarf surfclam d crustaceans (Simmons &Breuer, (Sutter systems iscriticalforsupporting c foodresourcesandcanuse determination ofdiet,assome movement betweenGulfof ood resourceavailabilityto et al., et al. density,diversity and 1993). 1986). Changesin lateralis et , a 5

paper are:todetermine thefoodresources ( acute salinityfluctuationinthehypersalineBaffi rains providedanopportunitytoassesstheresponse of cascading effects,particularly understand howchangesinenvironmental cond macrofauna community( Determining relationships betweenwater of foodresourcesusedbyconsumers. applied ondifferentmaterials ( is commonly usedtodetermine trophiclevels(P of foodresources(Fry &Sherr,1984; Peterson Polunin, 2000). Carbonisotopecompos et al. resources assimilated overarelativelylongperi provides asnapshot ofwhathasbeenrecently standard gut-contentanalysis( not yetassimilated. Thisprovidesinformation a 2000; Fry to elucidatewhatfoodresources relation to itsassimilation rate.A complementary analysis howmuch aparticular carbonate shells or chitinous pieces(Hyslop,1980).It (Kennedy, 1969)andmay beunderrepresentedco This articleisprotected bycopyright.Allrightsreserved. Accepted Article , 2015)andisthuslessbi

et al. , 2008).Isotopecomposition ofgut contents reflectswhathas beeningested but i.e . fishprey)andfoodresourcesus inecosystems alreadyunderst ased byshort-term ( e.g. i.e ingested foodresourcewillcontri areactuallyingestedandas . gutcontent,muscle),areuseful softtissueanimals) but,like ition inparticularcanbeusef i.e . benthicmacrofauna) of ingested. Muscle isotopecomposition reflectsfood quality variables,co itions may affectfishpopulationsthrough & Fry,1987)whilenitrogen isotope composition od duetoslowtissueturnover(VanderZanden bout material thatcannotbeidentifiedthrough ost, 2002).Therefore, thsedifferenttechniques, n Bayestuary.Tothisend,theaims ofthis mpared withfoodresourcescalcium approach, stable-isotopeanalysis,canbeused i.e . daytoday)variability(Pinnegar& isalsonotalways P. cromis similated (Pinnegar&Polunin, ed byfishisneededtobetter ress. Floodingcausedbyheavy gut-contentanalysis,itonly andbenthicmacrofauna to bute toconsumer productionin toget amore completepicture mposition ofbenthic ul foridentifyingtheorigin P. cromis clear from gut-content based ona 6

Gulf ofMexico,U.S.A.(Figure1).This248km The BaffinBayestuaryisadjacenttothewester 2.1 | Study site 2 |MATERIALSANDMETHODS modified andtoassessifthesechange P. cromis combination ofgut-contentandstable-isotopeanal This articleisprotected bycopyright.Allrightsreserved. sediments andabsenceofmacrophytes. Water qua 2014 toMarch2015increase spatialcoverage 2015 (Figure1).Fouradditional stations (CG3, Acceptedbenthic macrofauna andsurfacesediment orga Ten stationsthroughouttheBaffi 2.2 | Waterquality,benthic macrofaunaandsedimentorganic matter al., hypersaline conditions(Armstrong, 1987;Buskey year), minimal inflowandhighevapor freshwater Freshwater inflowoccurssporadically Baffin Bayandthreetertiaryba Article 2017).

foodresourceschangeonatemporal andspat ys: AlazanBay,CayodelGrulloandLaguna Salada(Figure1). n Bay estuaryweresampledn Bay seasonallyforwaterquality, s affectuseoffoodresourcesbyfish. via severalephemeral streams. Longresidencetimes (>1 nic matter (SSOM)from March2014to 2 AL6, AL7,AL9)weresampledfrom September n edgeoftheupperLaguna Madreon theTexas subtropicalestuarycomprises asecondarybay: . Stationswerecharacterized bymuddy ation rates create asystem thatisprone to lity measurements [temperature,dissolved et al. yses, todefinehowdensitiesandbiomass of , 1998;TunnellandJudd,2002;Wetz ial basiswhenwaterqualityvariablesare

et 7

www.ysi.com) disc. andaSecchi instrument (Hydrolab SurveyorII;OTT-Hydr each season, at thesurface andbottom ofthe oxygen (DO),pH,turbidity, salinity, Secchidepth] we This articleisprotected bycopyright.Allrightsreserved. and groundusingamortar andpestle. mesh screentoremove macrofauna, shellhash Acceptedcollected andimmediately plac being storedat–20°C. analyses werekeptseparatelyinartificial s macrofaunawere transported livetothelaborato drying andweighing. 24–48 huntilreachingaconstant taxonomic levels(Cnidaria,Polychaeta, Board, (2017).Biomass measurements wereobt enumerated. Speciesnames wereverifiedusingTunnell Articledissecting microscope, identified ethanol. Macrofaunawereextractedona500µm immediately preservedwith10%bufferedform composition andtwoforstable-isotopemeasurements. Communitycomposition samples were Five replicate coreswerecollectedfrom each Benthic macrofauna weresampled using35.4cm SSOM wascollectedusing35.4cm Cores forstable-isotopeanalysesweresiev

ed onice.Inthelaborator to thelowestpossibletaxonomi mass. Molluscshellswerere 2 cylindricalcores.Thetop3cm ofsediment were eawater for24–48htoevacuategutcontentsbefore water column usingamulti-variable monitoring station,eachseason:three for community omet; www.ott.com or YSI 6series; YSI-Xylem; and largedetrital alin for48hoursandthenpreservedin70% ained aftergroupingsp ry incoolers.Macrofaunaforstable-isotope ed ona500µm-mesh screeninthefieldand sieveinthelaboratory,sortedusinga , ,Crustacea)anddryingat55°Cfor re collectedduring thedayateachstation, 2 cylindricalcorestoadepthof10cm. et al., y, samples weresievedona500 (2010)andWoRMS Editorial moved with10%HClpriorto particles andthenfreeze-dried c level(usuallyspecies)and ecies intohigher μ m- 8

methods followedauniversity-approved an Gastropoda, Bivalvia,Crustacea) Biomass measurements wereobtainedaftergrouping dissecting microscope, identifie of macrofauna inthegut.M formalin for48handthenpreservedin70% remaining digestivetracts(ifmore thanfivefi weighed. Highlydigestedorgani items largerthan500µmwereid further processing.Digestivetractsfor stable-i 200–400 mmtotallength)wereselected and endingwiththeanalve measurements inautumn 2014. stable-isotope analysisandfrozenat–20°C.No individuals perseason)wasremoved immediately placedoniceinthefield. In 15.2 cm stretchmesh (Matlock &Weaver, 1979) were collectedusinggillnets[183mlong fisheries-independent sampli spring, summer, autumn 2014, winter2015)aspart Pogonias cromis 2.3 | This articleisprotected bycopyright.Allrightsreserved. Accepted Article Pogonias cromis Pogonias Whole digestivetr

werecollectedthroughouttheBaffinBa muscleandgutcontents acts (guts)of nt. Fivenon-empty digestive acrofauna wereextractedona500µm sieve,sortedusinga ng programme (Martinez-Andrade d tothelowestpossibleta c material (<500µm) wasweighedandthencentrifuged. The , dryingat55°Cfor24–48 hand entified tothelowestpossible from theanteriorportionofall P. cromis forstable-isotopeanalyses thelaboratory,epaxial muscle tissue ( x imal useprotocol(AUP#09-14,Texas A&M 1.2mdeepwith46 sectionsof7.6,10.2,12.7and ethanol forquantifyingth sh werecollected)fixedin10%buffered sotope analyseswerethawed andgut-content wereremovedbeginningwiththeoesophagus musclesample wascollectedforstable-isotope ] setperpendicular to of theTexasParksan species intohigher taxa tracts persampling month ( xonomic levelandenumerated. y estuary overfiveseasons(winter, y estuary taxonomic level,enumeratedand et al. then weighing.Fishhandling and frozenat–20°Cbefore P. cromis , 2005)(Figure1).Fish theshorelineand e abundanceandbiomass d Wildlife Department levels(Polychaeta, specimens for n =5–14 P. cromis

9

sediments and gutsweredecarbonatedwith1mol l www.retsch.com). samples SSOM andsofttissuesfrom organisms shelled occurringin freeze-dried andgroundtoahomogenous powde Macrofauna from sediment samples andgutconten 2.4 | Stable-isotope compositionmeasurements University-Corpus Christi). This articleisprotected bycopyright.Allrightsreserved. nanoparticles Acceptedδ international referencematerials (USGS-40: 13 and N per thousand(‰)asdeviation Corpus Christi.Carbonandnitrogen interface. Analyseswereconductedatthestable spectrometer (DeltaVPlus,Thermo Scientific; www.thermofisher.com) Costech; www.costechanalytical.com) connected and gutcontentsamples usinganelemental anal Articlemeasurements onallsamples wereca homogenized intoultrapure waterusingan were thendriedat60°Cusingadryblock 15 C or N =47.57‰; 2 15 in airfor in Isotope composition wasdetermined forbenthicmacrofauna, SSOM,

