Drum and Croaker (Family Sciaenidae) Diversity in North Carolina
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Introduction to Acoustics
Introduction to Acoustics Acoustics is the branch of physics that is concerned with the properties of sound. Bioacoustics is the branch of acoustics concerned with sounds produced by or affecting living organisms, especially relating to communication. Bioacousticians are scientists that study these sounds. For whales, their sense of sound, above all other senses, In order to help scientists understand and is the most important. It’s how they “see” their world. organize the diversity of life on Earth, animals Have you ever gone swimming off the northern coast of are classified into kingdom, phylum, class, the United States? Could you see very far in the water? order, family, genus, and species. For whales, It’s pretty murky—not because it’s polluted, but because the first classification is as follows: Kingdom: Animal there is so much plankton (free floating plants and Phylum: Chordate animals) floating in the water. Off the coast of Class: Mammals Massachusetts, you can only see about 30 ft. on a good Order: Cetacean (whales, dolphins, and day. (That’s not even a whale’s body length in some porpoises cases.) So, sound is critically important to whales for Sub-Order: Odontocete (Toothed) or communication, hunting, and navigating—the use varies Mysticete (Baleen) depending on the type of whale. OVER 90 DIFFERENT SPECIES OF WHALES This poster includes the over 90 species of the whales, dolphins and porpoises that we know of today. On the right side, you will see all the toothed whales (they tend to be smaller and there are more species). On the left side, you will see the baleen whales (they tend to be larger, but there are fewer species.) Whether a whale has baleen or teeth in their mouth influences how they feed and the social structure of the species, as well as the sounds they produce and how they use them. -
A Practical Handbook for Determining the Ages of Gulf of Mexico And
A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes THIRD EDITION GSMFC No. 300 NOVEMBER 2020 i Gulf States Marine Fisheries Commission Commissioners and Proxies ALABAMA Senator R.L. “Bret” Allain, II Chris Blankenship, Commissioner State Senator District 21 Alabama Department of Conservation Franklin, Louisiana and Natural Resources John Roussel Montgomery, Alabama Zachary, Louisiana Representative Chris Pringle Mobile, Alabama MISSISSIPPI Chris Nelson Joe Spraggins, Executive Director Bon Secour Fisheries, Inc. Mississippi Department of Marine Bon Secour, Alabama Resources Biloxi, Mississippi FLORIDA Read Hendon Eric Sutton, Executive Director USM/Gulf Coast Research Laboratory Florida Fish and Wildlife Ocean Springs, Mississippi Conservation Commission Tallahassee, Florida TEXAS Representative Jay Trumbull Carter Smith, Executive Director Tallahassee, Florida Texas Parks and Wildlife Department Austin, Texas LOUISIANA Doug Boyd Jack Montoucet, Secretary Boerne, Texas Louisiana Department of Wildlife and Fisheries Baton Rouge, Louisiana GSMFC Staff ASMFC Staff Mr. David M. Donaldson Mr. Bob Beal Executive Director Executive Director Mr. Steven J. VanderKooy Mr. Jeffrey Kipp IJF Program Coordinator Stock Assessment Scientist Ms. Debora McIntyre Dr. Kristen Anstead IJF Staff Assistant Fisheries Scientist ii A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes Third Edition Edited by Steve VanderKooy Jessica Carroll Scott Elzey Jessica Gilmore Jeffrey Kipp Gulf States Marine Fisheries Commission 2404 Government St Ocean Springs, MS 39564 and Atlantic States Marine Fisheries Commission 1050 N. Highland Street Suite 200 A-N Arlington, VA 22201 Publication Number 300 November 2020 A publication of the Gulf States Marine Fisheries Commission pursuant to National Oceanic and Atmospheric Administration Award Number NA15NMF4070076 and NA15NMF4720399. -