N and , GNPs)andrice(SIGFstandards)] were R is δ δ 13 15 13 C =37.63‰)(Paul N) andfollowingtheformula: C: 12 C or 15 from internationalstandards N: 14 N, respectively.Two-pointcalibrationwasdone using isotope compositions areexpressedin rried outonnon-acidifiedsamples. et al. heater underairflow.Driedsampleswerere- ultrasonic bath,freeze-dried andgroundagain. , 2007).Laboratorystanda δ 15 N =–4.52‰; -isotope facilityatTexasA&MUniversity- yzer (ECS4010withaZero Blankautosampler, r usingaballmill (MM400,Retsch; toacontinuous-flo δ ts collected forstable-isotope analyses were –1 x ‰ =[( HClbefore analyzed afterevery12samples to R (Vienna PeeDeeBelemnite for sample δ 13 C =–26.39‰andUSGS-41: δ R 13 –1 C measurements. Samples w isotope-ratiomass standard rds [Acetanilide(gold via ) –1]10 δ aConfloIV -notation inparts P. cromis 3 , where muscle muscle δ x δ 15 is 13 N C 10

> 0.05;totallength, class fish wereonlycollectedinBaffinBa sampled contiguouslyforfish.NeitherANOSIMin Spring andfall2014weretheonlyseasonswherea autumn) andfishcollectedthroughouttheenti from AlazanandBaffinBaysoverthe foursa separate times,eachusing differentdata becaus and seasonasfactors(SupportingInformation Tabl seasons andbaysweretestedwithtwo-waycros transformed data.Differencesinmacrofauna nMDS analyseswerecarriedoutusingaBr macrofauna communitycomposition andgut approach, non-metric multidimensional scaling (nMDS) wasusedtodetermine patterns inboth quality. Variableswere first log-transformed andthenstandardized. Another multivariate Principal componentanalysis(PCA)wasusedto 2.5 | Dataanalysis standards was±0.2‰forcarbonandnitrogen. monitor instrument performance andcheckdata This articleisprotected bycopyright.Allrightsreserved. assumption thattheprey ingestedin Acceptedlength, whereastherangeof Article x Bay

Relationships among waterqualityvariable x Season)showed nosignificantdifference ingut composition among sizeclasses ( L T size classes<300,300–450,>450mm). Preyareusually<5 mmin fish sizesanalyzedhad this systemlimited are bygapesize. y duringthisseason.A3-wayANOSIM( ay-Curtis similaritymatrix onsquare-root composition ofthegutcontentcompositions among content composition (Clarke&Warwick, 1994). mpling seasonsin2014(winter,spring,summer,mpling re Baffin Bay estuary re BaffinBayestuary e oftheunevensampling pa normalization. Theprecisionofthelaboratory sed analysesofsimilarities (ANOSIM)withbay determine spatio-temporal patternsinwater s andmacrofauna communitycomposition es S1,S2).ANOSIMtestswererunusingtwo ll bayswithintheBaffinBayestuarywere cluded fishcollectedinwinter2015because L T 166–622mm; thereisnoreasonable in springandfall2014.

ttern (Table 1):fish P. cromis S ize P 11

when oneoftheseconditionswasnotrespected(Zar,2010). test) wererespected.Non-parame (Student’s Gorley, 2006). www.sas.com). Allmultivariate statisticswereca univariate metrics andcorrelationswerecalculat was correlatedwithmacrofauna usingpa metrics simultaneous changesinotherwaterquality diversity (Hill,1973;Sanders,1968).Partialco individual water quality variables and bent S3). Spearmanrankcorrelations werecalculate were determinedusingBIO-ENV (Clarke& This articleisprotected bycopyright.Allrightsreserved. empty guts(vacuityindex) avoidance or inaccessibilit from –1to+1,withpositivevaluesrepresen relative abundance prey type was calculated as:% Acceptedthe StraussIndex( the totalnumberofnon-empty gutsexamined Article Comparisons betweenisotope compositions we Gut contentsweredescribedusingfourmetr

a t- inthediet(asaproportionofto test) whenconditions of normality (Shapiro L of preytype SI F ) ( =100 ; Strauss,1979): y. Percent mass of totalidentifiable contents(% were alsocalculated. S a S –1 a intheenvironment (from bent tric procedures(Wilcoxon andKruskal–Wallis tests) wereused , where S = hic macrofauna abundance,biomass andHill’s a isthenumber ofgut variableswhenrunningcorrelations( ting preference and negative values representing Ainsworth, 1993;SupportingInformation Table (Hyslop, 1980).Preyselectionwasassessedusing d tocharacterizethe tal number ofpreyinthediet)and rrelations wereusedtotakeintoaccount ed usingSAS9.3software(SASInstituteInc.; rtial correlations with temperature and DO).All lculated usingPRIMER ics. Thepercent freque + re conductedusingparametric procedures , where -Wilk test)andequality of variances (

r hic coredata).Valuesrange a s containingpreyitem istherelativeabundanceof relationships between ncy ofoccurrence(% 6 software(Clarke& M ) andpercentageof e.g. p a is the salinity a and N 1 S F- F is 12 )

in September 2014(5.2mgl 2014 to30.0°CinJuneandSeptember[Figure March 2015. tertiary baysinMarch,J March 2014and2015.Themean salinity salinity gradient, where salinity increases upstream, occurredinallmonths sampled exceptin 2014 anddecreasedto44.8inDecembera higher DO. second, December 2014andMarch2015hadlower March, JuneandSeptember2014hadhighersalin This resulted intwoperiodsofdistinct waterqua along PC1.Waterqualityamong allsamples vari for 57.6%and18.5%ofthevariationindata. using thefirsttwocomponents ofthePCA(Fi Comparisons ofallwaterqualityvariablesove 3.1 | Waterquality 3 | RESULTS This articleisprotected bycopyright.Allrightsreserved. macrofauna 3.2 | Benthic Accepted Article Mean temperature oftheBaffinBayestuary Mean salinityoftheBaffinBayestuary

une andSeptember 2014and0.4–2.1lowerinDecember 2014and –1 ) andhighestinMarch2015[8.8mg l gure 2).Principalcomponents 1and2accounted r space andtimewereachieved simultaneously ranged from 49.2inMarchto53.6September nd 40.9inMarch2015[Figure3(a)].Areverse in Baffin Bay was2.2–4.1lowerthaninthe in BaffinBay lity conditions intheBaffin Bayestuary: first, Water qualityseparatedintotwomain groups ed more bysampling datethanbylocation. ity, temperature andturbiditylowerDO; varied seasonallyfrom 15.9°CinDecember salinity, temperature andturbidity 3(b)]. MeanDOconcentrationswerelowest –1 , Figure3(c)]. 13

from 2219nm community composition ( salinity andDOconcentrationwasthenextstro greater contributionsof calculated usingtheBIO-ENV procedure).Athi = 0.193, worms dominated macrofa species richness ( polychaete biomass This articleisprotected bycopyright.Allrightsreserved. the bivalves of samples from March2015differedfrom therestof AcceptedSalinity was themain waterquality variable and increasing DOconcentrations led toincreasing macrofauna biomass, Hill’s 2014 (3.0gm 2015 (2583nm Article(Figure 4andTable2). 0.15 gm (from <0.01gm (from 0.25gm unidentified gastropods.Macrofaunabi abundant speciesincludedthebivalves

Mean macrofauna densitywas –2 P <0.05),aboveanyothersingleorcomb in LagunaSaladato0.63gm Mulinia lateralis –2 –2 –2 ). Increasingsalinityledtoin –2 –2 in Baffin Bayto6486nm in Baffin in Baffin Bayto1.82gm in Baffin r ). Meanbiomass waslowe s in BaffinBayto1.83gm =0.34, , ranging from 0.12gm Streblospio benedicti r s P =0.185, <0.05; and Anomalocardia auberiana P r s una densities,inparticular <0.01).Macrofaunacommunitycomposition inanumber highest inMarch2014(8046nm =0.38, omass dominated was bythebivalves Anomalocardia auberiana –2 in AlazanBay). –2 –2 –2 st inMarch2014(0.9gm –2 inCayodelGrullo), influencing macrofauna communitycomposition( creasing Hill’sN1diversity(r and in AlazanBay(Figure4and Table2).Other in BaffinBayto0.24gm in AlazanBay)andunidentifiedgastropods (from P ngest contributortochangesinmacrofauna gher salinities,themacrofauna communityhad <0.01; Acteocinacanaliculata ination ofwaterqua thedates,duetohi r s =0.39, Streblospio benedicti (Figure 5). Streblospio benedicti, Anomalocardia auberiana and P <0.01,respectively). –2 Mulinia lateralis lity variables(as –2 ) andhighestinJune –2 gh relativedensitiesof in LagunaSalada . Thecombination of ) andlowestinMarch s =0.28, Mulinia lateralis N dominated 1 diversityand P <0.05) and ranging

r 14 s

February 2015,84%offish(mean ± Of the262 3.3 | Gut contentanalysis This articleisprotected bycopyright.Allrightsreserved. analyses. Fish, seagrassandunidentified mollusc differentiated betweengastropod andbivalvegroups included intheanalysisofpreyselectivity.So Acceptedwere least selected ( least selectedtaxa(–0.49< neither positivelyselectednor with mean of gutbiomass, respectively. mass). Crustaceansandgastropods were eachobser content taxa(in51%ofguts,17% 0.5% ofgutmass). Polychaeteswerethenextmo auberiana Articlemass. Themostconspicuousandcommon biomass (64%).Unidentifiedbivalveswerepresen occurring preygroupinthegutcontents(in70 major taxa groups wereidentifiedintheguts(T from 54.9%inwinter2014to2.3%autumn 1). Therewasanoveralldecrease

Bivalves weretheonly positively selected prey group throughout theBaffinBayestuary, (in 32%ofguts,2.2%gutmass), followedby L P. cromis SI rangingfrom 0.54 0.35inBaffinBayto L collectedwithintheBaffinBa SI =–0.41).Seagrassdidnotoccurinan L SI negativelyselected(–0.02< <–0.22)inallbaysexceptCayodelGrullo,where gastropods invacuityindicesthroughout ofgutmass), followedbyseagra S.D . L T bivalve from thegutcontentswas =335± me molluscs inside guttr % ofguts).Bivalvesal 2014 and0.0%inwinter2015.Sevendifferent able 3).Bivalveswere s composed upto2.8%,26%and7% oftotal st frequentlyencounter t in68%of gutsandcontributedto61%ofgut ved in6% ofgutsandmade up2.4%and0% y estuarybetweenDecember 2013and

so werealsonotusedin prey selectivity 92 mm) containedstomach contents(Table in LagunaSalada.Crustaceanswere L Mulinia lateralis SI y benthicsamplessocouldnotbe <0.05).Polychaeteswerethe the BaffinBayestuaryovertime, ss (in26%ofguts,8%gut so dominated thegut themostfrequently acts couldnotbeeasily ed andheaviestgut (in11%ofguts, Anomalocardia 15

Isotope 3.4 | Stable-isotopecomposition gastropods. sediment cores,withthegutscontainingrelati winter 2014.Theproportionsofhighertaxain the highestdissimilarity among withbi seasons, ANOSIM P to thoseinLagunaSalada(ANOSIM significantly differentamongbays(0.1 of0%). minimum gut contents foreachseason-baycombination fall 2014(ANOSIM This articleisprotected bycopyright.Allrightsreserved. from 4.4(Tanaidacea)to11.4( was similar torangesof Acceptedlow δ Wallis tests: respectively (Figure6). Isotope compositions of Article 15 <0.05).Gutcontentsinallotherbayswere N: δ 15 P N values(4.0‰). Multivariate analyses(ANOSIM,nMDS)indi >0.05)pattern.Seagrasswasmore enrichedin Macrofauna δ 13 R C and

≤ δ 0.2, 13 C: δ 15 P P δ N valuesofSSOMrangedfrom –22.1to–19.1‰andfrom 4.1to10.2‰, >0.05, >0.05).Differencesinproportionalbi R 13 =0.04, C valuesrangedfrom–24.0(Tanaidacea)to–14.8‰ (Amphipod), which δ 13 C valuesofseagrassand SSOM. δ 15 P Leptochelia rapax N: >0.05).GutcontentsinBaffin P >0.05)orspatial (Kruskal Wallis tests: R =0.43, ≤ ANOSIM ANOSIM vely more bivalvesandfewerpolychaetes not significantlydifferentfrom eachother(–0.1 (5.5%, 35%and38%of thegutsweredissim P omass highestinsummer2014andlowest SSOMdidnotshowanytemporal (Kruskal <0.001)andAlazanBay(ANOSIM ). R cate thattheguttaxacomposition was

≤ 0.8, 13 C thanSSOM( omass ofunidentifiedbivalvescaused P δ 15 <0.05)exceptforspring2014and N valuesofmacrofauna ranged Bay weresignifi ilar from thoseinthe identifiable contents; δ 13 C –14.6‰)andhad δ 13 C: cantly different P >0.05, R =0.09, ≤ 16

< 0.001;Student’s 0.05) pattern. from –21.1to –17.7‰ (mean ± This articleisprotected bycopyright.Allrightsreserved. exceeding precipitation (Buskey 40.9, comparedwiththe hypersalineconditionsthat temperature reflectseasonalpatt Acceptedmonthly averageof62mmthroughouttherema event inSeptember 2014,withmonthly precip The largesalinitydropobservedfromSeptembe 4.1 | Effectofamajorraineventon 4 |DISCUSSION were 1.8and2.6‰for Gut liquidwas significantlymore depletedin Article7.4‰) whereasrangesof tests: 0.8‰), respectively. Isotope composition ofmuscle didnot show anytemporal (Kruskal Wallis and dates. possible todetermine spatial ortemporal vari ± S.D., δ –21.2±3.1‰)andfrom 4.7to11.4‰(mean ± 13 Isotope

Gut-liquid samples hadamuch largerrangeof

C: δ P 13 >0.05, C and δ 13 C and t -test: δ 15 δ 15 N valuesof δ N: 13 δ δ δ 15 C and 15 15 P N valuesof N: N valuesweresimilar (Fisher test, >0.05)orspatial(KruskalWallis tests: P S.D erns. Theraineventledtoad δ <0.001).Averagedifferences et al. 15 ., –19.9±0.9‰)andfrom9.2to12.4‰(mean ± P. cromis N values,respectively. BaffinBayestuarywaterconditions , 1998).Thisprovidesan interestingcasestudy,periodof P. cromis muscle (mean ± ations duetounbalancedsamplingbetweenbays 13 itation totalling345mm (comparedwith the C and ining studyperiod).VariationsofDOand r 2014toMarch2015isrelatedamajor rain gutliquidrangedfrom –12.8‰(mean –26.7to typically exist(40to60) duetoevaporation 15 S.D δ N thanmuscle (Wilcoxon test, 13 ., 7.8±1.1‰),respectively.Itwasnot C valuesthanmuscles (13.9‰ S.D ecrease insalinityfrom 53.6to δ between gutliquidandmuscle . 13 L C: T =343±65mm) ranged P δ 13 <0.001, C: P >0.05, δ 15 N: S.D δ 15 P δ ., 10.4± >0.05). 13 N: v C: . P P > < 17

exoskeleton ( fact thattheyaremade ofsofttissuesonly,lead densities ofpolychaetesmeasured in Sutter food resourcesareactivelypreyedupon( reported inotherstudiesfrom thises originating from thebenthicmacrofauna. Observed Gut contentanalysesdemonstrate that of 4.2 | Food resources resources) andfishdietchange and lowersalinities, that canbeused strongly hypersaline conditions (typical inthis This articleisprotected bycopyright.Allrightsreserved. P. cromis microalgae forthemost Acceptedfrom trappedphytoplanktonforthemost macrofauna highlightthattheyrelyonawide from C al., several primaryproducers:very been observedinsimilar systems, indicatingth Article 2016) andbenthicmicroalgae (Lebreton et al., 3 Isotope

and C gutliquidsandbenthicmacrofauna conf 1986) whereassome arelessselected( i.e 4 plants(Fry&Sherr,1984).Therangesof δ . bivalves, gastropods, crustaceans) (Hyslop,1980). 13 C valuesofSSOM,rangingfrom –22.1to–19.1‰,aretypicalofwhathas P. cromis 13 C-enriched consumers (–14.8‰).The similar isotope compositions of inrelationtosalinitydrop. likelytrappedphytoplankton tuary (Montagna&Kalke,1995;Buskey P. cromis to determine howbenthicmacrofauna ( P. cromis i.e 13 C-depleted consumer . bivalves,particularly et al., diversity offoodresourceswithcoastalorigin, gutcontentsmayneverthelessberelatedtothe at SSOMinBaffinBayestuaryisamixture of estuary) followed by anacutefreshwaterpulse ing toaquickerdigestio ingestarelatively larg irm thatthefoodresourcesingestedby 2016), withpossibleinfluenceofdetritus macrofaunal densities i.e . ,gastropods).Thelower δ 13 C valuesamong thebenthic (Fry &Sherr,1984;Lebreton s (–24.0‰)tobenthic M. lateralis e diversityofpreyitems n thananimals withan were similar tothose i.e et al. and . fishfood , 1997).Some A. auberiana P. et et 18 ;