CHECKLIST and BIOGEOGRAPHY of FISHES from GUADALUPE ISLAND, WESTERN MEXICO Héctor Reyes-Bonilla, Arturo Ayala-Bocos, Luis E
ReyeS-BONIllA eT Al: CheCklIST AND BIOgeOgRAphy Of fISheS fROm gUADAlUpe ISlAND CalCOfI Rep., Vol. 51, 2010 CHECKLIST AND BIOGEOGRAPHY OF FISHES FROM GUADALUPE ISLAND, WESTERN MEXICO Héctor REyES-BONILLA, Arturo AyALA-BOCOS, LUIS E. Calderon-AGUILERA SAúL GONzáLEz-Romero, ISRAEL SáNCHEz-ALCántara Centro de Investigación Científica y de Educación Superior de Ensenada AND MARIANA Walther MENDOzA Carretera Tijuana - Ensenada # 3918, zona Playitas, C.P. 22860 Universidad Autónoma de Baja California Sur Ensenada, B.C., México Departamento de Biología Marina Tel: +52 646 1750500, ext. 25257; Fax: +52 646 Apartado postal 19-B, CP 23080 [email protected] La Paz, B.C.S., México. Tel: (612) 123-8800, ext. 4160; Fax: (612) 123-8819 NADIA C. Olivares-BAñUELOS [email protected] Reserva de la Biosfera Isla Guadalupe Comisión Nacional de áreas Naturales Protegidas yULIANA R. BEDOLLA-GUzMáN AND Avenida del Puerto 375, local 30 Arturo RAMíREz-VALDEz Fraccionamiento Playas de Ensenada, C.P. 22880 Universidad Autónoma de Baja California Ensenada, B.C., México Facultad de Ciencias Marinas, Instituto de Investigaciones Oceanológicas Universidad Autónoma de Baja California, Carr. Tijuana-Ensenada km. 107, Apartado postal 453, C.P. 22890 Ensenada, B.C., México ABSTRACT recognized the biological and ecological significance of Guadalupe Island, off Baja California, México, is Guadalupe Island, and declared it a Biosphere Reserve an important fishing area which also harbors high (SEMARNAT 2005). marine biodiversity. Based on field data, literature Guadalupe Island is isolated, far away from the main- reviews, and scientific collection records, we pres- land and has limited logistic facilities to conduct scien- ent a comprehensive checklist of the local fish fauna, tific studies. -
Go Fish! Lesson Plan
NYSDEC Region 1 Freshwater Fisheries I FISH NY Program Go Fish! Grade Level(s): 3-5 NYS Learning Standards Time: 30 - 45 minutes Core Curriculum MST Group Size: 20-35 Standard 4: Living Environment Students will: understand and apply scientific Summary concepts, principles, and theories pertaining to This lesson introduces students to the fish the physical setting and living environment and families indigenous to New York State by recognize the historical development of ideas in playing I FISH NY’s card game, “Go science. Fish”. Students will also learn about the • Key Idea 1: Living things are both classification system and the external similar to and different from each other anatomy features of fish. and nonliving things. Objectives • Key Idea 2: Organisms inherit genetic • Students will be able to identify information in a variety of ways that basic external anatomy of fish and result in continuity of structure and the function of each part function between parents and offspring. • Students will be able to explain • Key Idea 3: Individual organisms and why it is important to be able to species change over time. tell fish apart • Students will be able to name several different families of fish indigenous to New York Materials • Freshwater or Saltwater Fish models/picture • Lemon Fish worksheet • I FISH NY Go Fish cards Vocabulary • Anal Fin- last bottom fin on a fish located near the anal opening; used in balance and steering • Caudal/Tail Fin- fin on end of fish; used to propel the fish • Dorsal Fin- top or backside fin on a fish; -
1 Exon Probe Sets and Bioinformatics Pipelines for All Levels of Fish Phylogenomics