Ajemian observations of limited mobilityof cromis muscle tissue isotope com taking intoaccountthetrophic to resources producedintheBaffinBayestuary. Isotope composition ofthe This articleisprotected bycopyright.Allrightsreserved. water column provide information aboutthespatialoriginof Acceptedapplying astable-isotopeapproachascompleme isotope composition) and isac Sogard, 1984).Inadditiontoprovidingin Hofsten bodied benthicpreyareindeedquicklydi pharyngeal teethtocrushtheir trophodynamics, particularlyfordurophagouspredatorslike Bay estuaryyera-round.Suchcombination ofap muscle tissues demonstrate that consumer anditsfoodsources(Post, Articlefollowing trophicfractionationfactors(1.8for macrofauna P. cromis predominantly originate from theBaffinBayestuary, inaccordance withprevious

The combination ofgut-contentanalysesand et al., et al., dietastherangeofmuscle δ 13 v. 1983) comparedwiththosecontainingdige 2018).The largerangeofgut-liquid C values,highlights that this fish species sediment). Combining trophicdatawith position isenrichedin P. cromis tually assimilated byfish ( prey (Simmons&Breuer,1962; fractionation betweenfoodsour P. cromis P. cromis 2002;VanderZanden&Rasmussen, 2001). muscle tissueindicatesthat δ 13 gested beyondvisiblere relyonbenthicfoodres formation aboutwhat isingested( C values arerelatively close tothoseof outsideoftheestuar Mulinia lateralis δ the foodresourcesatbaseofweb( 13 proaches ishighlybeneficial tounderstand 13 C, 2.6for nt totraditionalgut-cont C and δ isotope compositions ofgutcontentsand 13 C values,overlappingtherangeofbenthic caningestalargerangeofpreyitems. i.e 15 information relatedtofishmovement stion-resistant hard N compared withgutcontents . muscle-isotopecomposition), δ P. cromis 15 N) typicallyobservedbetweena ces andconsumers. Indeed, canrepresent alargecontribution Grubich,2003).Small andsoft- thisspeciesassimilates food cognition (Kennedy,1969; y (Osburn& ources producedintheBaffin , whichusestrong ent analysiscanalso i.e parts(Miller,1974; . gutcontent Matlock, 1984; M. lateralis i.e , 19 .

documented intheBaffinBayestuary(<100–2500m salinities (Turney &Perkins,1972). species aswell,withincreased densities in Beseres Pollack lateralis colonization after freshwater-related salinity va in thewatercolumn (Grange&Allanson, can enhanceproductivityofsuspensionfeedersdue occurred inMarch2015,whensa The highestrelativedensitiesof 4.3 | Changesofwater qualityconditions affectavailabilityof mechanisms bywhichnaturalandanthropogeni and habitatuse(Ajemian This articleisprotected bycopyright.Allrightsreserved. 2014; Olsen, 2016).Becausebiva Acceptedimportant tosurveywhentryingassesspot implications for production availableforhighertr & Rosenberg,1995),higherDOconcentrations conditions cansignificantlyreducemacrof 1997). Inthe currentstudy, bivalvebiomass in Article

asagoodindicatorspeciesfor freshwater et al. P. cromis , 2009). et al. foodresourcedynamics. Thisindicates bivalve communitiesare Anomalocardia auberiana , 2018)couldalsoprovidecomplementary information onthe themostselectedfooditems ophic levels.Variationsin linity wasthelowest.Indeed,in lve communitiesintegrate wate Mulinia lateralis 1995; Kim &Montagna,2012).Duetorapid auna biomass anddiversity(Dauer areas experiencing regul ential foodlimitation forthesefish(Olsen creased withincreasingDO.BecauselowDO riability, previousst c changesaffect estuarinespecies. may servetoincreas infloweffects(Montagna&Kalke,1995; tonutrientstimulation ofprimary production –2 densities aresimilar tothosepreviously ; Montagna&Kalke,1995;Buskey has beenidentified asanindicator water qualitythereforehave M. lateralis r quality conditions,including creases infreshwaterinflows P. cromis udies haveidentified ar floodingandreduced e benthicsecondary and foodsources et al., A. auberiana 1992; Diaz et al., M.

et al.,

20

dominant speciesbefore( Indeed, intheBaffinBayestuary,macrofaunal organisms (Bachman &Rand,2008)thatmay affect confirmed, inparticularwiththehe of decreasingthequantitiesth cumulative negativeeffects,reducingtheabilityof access toareasoflowersalinity (Hoeksema western Australia,wasshowntobe (Munro 1949),acommerciallyand well asosmoregulatory stress(Bol hypersaline periods,whichhasbeenattributedto to move, duetohigherenergycosts.Lowerfish the hypothesisfrom Ajemian salinities were lower.Higherfeeding activity of higher at low salinities. Thisisprobably relate trend ofdecreasingsalinity(fro Vacuity indexvaluesdecreasedfromwinter20 4.4 | Effectsofwater quality changes on can bedetermined withpunctuateddailymeasurements. DO variationoverdielcycles,they This articleisprotected bycopyright.Allrightsreserved. Accepted Article Within hypersalinesystems, acutesalinityvariab

Streblospio benedicti, et al. m 49.2to40.9),suggestingthat eir foodresources.Nevertheless,suchhypotheses needtobe tt, 1975;Wallace, 1975).Thesparid (2018),whosuggestthathighsa areusefulforassessingecosystem statusabovethatwhich lp ofphysiologicalmeasurements. particularlysusceptibletoel recreationally important fishery P. cromis et al., d tothehigheravailabil 14 (54.9%)towinter2015(0.0%),followingthe Acteocina canaliculata) abundance hasbeenreportedinestuariesduring P. cromis thedisappearanceofcertainfoodresourcesas 2006). Highsalinitymay thereforeleadto fishtofeedinhypersalineecosystems, ontop community demonstrated substantialshiftsin foodresourcesforhighertrophiclevels. diet ility isanotherkeyst atlowsalinity isinaccordance with P. cromis evated salinitieswhenunableto linities decreasefish capacity species inestuariessouth- ity ofbivalveswhen Acanthopagrus butcheri and after( feeding activitywas ressor toestuarine Mulinia 21

role ofthesetwofoods combination ofgutcontentandisotopeanalyses lateralis fluctuation. and recoveryoffood-webfunctioninginhypers (Almeida-Silva increased food-webcomplexityhasbeenrelate (Günther 1866)(Ley Eucinostomus harengulus variability inFloridaBayisrelatedtothequal of salinityvariability for availability inthreehypersaline estuaries inWest lateralis, Anomalocardiaauberiana This articleisprotected bycopyright.Allrightsreserved. described asaprobablec populations duringchanging environmental cond cromis Acceptedeven whenbiomasses aredecreasing.Determini stock ofthesebivalvesis availability of is reduced,alteredmacrofauna communitycom these twospeciesofbivalves.If for benthicmacrofaunaspecies limit th Article wouldhelpdetermine thecarrying Better determination ofthedependencebetw

and and A. auberiana P. cromis et al., et al., 2015). Longer-term researchiswarrant ources, thebroadrangesof foodresources(Charnov maybe largeenoughtosupport Acanthopagrus butcheri ontributor for stripedbass Goode&Bean1879andgoldspottedkillifish ) intheBaffinBayestuaryand 1994).Similarly, in ahypersa selectivefeedingcontinuesto ) theacutesalinitydisturba e abilitytodetermine towhatdegree capacity oftheestuarytosupport ity offoodresourcesingestedbytidewatermojarra d tothestabilityof position wouldhavestrongerimplications for aline systems asaresultofacutesalinity ng thedailyrationofbivalvesneededby provided verymeaningful information aboutthe itions. Declinesinfoodresources were ern Australiahasbeena (Chuwen et al. δ Morone saxatilis een thetwomajor speciesofbivalves( 13 C valuesfor , 1976).Ontheotherhand,standing P. cromis line lagooninSouthAmerica, P. cromis et al., ed tobetterunderstandtheresponse occur evenwhenbivalvebiomass nce. Similarly, foodresource 2007). The degreeof salinity hypersaline conditions andotherfishpopulations, P. cromis isalsowarranted.Evenifthe (Walbaum 1792)exceeding Floridichthys carpio ttributed tothedegree P. cromis P. cromis muscle aswell relieson P. M.

22

can serveasanimportant component towardc functioning whenstudyingeffectsof al have revealedconnectionsbetw macrofauna andtheiruseasfoodresourcesbya hypersaline ecosystems liketheBaffinBayestuary. that fishrelying onfoodsourcesofpelagic origin compared withmacrofauna re water columnproductionmay disp availability (Cloern1996),thelatt production dependsmore onmeteor al., the sediment canbecharacterizedbyaconstant scale ofanembayment suchastheBaffin Bay and spatialvariationthanprimary primary productionoccurringinthewatercolumn, other benthicmacrofauna species.Bivalvesar that relyonbivalveprey. (Macreadie account otherfishspecies[ carrying capacity(Uphoff,2003).IntheBaffinBay This articleisprotected bycopyright.Allrightsreserved. Accepted Article ., 2013),thisstudyemphasizes theneedformo 2000)becausethere islowwithin yearvari The relianceoffishonpreyitems suchasbi This paperhighlightstherelationshipbe

et al. , 2011);cownoserays e.g. lying onbenthicproduction( sheepshead een waterqualityvariablesand er beingrelatedtofreshwaterin production inthesediment (Guarini roportionately affectsuspensi ological conditionsin changesinwaterquality.Holisti Rhinoptera bonasus Archosargus probatocephalus e generally suspension feeders; theyrelyon onservation andsustainabl estuary. Thedynamics ofprimary productionin ability. Incontrast,watercolumn primary tween water quality variables, benthic adjustment tosteadyst carnivorous fishspecies.Althoughmanystudies re integratedassessments offood-web will bemore sensitiveto which demonstrates muchlargertemporal valves may havehigher estuary, suchanassessment shouldtakeinto cluding light,temperatureandnutrient i.e (Mitchill 1815) . depositfeeders).Thissuggests benthic macrofauna (Montagna benthic macrofauna on feederdensityandbiomass flow. Therefore,variationsin c approachessuchasthese et al. ate conditions(Guarini e fisheriesmanagement (Walbaum 1792) salinity variationsin

, 2006),evenatthe implications thanfor (Myers et al., 2007)] et et 23 et et

TABLE S3 TABLE S2 TABLE S1 Supporting information canbefoundinth INFORMATION SUPPORTING A&M University-Corpus Christia improved thequalityofthisstudy.The Institutional CareandUseCommittee atTexas authors alsothanktwoanonymous assistance inthefieldandlabor and totheCoastal ConservationandRestor analyses. Manythanksareduetomembers ofth Guillou (UniversityofLaRochelle acknowledge P.Rose(IsotopeCore and toM.WetzS.Murrayfortheirefforts We aregratefultoTexasParksandW ACKNOWLEDGEMENTS interest insystems experiencingadditiona variability (Bailey&vandePol,2015;Wetz (Ludwig This articleisprotected bycopyright.Allrightsreserved. Accepted Article

et al. Bio-Env(BEST)biota and, orenvironment matching. AnalysisofSimilarities (ANOSIM) AnalysisofSimilarities (ANOSIM)test , 1993)andimproved predictionofestuar atory, especiallyP. Hajovsky,M.MartinezandN.Breaux.The pproved allproceduresinvolvi reviewersforprovidinginsights stableisotopefacility)for Laboratory-TexasA&MUniver ildlife CoastalFisheriesforproviding l stressors suchas e onlineversionofthispaper. ation EcologyLabat & Yoskowitz,2013).Thismay beofparticular in developingthiscoll e CenterforSportfishScienceandConservation t est forspatialdifferences ingutcontents. for temporal differencesingutcontents. ine responsetoincreasingclimatic hypersalinity. their adviceandsupportinthe TAMUCC foralltheir ng inthisproject.

and suggestionsthatgreatly aborative project.We sity-Corpus Christi)andG. P. cromis specimens 24

Beck, M.W., HeckJr.,K.L.,Able,K.W.,Child Bailey, L.D.,&vandePol, M.(2015).Tack Bachman, P.M.,&Rand,G.M.(2008).Effectsof Armstrong, N.E.(1987).Theecologyofopen-baybottoms ofTexas:acommunityprofile. Almeida-Silva, R.H.,Tubino,R.A.,Zambrano, L. Alber, M.(2002).Aconceptualmodel ofestuarineinflowpolicy. Ajemian, M.J.,Mendenhall,K.S.,BeseresPoll REFERENCES This articleisprotected bycopyright.Allrightsreserved. Accepted Article Fish andWildlifeServiceBiologicalReport tropical lagoon. Neto, C.(2015).Trophicecologyandfoodcons doi:10.1007/s12237-017-0363-6. and marine nurseriesforfishandinvertebrates. Weinstein, M.P.(2001).Theid Halpern, B.,Hays,C.G.,Hoshino,K.,Minello,T.J., Orth,R.J.,Sheridan,P.F. & evolutionary researchonextreme climatic events. south Florida. doi:10.1007/BF02692222. cromi Moving forwardinareverseestuary:move

s) underdistincth Ecotoxicology Journal ofFishBiology ydrological regimes. 17, entification, conservation,and 591-597. ling extremes: challengesforecologicaland ack, J.,Wetz, M.S.,&Stunz,G.W. (2018). ers, D.L.,Eggleston,D.B.,Gillanders,B.M., 86, C., Hunder, D.A.,Garritano,S.R.,Monteiro- C., Hunder, salinity onnativeestuarinefishspeciesin ment andhabitat useofblackdrum (

85 1781-1795. Estuaries &Coasts (7.12). 119pp. BioScience umption offishesinahypersaline Journal ofAnimalEcology Estuaries

51, management ofestuarine 833-641. (online).

25, 1246–1261.

85, Pogonias 85-96. U.S. 25

Chuwen, B.M.,Platell,M.E.,&Potter,I.C. K. (1976). Charnov, E.L.,Orians,G.H,&Hyatt, Buskey, E.J.,Wysor, B.,Hyatt,C.(1998).Thero Buskey, E.J.,Montagna,P.A.,Amos,A.F., Breuer, J.P.(1962).Anecologicalsurvey Boltt, R.E.(1975).Thebenthosofsome southern Blaber, S.J.M.,&T.J.G.(1980).Factorsa Blaber, S.J.M.(1997). Beseres Pollack,J.Kinsey,J.W., &Montagna, This articleisprotected bycopyright.Allrightsreserved. Accepted Article Acanthopagrus butcheri markedly. The AmericanNaturalist Texas ‘brown tide’intheLagunaMadre. Publications oftheInst the RoyalSocietyofSouthAfrica benthic faunaofSt.Luciafollowinga and inshorefish. 153-169. Limnology andOceanography populations asacontributingfact London: Chapman &Hall. (FIBI) forthe Lavaca-Colorado Estuary, Texas,USA.

Environmental BiologyofFishes Fish andFisheriesofTropicalEstuaries Journal ofFishBiology itute ofMarineScience, in threenormally closedandvari 110, 247-259. 45,

or totheinitiationofTe 41, of thelowerLagunaMadreTexas,1953-1959. 1215-1222. Whitledge, T.E.(1997).Disruption ofgrazer (2007). Dietarycompositions ofthesparid 295–323. period ofexcessivelyhighsalinity. P.A. (2009).Freshwater

17, Ecological implications ofresourcedepression. Journal ofPlanktonResearch Africanlakes.Part5.Therecoveryofthe le ofhypersalinityin ffecting thedistributionofjuvenileestuarine 80, 143-162. University of Texas 363-376. Environmental Bioindicators . Fish and FisheriesSeries ably hypersalineestuariesdiffer xas browntidealgalbloom. the persistenceof inflow bioticindex

8, 153-183. 20, Transactions of 1553-1565. 22.

4,

26

Fourqurean, J.W., J.C.(1993) Jones,R.D.,Zieman, Elliott, M.,Hemingway,K.L.,Costello,M. Dugas, C.N.(1986).Foodhabitsofblackdrum, Diaz, R.J.,&Rosenberg,R.(1995).Marinebent Dauer, D.M.,Rodi,A.J.,&Ranasinghe,J.A. Cloern, J.E.(1996).Phytoplankton Clarke, K.R.,&Warwick, R.(1994).Similarity-b Clarke K.R.,&Gorley,R.N.(2006).PRIMERv6 Clarke, K.R.,&Ainsworth,M.(1993). Amethod This articleisprotected bycopyright.Allrightsreserved. Accepted Article 295-314. USA: Inferencesfrom spatialdistributions. characteristics andphosphoruslimitation of in Estuaries Marshall, S.,&Winkler, H.(2007).Linksbe way layoutwithnoreplication. environmental variables. Department ofWildlifeand Fisheries TechnicalBulletin emphasis ontheirpredationoftheAmerican oyster, Biology: anAnnualReview and thebehaviouralresponsesofbenthicmacrofauna. the macrobenthos ofthelowerChesapeakeBay. Geophysics general lessonsfrom sustainedinvestig

(Elliott,M.,Hemingway,K.,eds.), 34, 127-168. Marine EcologyProgressSeries 33, bloom dynamicsincoastalecosy 245–303. Marine Biology J., Duhamel, S.,Hostens,Labropoulou,M., (1992). Effectsoflowdissolvedoxygeneventson ation ofSanFranciscoBay,California. Pogonias cromis hic hypoxia:areviewofitsecologicaleffects : Usermanual/tutorial. Plymouth: PRIMER-E. ased testingforcommun of linkingmultivariate community structureto phytoplanktonbiomass inFloridaBay,FL, Estuarine, Coastal,andShelfScience . Processesinfluencing tween fishandothertrophiclevels.In

pp.124-216.Oxford:BlackwellScience. 118, Estuaries Crassostrea virginica 167-176. Oceanography andMarine