bioRxiv preprint doi: https://doi.org/10.1101/2020.02.18.949735; this version posted February 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Exon probe sets and bioinformatics pipelines for all levels of fish phylogenomics 2 3 Lily C. Hughes1,2,3,*, Guillermo Ortí1,3, Hadeel Saad1, Chenhong Li4, William T. White5, Carole 4 C. Baldwin3, Keith A. Crandall1,2, Dahiana Arcila3,6,7, and Ricardo Betancur-R.7 5 6 1 Department of Biological Sciences, George Washington University, Washington, D.C., U.S.A. 7 2 Computational Biology Institute, Milken Institute of Public Health, George Washington 8 University, Washington, D.C., U.S.A. 9 3 Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian 10 Institution, Washington, D.C., U.S.A. 11 4 College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China 12 5 CSIRO Australian National Fish Collection, National Research Collections of Australia, 13 Hobart, TAS, Australia 14 6 Sam Noble Oklahoma Museum of Natural History, Norman, O.K., U.S.A. 15 7 Department of Biology, University of Oklahoma, Norman, O.K., U.S.A. 16 17 *Corresponding author: Lily C. Hughes, [email protected]. 18 Current address: Department of Organismal Biology and Anatomy, University of Chicago, 19 Chicago, IL. 20 21 Keywords: Actinopterygii, Protein coding, Systematics, Phylogenetics, Evolution, Target 22 capture 23 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.18.949735; this version posted February 19, 2020. -
Andrea RAZ-GUZMÁN1*, Leticia HUIDOBRO2, and Virginia PADILLA3
ACTA ICHTHYOLOGICA ET PISCATORIA (2018) 48 (4): 341–362 DOI: 10.3750/AIEP/02451 AN UPDATED CHECKLIST AND CHARACTERISATION OF THE ICHTHYOFAUNA (ELASMOBRANCHII AND ACTINOPTERYGII) OF THE LAGUNA DE TAMIAHUA, VERACRUZ, MEXICO Andrea RAZ-GUZMÁN1*, Leticia HUIDOBRO2, and Virginia PADILLA3 1 Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México 2 Instituto Nacional de Pesca y Acuacultura, SAGARPA, Ciudad de México 3 Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México Raz-Guzmán A., Huidobro L., Padilla V. 2018. An updated checklist and characterisation of the ichthyofauna (Elasmobranchii and Actinopterygii) of the Laguna de Tamiahua, Veracruz, Mexico. Acta Ichthyol. Piscat. 48 (4): 341–362. Background. Laguna de Tamiahua is ecologically and economically important as a nursery area that favours the recruitment of species that sustain traditional fisheries. It has been studied previously, though not throughout its whole area, and considering the variety of habitats that sustain these fisheries, as well as an increase in population growth that impacts the system. The objectives of this study were to present an updated list of fish species, data on special status, new records, commercial importance, dominance, density, ecotic position, and the spatial and temporal distribution of species in the lagoon, together with a comparison of Tamiahua with 14 other Gulf of Mexico lagoons. Materials and methods. Fish were collected in August and December 1996 with a Renfro beam net and an otter trawl from different habitats throughout the lagoon. The species were identified, classified in relation to special status, new records, commercial importance, density, dominance, ecotic position, and spatial distribution patterns. -
Comparative Ecology of the Parasites of the Spot, Leiostomus Xanthurus
W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1989 Comparative ecology of the parasites of the spot, Leiostomus xanthurus Lacepede, and the Atlantic croaker, Micropogonias undulatus Linnaeus (Sciaenidae), in the Cape Hatteras region Dennis A. Thoney College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Ecology and Evolutionary Biology Commons, and the Zoology Commons Recommended Citation Thoney, Dennis A., "Comparative ecology of the parasites of the spot, Leiostomus xanthurus Lacepede, and the Atlantic croaker, Micropogonias undulatus Linnaeus (Sciaenidae), in the Cape Hatteras region" (1989). Dissertations, Theses, and Masters Projects. Paper 1539616876. https://dx.doi.org/doi:10.25773/v5-j3p5-0627 This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. INFORMATION TO USERS The most advanced technology has been used to photo graph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. -
Candidate Species for Florida Aquaculture: Atlantic Croaker, Micropogonias Undulatus1