40

, insoutheastLouisianawith 92 15, , 32-38. , 205-219. stems: areviewwithsome 384-391. ity patterns:thetwo- water columnnutrient . Louisiana Reviews of

36, Fishes

27

Fry, B.,&Sherr,E.B.(1984). Fry, B.,Cieri,M.,Hughes,J.,Tobias,C.,D This articleisprotected bycopyright.Allrightsreserved. Hill, M.(1973). Diversity andEvenness: AcceptedHarrison, T.D.,&Whitfield, A.K.(2006).Temper Guarini J.M.,BlanchardG.F.,&RichardP. Guarini J.M.,BlanchardG.F.,&GrosP., ArticleGrubich, J.R.(2003).Morphologi Grange, N.,&Allanson,B.R.(1995).Theinfluen monitoring ofbenthic-planktonic freshwater ecosystems. perciform fish. Progress Series 427-432. Shelf Science influencing thebiogeographyoffish Sciences. Blanchard, G.F.,eds.),pp.187-226.Amsterdam: Functioning ofMicrophytobenthosinEstuaries microphytobenthic biomassandprimaryproduction Shelf Research primary productioninEuropeanintertid Coastal, andShelfScience and distributionofseston

66,

Biological JournaloftheLinneanSociety 20, 369, 335-345. 1771-1788. 193-204. δ Contributions inMarineScience 13 inestuaries oftheeas C measurements asindicators cal convergenceofpharyngeal 40, 403-420. couplingusingsaltmarsh fish. a unifying notationanditsconsequences. (2000). Quantificationofthemicrophytobenthic (2006).Modellingthedynamicsof eegan, L.,&Peterson,B.(2008).Stableisotope es inSouthAfricanestuaries. al mudflats–amodelling approach.

ce offreshwaterinflow onthenature,amount, ature andsalinityasprimary determinants tern cape,SouthAfrica. (Kromkamp, J.C.,deBrouwer,J.F.C.,& Royal NetherlandsAcademyand ofArts in Europeanintertidalmudflats. In of carbonflowinmarine and

27 jaw structureindurophagous 80, , 13-47. 147-165. Marine Ecology Estuarine, Coastaland Estuarine, Ecology Continental

54, 28

Hyslop, E.J.(1980).Gutcontentsanalysis– Hofsten, A.V.,Kahan,D.,Katznelson,R.,Bar-El, Levin, L.,Boesch,D.F.,Covich,A.,Dahm, C.,Erséus,Ewel, K.C.,Kneib,R.T.,Moldenke, Lebreton, B., BeseresPollack, J.,Blomberg, B. Kim, H.C.,&Montagna,P.A.(2012).Effectsofc Kennish, M.J.(2002).Environmental threats Kennedy, C.R.(1969).Tubificidoligochaetes asfoodofdace Hoeksema, S.D.,Chuwen,B.M.,Potter,I.C.(2 This articleisprotected bycopyright.Allrightsreserved. Accepted Article fed tofish. of FishBiology 86 increases insalinity. Ecosystems 4,430-451. Marine CriticalTransitionZonesand A., Palmer, M.A.,Snelgrove,P.,Strayer,D matter inrelation tofreshwater Montagna, P.A. (2016).Origin,composition and Ecological Modelling macrobenthic secondaryproductioninTexa of FishBiology Acanthopagrus butcheri Shelf Science Environmental Conservation

, 893–897. Journal ofFishBiology

170

17, 1, , 70-82. 11-15. 411-429. Journal oftheMarineBiological 235-236, (Sparidae)intwonormally-clo

29, inflow inaSouthTexasestuary. 67-80. 78-107. 21, a reviewofmethods the Importance ofSediment Biodiversity. and environmental futureofestuaries. 419-428. 006). Massive mortalities of theblack bream N., Palmer, T.A.,Adams, L.,Guillou,G.,& limate-driven freshwater T. (1983).Digestionof ., &Weslawski,J.M.(2001).TheFunctionof s lagoonalestuaries:Amodeling study. quality ofsuspendedparticulateorganic Association oftheUnitedKingdom Leuciscus leuciscus sed estuaries, following extreme and theirapplication. Estuarine, Coastaland free-livingnematodes inflowvariabilityon (L.). (L.). Journal Journal 29

Montagna, P.A., &Kalke,R.D.(1992).Theeff Montagna, P.A., Alber,M.,Doering,P.,&Connor Miller, J.M.(1974).Thefoodofbrooktrout Matlock, G.C.,&Weaver, J.E.(1979). Martinez-Andrade, F.,Campbell, P.,&Fuls,B. Macreadie, P.,Geraldi,N.,&Peterson,C.(2011) Ludwig, D.,Hilborn,R.,Walters,C.(1993) Ley, J.A.,Montague,C.L.,&McIvor,C.C. This articleisprotected bycopyright.Allrightsreserved. Accepted Article 307-326. macrofaunal populationsintheGuadalupe andNueces Estuaries, Texas. policy, management. Society subsections ofLawrenceCreek,Wisconsin. Resources f www.tpwd.texas.gov/publica Department, CoastalFisheriesDivision.Availableat 2003. Management DataSeriesNumber232. selected finfishesandshellfishesalo patchiness influencespredationonbivalves. conservation: Lessonsfrom history. Science comparison alongestuarinegradient

103, 54, . Austin,TX:TexasParksandWildlife 881-899. 130-134. Estuaries tions/pwdpubs/media/mds_c

25, Assessment andMonitoringofTexas CoastalFinfish 1243-1245. s innortheasternFloridaBay. ng theTexascoast:November1975–December Ecological Applications Uncertainty,resourceexploitation,and (1994). Foodhabitsofmangrove fishes:a Salvelinus fontinalis ect offreshwaterinflowonmeiofaunal and (2005). Trendsinrelativeabundanceandsizeof . Howsmall-scale variationinoysterreef , M.S.(2002).Freshwater inflow:science, Transactions oftheAmericanFisheries Marine EcologyProgressSeries Austin, TX:Texas Department CoastalFisheriesBranch. oastal/Series%202_MDS232.pd (Mitchill) fry from different fryfromdifferent (Mitchill) 3, 547-549. Parks andWildlife Bulletin ofMarine Estuaries

429 , 87-91. 15 , 30

Olsen, Z.T.(2016).Emaciated blackdrum ( Nixon, S.W., &Buckley,B.A.(2002)."Astriki Nixon, S.W. (1982).Nutrientdynamics, primary Nicholson, G.,Jenkins,G.P., Myers, R.A.,Baum, J.K.,Shepherd,T.D.,Powers Montagna, P.A., Stockwell,D.A.,& Montagna, P.A., Palmer, T.A.,&BeseresPo Montagna, P. A.&Kalke,R.D.(1995).Ecologyof This articleisprotected bycopyright.Allrightsreserved. Accepted Article 90. tracking therecoveryofth secondary productionincoastalmarine ecosystems. Bordeaux, France. Proceedings International Symposium Research implications for recruitment in conditions, spawningandearly-lifestages 10.1126/science.1138657. of thelossapexpredatorysharksfrom acoastalocean. American Malacological Bulletin Research 1822) populationsandfeedingdurin 10.1007/978-1-4614-5833-3. Estuarine Dynamics.

59, 12, 735–749.doi:10.1071/MF07197. 433-442. OceanologicaActa Springer BriefsinEnvironmentalScience Sherwood, J.,andLongmore, A.(2008).Physicalenvironmental e populationovertwoyears. Kalke, R.D.(1993).Dwarfsurfclam intermittently open estuaries. 11, g theTexasbrowntideevent. Pogonias cromis llack, J.(2013).Hydr 163-175. , on coastallagoonsSCOR/IABO/UNESCO, 357-371. ngly richzone":nut production, andfisherie , S.P.,Peterson,C.H.(2007).Cascadingeffects of anestuarinefish:climate change infaunalMolluscainsouthTexasestuaries. Estuaries ) intheupperLagunaMadre,Texas: Texas JournalofScience Science ological Changesand rient enrichment and Marine andFreshwater 25, 8, s yieldsoflagoons. 94 pp.doi: 315, 782-796. Mulinia lateralis Journal ofShellfish 1846-1850. doi: 68, (Say, 79- 31

Paul, D.,Skrzypek,G.,&Forizs,I.(2007).No Osburn, H.R.,&Matlock,G.C.(1984).Bl Olsen, Z.T.,Grubbs,F.P.,Morris,A.D.,&Tolan, This articleisprotected bycopyright.Allrightsreserved. AcceptedRoss, J.F.,Pavela,J.S.,&Chittenden,M.E. Post, D.M.(2002).Using stableisotopes toestimate trophicposition: models,methods, and Pinnegar, J.K.,&Polunin,N.V.C.(2000).Contribu Pinnegar, J.K.,&Polunin,N.V.C. Peterson, B.,&Fry,B.(1987).Stable ArticlePachauri, R.&Meyer,L. (Eds)(2014).Climat Spectrometry compositions toisotoperefe Journal ofFisheries Management 81. ( 6, assumptions. food websofMediterranean 231. tissues: implications forthe and Systematics Panel onClimate Change.Geneva:IPCC.Availa Working GroupsI,IIand IIItotheFifth A Pogonias cromis

Pogonias cromis 67-70.