FA 148 Candidate Species for Florida Aquaculture: Atlantic Croaker, Micropogonias undulatus1 R. LeRoy Creswell, Cortney L. Ohs, and Christian L. Miller2 Atlantic Croaker Geographic Distribution and Habitat The Atlantic croaker is known to occur in the northern and eastern parts of the Gulf of Mexico, along the Atlantic coast of the United States from south Florida to Massachusetts, in the Greater Antilles, and along the South American Atlantic Figure 1. Atlantic Croaker Micropogonias undulatus Credits: Food and Agriculture Organization of the United coast from Surinam to Argentina. Its U.S. fishing Nations 1978 grounds extend from the Rio Grande to Tampa Bay in the Gulf of Mexico and from northern Florida to General Description Cape Hatteras on the Atlantic coast. In Florida, Atlantic croaker are seldom found south of Tampa The Atlantic croaker, Micropogonias undulatus Bay or the Indian River Lagoon on the Atlantic coast (Figure 1), is a member of the family Sciaenidae, the (Lankford and Targett 1994). Croaker are found over drum family. This medium-sized fish is slightly mud and sandy mud bottoms in coastal waters to elongate, moderately compressed, and silvery in color about 1,000 meter depth and in estuaries where the with a pinkish cast; the back and upper sides are nursery and feeding grounds are located. grayish with black spots forming irregular, oblique lines above the lateral line. The dorsal fin has small Natural History black dots and a black edge; other fins are pale to yellowish. The chin has 3 to 5 pairs of barbels along Atlantic croaker are medium-sized members of the inner edge of the lower jaw. -
Fish Populations and Habitat Assessment on the Oculina Bank
195 Abstract—A portion of the Oculina Assessment of fish populations and habitat Bank located off eastern Florida is a marine protected area (MPA) pre- on Oculina Bank, a deep-sea coral marine served for its dense populations of the ivory tree coral (Oculina varicosa), protected area off eastern Florida which provides important habitat for fish. Surveys of fish assemblages Stacey L. Harter (contact author)1 and benthic habitat were conducted 1 inside and outside the MPA in 2003 Marta M. Ribera and 2005 by using remotely operated Andrew N. Shepard2 vehicle video transects and digital 3 still imagery. Fish species composi- John K. Reed tion, biodiversity, and grouper densi- Email address for contact author: [email protected] ties were used to determine whether 1 National Marine Fisheries Service O. varicosa forms an essential habitat Southeast Fisheries Science Center compared to other structure-forming 3500 Delwood Beach Rd. habitats and to examine the effective- Panama City, Florida 32408 ness of the MPA. Multivariate analy- 2 NOAA Undersea Research Center ses indicated no differences in fish University of North Carolina at Wilmington assemblages or biodiversity among 5600 Marvin Moss Lane hardbottom habitat types and grou- Wilmington, North Carolina 28409 per densities were highest among the most complex habitats; however the 3 Harbor Branch Oceanographic Institute higher densities were not exclusive to Florida Atlantic University coral habitat. Therefore, we conclude 5600 U.S. 1 North that O. varicosa was functionally Ft. Pierce, Florida 34946 equivalent to other hardbottom habi- tats. Even though fish assemblages were not different among manage- ment areas, biodiversity and grouper densities were higher inside the MPA compared to outside. -
Spatial and Temporal Variations in Community Structure of the Demersal Macrofauna of a Subtropical Estuary (Louisiana)
Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1982 Spatial and Temporal Variations in Community Structure of the Demersal Macrofauna of a Subtropical Estuary (Louisiana). Thomas C. Shirley Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Shirley, Thomas C., "Spatial and Temporal Variations in Community Structure of the Demersal Macrofauna of a Subtropical Estuary (Louisiana)." (1982). LSU Historical Dissertations and Theses. 3821. https://digitalcommons.lsu.edu/gradschool_disstheses/3821 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. -
Monophyly and Interrelationships of Snook and Barramundi (Centropomidae Sensu Greenwood) and five New Markers for fish Phylogenetics ⇑ Chenhong Li A, , Betancur-R
Molecular Phylogenetics and Evolution 60 (2011) 463–471 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Monophyly and interrelationships of Snook and Barramundi (Centropomidae sensu Greenwood) and five new markers for fish phylogenetics ⇑ Chenhong Li a, , Betancur-R. Ricardo b, Wm. Leo Smith c, Guillermo Ortí b a School of Biological Sciences, University of Nebraska, Lincoln, NE 68588-0118, USA b Department of Biological Sciences, The George Washington University, Washington, DC 200052, USA c The Field Museum, Department of Zoology, Fishes, 1400 South Lake Shore Drive, Chicago, IL 60605, USA article info abstract Article history: Centropomidae as defined by Greenwood (1976) is composed of three genera: Centropomus, Lates, and Received 24 January 2011 Psammoperca. But composition and monophyly of this family have been challenged in subsequent Revised 3 May 2011 morphological studies. In some classifications, Ambassis, Siniperca and Glaucosoma were added to the Accepted 5 May 2011 Centropomidae. In other studies, Lates + Psammoperca were excluded, restricting the family to Available online 12 May 2011 Centropomus. Recent analyses of DNA sequences did not solve the controversy, mainly due to limited taxonomic or character sampling. The present study is based on DNA sequence data from thirteen Keywords: genes (one mitochondrial and twelve nuclear markers) for 57 taxa, representative of all relevant Centropomidae species. Five of the nuclear markers are new for fish phylogenetic studies. The monophyly of Centrop- Lates Psammoperca omidae sensu Greenwood was supported by both maximum likelihood and Bayesian analyses of a Ambassidae concatenated data set (12,888 bp aligned). No support was found for previous morphological hypothe- Niphon spinosus ses suggesting that ambassids are closely allied to the Centropomidae. -
Sciaenidae 3117
click for previous page Perciformes: Percoidei: Sciaenidae 3117 SCIAENIDAE Croakers (drums) by K. Sasaki iagnostic characters: Moderately elongate, moderately compressed, small to large (to 200 cm Dstandard length) perciform fishes. Head and body (occasionally also fins) completely scaly, except tip of snout. Sensory pores often conspicuous on tip of snout (upper rostral pores), on lower edge of snout (marginal rostral pores), and on chin (mental pores), usually 3 or 5 upper rostral pores, 5 marginal rostral pores, and 3 pairs of mental pores; these pores usually distinct in bottom feeders with inferior to subterminal mouth, whereas indistinct in midwater feeders with terminal to oblique mouth. A barbel sometimes present on chin. Position and size of mouth variable from strongly inferior to oblique, larger in species with oblique mouth, smaller in species with inferior mouth. Teeth differentiated into large and small in both jaws or in upper jaw only; enlarged teeth always form outer series in upper jaw, inner series in lower jaw; well-developed canines (more than twice as large as other teeth) may be present at front of one or both jaws; vomer and palatine without teeth. Dorsal fin continuous, with deep notch between anterior (spinous) and posterior (soft) portions; anterior portion with VIII to X slender spines (usually X), and posterior portion with I spine and 21 to 44 soft rays; base of posterior portion elongate, much longer than anal-fin base; anal fin with II spines and 6 to 12 (usually 7) soft rays; caudal fin emarginate to pointed, never deeply forked, usually pointed in juveniles, rhomboidal in adults; pelvic fins with I spine and 5 soft rays, the first soft ray occasionally with a short filament.