Ecology 21,

18, , andreddrum, 3006-3014. ) intheupperLagunaMadre,Texas. 293-320.

83, 703-718. (1999). Differentialfractionationof study oftrophicinteractions. rence scales–areview. rockylittoralfishes. IsotopesinEcosystem Studies. Sciaenops ocellatus

4, ack drummovement inTexasBays. (1983).Seasonaloccurrenceofblackdrum, 523-530. e Change2014:Synthesis rmalization ofmeasured stableisotopic ssessment ReportoftheIntergovernmental J.M. (2014).ReportsofEmaciated blackdrum tions ofstableisotope ble ableatwww.ipcc.ch/report/ar5/syr/ Oecologia Rapid CommunicationsinMass , offTexas. Texas JournalofScience Functional Ecology 122, Annual ReviewofEcology δ Northeast GulfScience 13 399-409. Report. Contributionof datatoelucidating C and North American δ 15 N among fish

13, 66, 225- 75- 32

Tunnell, Jr.,J.W., &Judd,F.W. Sutter, F.C.,Wailer,R.S.,&McIlwain,T.D. Strauss, R.E. (1979).Reliabilityestimates forIv Simmons, E.G.,&Breuer,J.P. Sogard, S.M.(1984).Utilizationofmeiofaunaas Seager, R.,Ting,M.,Held,I.,Kushnir, Y.,Lu,J.,Vecchi,G.,Huang,H.-P.,Harnik,N., Scavia, D.,Field,J.C.,Boesch,D.F.,Buddemeier, Sanders, H.(1968).Marinebenthi This articleisprotected bycopyright.Allrightsreserved. Accepted Article A&M UniversityPress, College Station. 108, proposed linearindexoffoodselection. drum. environmental requirements ofcoastalfishes University of Texas black drum, 1181-1184. dragonet imminent transitiontoamore aridcl Leetmaa, A.,Lau,N.-C.,Li,C.,Velez,J., Tituset, J.G.(2002).Climate changeimpact Harwell, M.A.,Howarth,R.W., C.,R Mason, Estuaries 243-282.

344-352. U.S. FishandWildlifeSe pauciradiatus

25, Pogonias cromis 149-164. https://doi.org/10.1007/BF02691304. 8, 184-211. (1962).Astudyofredfish, (2002). TheLagunaMadreofTexasandTamaulipas. Texas c diversity:acomparative study. Linnaeus. rvice BiologicalReport . imate insouthwesternNorth America. (1986).Speciesprofile Marine EcologyProgressSeries Transactions oftheAmerican FisheriesSociety Publications oftheInstitute of Marine Science, lev's electivity index,theforageration, anda afoodsourcebygrassbedfish,thespotted & Naik,N.(2007).Modelprojectionsofan R.W., Burkett, V.,Cayan,D.R.,Fogarty,M. s onU.S.CoastalandMarineEcosystems. andinvertebrates(Gul eed, D.J.,Royer,T.C.,Sallenger,A.H., Sciaenops ocellatus

82, 10pp. The AmericanNaturalist s: lifehistoriesand f ofMexico)–Black 17, Linnaeus and 183-191. Science

316, 102, 33

Uphoff, J.H.(2003).Predator-preyanalysisof Turney, W.J., &Perkins,B.F.(1972). Tunnell, Jr.,J.W., Andrews,J.,Barre Wetz, M.S.&Yoskowitz,D.W. (2013).An‘extre Wetz, M.S.,Cira,E.K.,Sterba-Boatwright, B., Wallace, J.H. (1975).Theestuarinefishesofth Vander Zanden,M.J.,Clayton,M.K.,Moody,E.K., Vander Zanden,M.J.,implications This articleisprotected bycopyright.Allrightsreserved. Accepted Article Miami, FL:University of Miami. 18. climatic eventsonestuarin Chesapeake Bay. A &MUniversityPress. Seashells: Identification, Ec isotope turnover andhalf-life inanimal tissues:Aliterature synthesis. estuary susceptible tobrown tideblooms. (2017). Exceptionallyhighorganicnitrogenc Institute (Durban) Seasonal abundanceandmigrations. composition andlengthdistributionintheestu e0116182. 46,

2061-2066. Fisheries Management andEcology 40, 72 pp. e waterqualityandecology. foraquaticfood webstudies. ology, DistributionandHistory ra, N.C.,&Moretzsohn,F.(2010). Molluscan Distribution in Investigational ReportOceanographicResearch stripedbassandAtlanticmenhadeninupper Montagna, P.A.,Palmer, T.A.,&Hayes,K.C. e eastcoast of PartI.Species SouthAfrica. Estuarine, Coastal&ShelfScience me’ future for estuaries? Effects of extreme Solomon, C.T.,Weidel, B.C.(2015).Stable oncentrations inase arine andmarine environments. PartII.

10, Marine PollutionBulletin Limnology andOceanography Florida Bay.Sedimenta 313-322. . CollegeStation,TX:Texas Encyclopedia ofTexas mi-arid SouthTexas PLoS ONE

188,

III. 10 69, 27-37. , 7- 34

Zar, J.H.(2010). WoRMS EditorialBoard.(2017).World Regi Williams, W.D.,Boulton,A.J.,Taaffe,R.G.(1990). Whitfield, A.K.(1999).Ichthyofaunalassemblage Whitfield, A.K.(1986).Fishcommunity structure This articleisprotected bycopyright.Allrightsreserved. Accepted Article www.marinespecies.org atVLIZ. www.marinespecies.org a questionofscale. Reviews inFishBiologyandFisheries littoral zone of anes

Biostatistical Analysis Hydrobiologia tuarine coastallake. , 5thedn.UpperSaddleRiver, Accessed 2017-02-27.doi:10.14284/170 197, ster ofMarineSp

9, 257-266. Environmental BiologyofFishes 151-186. s inestuaries:aS response to majorresponse to habita Salinity asadeterminant ofSaltLakefauna: ecies. Availableat outh Africancasestudy. NJ:PearsonEducation. t changeswithinthe

17, 41–51. 35

This articleisprotected bycopyright.Allrightsreserved. Accepted Article Typese dissolv Typese 2015 quality temper Typese sampli FIGUR FIGUR FIGUR 2 1 3 2 1 )

w w n a a e t t t t t t E E E data (O, M data (O, g stations. g ter ter ter B the ithin ter ture; DO, DO, ture; d oxygen d oxygen 3 Times 2 Princip 1 Baffin Delete No col Delete Replac Delete o e c d d A s a a B B a a ur necessa A, B with A,Bwith oncentrati eries plots eries issolved o issolved ffin Bay e rch 2014; l compon , B and C , B ay estuar ay o y e r x s + from panel (a), (b). (a), (b). of mean (± y on (b). y nt (PC) an ns (DO) ns (DO) , TexasU. tuary. tuary. ygen; Tur , June 201 , June FIG w U b b a S S s 4; X, Septe 4; X, ithin the B the ithin lysis (a) lo , turbidity) turbidity) , S.E.) of(a S.E.) . .A., indic RE ca and a p ) a a ting benthi mber 2014 salinity, ( salinity, and (b)sta tions ffin Baye ding plot ding plot .

b ( c s ; ; t Sal, salinit

) temperat tuary. tuary. ion date s ion date ( U ● , Decem ) and Po c c y y u o b ores ofwa er 2014; er 2014; ; Temp, re and (c) and(c) re gonias cr □ o , t er mis March March ( ■ ) This articleisprotected bycopyright.Allrightsreserved. Accepted Article Typesetter Typesetter estuary. Baffin Bay Tana, Tanaidacea. Tanaidacea. Tana, of Typesetter Typesetter contour. similarity 40% with overlaid date sampling foreach survey structure macrofaunal community meanmultidimensional 5 Non-metric FIGURE of (nMDS) ordination scaling plot with (c) comparison and (b)biomass for core mean (a)abundance 4 Proportionally sizedFIGURE benthic Orbi, Orbiniidae;Orbi, S.ben, Goniadidae; L.rap, Goni, macrofaunain red. A.aub, sources arein green, food andcomposite producers Primary estuary. Bay Baffin in the FIGURE 6 Mean (± Pogonias cromis 1 1 1 2

AL, Alazan Bay; BB Replace A, B etc with (a), (b) etc. etc. (b) (a), with A,Betc Replace Replace A, B etc with (a), (b) etc. etc. (b) (a), with A,Betc Replace Replace A, B etc with (a), (b) etc. etc. (b) (a), with A,Betc Replace Replace y-axis label of (c) with DO (mg l labelof(c)withDO Replace y-axis gutliquid (O, S.D. Pogonias cromis cromis Pogonias ) Isotopecompositions ( Streblospio benedicti Streblospio Leptochelia rapax Leptochelia , Baffin Bay; CG, Cayo del Cayodel , Baffin Bay; CG, Anomalocardia auberiana Anomalocardia U , □ gut content biomass from individual bays thewithin bays individual biomassgut content from , ‘ ) and muscle) and tissue( ; M.lat, ; M.lat, ; SSOM, Surface sediment organic matter; organic ; SSOM,Surface sediment δ 13 Grullo; LagunaLS, Salada. C and Mulinia lateralis –1 ; Amphi, Amphipod; Capi, Capitellidae; Amphipod; ; Amphi, ). δ 15 N), of potential food sources and ofpotential foodsources N), ● , S , ■ ; Nema,Nematodes; ,  ) atdifferentseasons This articleisprotected bycopyright.Allrightsreserved. Accepted Article Typesetter 1

Replace Fall with Autumn. Autumn. with Fall Replace This articleisprotected bycopyright.Allrightsreserved. Accepted Article Fig 1

This articleisprotected bycopyright.Allrightsreserved. Accepted Article Fig 2

This articleisprotected bycopyright.Allrightsreserved. Accepted Article Fig 3

This articleisprotected bycopyright.Allrightsreserved. Accepted Article Fig 4

This articleisprotected bycopyright.Allrightsreserved. Accepted Article Fig 5

This articleisprotected bycopyright.Allrightsreserved. Accepted Article Fig 6

This articleisprotected bycopyright.Allrightsreserved. Accepted Bay;CG, AL, AlazanBay;BB,Baffin Article TABLE 1.Number of Vacuity index(%empty guts) Number ofnon-empty fish Ma 1. 1. 12 . 3.4 1.2 17.8 14.3 Mean BBE LS CG BB AL Season

2014-Winter 28.6 81.1 2014-Winter 28.6 2015-Winter 10241 41 93 2014-Fall 18 2014-Summer 6 2014-Spring 18 5 50 23 4 7 2014-Winter 5 04Fl 0 2.46.82.3 2015-Winter 0 0 2014-Fall 0 2014-Summer 14.3 2014-Spring 14.3 8 0 5.8 Pogonias cromis soah rcse stomachs processed

Cayo delGrullo;LS,LagunaSalada. guts examined andvacuityinde 10 0

54.9 7.2 10 24 12 0 x ineachseasonandbay. Gastropoda Crustacea Taxa AL BB CG LS Mean Mean LS CG BB AL Taxa Bivalvia Total Cnidaria Polychaeta

ndniidA pioa 9 3 2 2 12 0.002 0.001 0.005 0.003 0.003 0.002 21 28 32 Acteocina canaliculata 6 19 Unidentified Sphaeroma terebrans Hargeria rapax Unidentified 288 0 88 0 94 136 Bivalvia 0.183 0 0.127 0 0.078 0.092 Mulinia lateralis Mactrotoma fragilis Anomalocardia auberiana Acteon candens ciira 0 19 05 10 0 Actiniaria Unidentified Streblospio benedicti 602 3 0 216 28 60 63 PolychaetaOrbiniidae 063 103 0.004 Nereididae 0.034 0 0.001 0 Leitoscoloplos foliosusspp. 811 0.634 0.205 0.340 0.154 0.333 0.215 0.003 0 663 0.001 170 spp. 0.009 391 221 0.002 0.017 1872 Unidentified Rissoella galba Gastropoda Nassarius vibex Fargoa gibbosa Eulimastoma harbisonae Costoanachis semiplicata Bittiolum varium lunata

This articleisprotected bycopyright.Allrightsreserved. Bay;CG, AL, AlazanBay;BB,Baffin Accepted Article seasons TABLE 2.Taxacollectedinbenthiccoresacrossall

13551 2723 5685 5498 6864 4659 5.127 0.612 3.133 2.210 2.770 1.885 21 18 2 87 1541 1.827 0.001 0.112 0.107 0.512 0.878 887 123 168 6 3251 46 29 08 61 31 1762 0.228 0.118 0.169 0.235 0.188 0.055 4351 4671 4028 2219 6486 ––––––––––––––––––––––––––––––––––––––––––––––– 1 13 8 12 4 245 1.793 0.250 1.824 1.209 1.269 0.736 340 142 483 123 611 2 0 4 8 1 0 .9 00.005 0.021 0.031 0.046 101 0.098 71 28 34 0 221 7 4 11 10 211 0.251 0.005 0.074 0.019 0.087 0.113 170 9 151 47 473 3 2 8 37 4 130 0.038 0.026 0.099 0.459 0.156 0.205 141 307 181 32 43 26 07 13 0.007 0 0.002 0.004 3 062 0.004 0 0.003 0 0.002 0.002 9 05 0.001 0.001 0 0.001 0.001 0 5 2 4 .0 00.186 0.003 0.048 0.092 45 0.001 28 9 95 0 6 0 623 0.001 0 <0.001 0.001 9 025 0.012 0 0 623 0.003 0.159 0 0.006 0.040 0.080 0 11 036 0 925 0.027 0 0.002 6 023 0.007 0.001 0.011 0 0.014 0.001 0.003 0.006

Density ( n Cayo delGrullo;LS,LagunaSalada. m –2 )

Pogonias cromis S.D . AL BB CG LS LS CG BB . AL Mean

–––––––––––––––––––––––––––––––––––––––––––––––––– survey sitesandsampling

Biomass (g m Biomass (g –2 )

S.D . This articleisprotected bycopyright.Allrightsreserved. Accepted Article TABLE 3.Frequencyofoccurrencea Atnpeyi 0000270.0 0.7 2.7 0.0 0.0 Biomass (%of identifiable gut) 0.0 0.6 2.4 0.0 0.0 Bivalvia Taxa Actinopterygii Frequency ofoccurrence (%) Unidentified Gastropoda Crustacea Oligochaeta Bivalvia Unidentified Seagrass Polychaeta Gastropoda Mollusca Unidentified Crustacea Oligochaeta Unidentified Gastropoda Rissoina punctostriata Acteocina canaliculata Portunidae Pericarida Amphipoda Unidentified Bivalvia acuta Mulinia lateralis Anomalocardia auberiana Unidentified Gastropoda Rissoina punctostriata Acteocina canaliculata Portunidae Pericarida Amphipoda Unidentified Bivalvia Nuculana acuta Mulinia lateralis Anomalocardia auberiana

nd percentage mass of taxa in nd percentagemass oftaxa 01<. 010.0 0<0.1 0 <0.1 <0.1 24901. . 5.9 08.5 12.5 9.0 12.4 13.1 74.861.1 65.0 14.4 43.4 79.263.7 1.9 61.1 67.5 13.2 4.3 95.195.6 44.5 43.225.5 96.3 44.950.7 63.9 27.1 6.3 97.8 53.4 18.8 93.3 09.1 54.6 12.8 50.0 12.5 9.7 6.5 14.2 75.468.3 14.6 71.6 5.8 52.231.8 60.8 75.469.8 29.9 65.6 71.6 17.5 61.7 27.5 70.6 LB C L Mean LS CG BB AL . 01005010.2 0.50.1 0.2 0 1.7 0.50.0 01.0 <0.1 3.9 0.0 0.1 0.92.4 0.0 0 0.7 0.0 0.1 1.0 1.60.5 3.6 8.3 2.82.2 0 0.6 0.6 2.5 0.4 4.1 0.7 0.7 0.2 104.9 2.7 00.6 4.6 0 0 11.25.7 7.6 4.2 0 0.9 11.2 04.3 5.3 5.1 1.4 1.26.5 0 6.7 0 9.7 15.7 21.211.4 23.2 1.4 0 1.4 17.3 6.9 01<. 0.0 0.5 <0.1 2.4 0.90.2 0 01.2 0.0 0 0 0 0.0 0.0 0 0 00.0 0 4.7 0 0 0 0.0 0 0 0.6 1.20.3 0.6 3.8 0 1.20.3 01.9 0 0 4.9 0 0.5 102.7 0 0 00.2 7.5 0 0 0 0.9 0.9 0 0

apigst site Sampling Pogonias cromis guts. S.D 1.4 1.2 .

This articleisprotected bycopyright.Allrightsreserved. Accepted Article Bay;CG, AL, AlazanBay;BB,Baffin Identified Biomass (%of total gut)

Unidentified Seagrass Polychaeta Cayo delGrullo;LS,LagunaSalada. 873. 073. 916.6 6.4 36.829.1 64.171.2 20.7 15.1 79.5 1.017.1 30.3 69.7 28.7 13.8 71.3 37.4 16.2 . . . 85767.7 18.57.6 4.4 0.8 6.9

2