Comparative Ecology of the Parasites of the Spot, Leiostomus Xanthurus

Total Page:16

File Type:pdf, Size:1020Kb

Comparative Ecology of the Parasites of the Spot, Leiostomus Xanthurus W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1989 Comparative ecology of the parasites of the spot, Leiostomus xanthurus Lacepede, and the Atlantic croaker, Micropogonias undulatus Linnaeus (Sciaenidae), in the Cape Hatteras region Dennis A. Thoney College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Ecology and Evolutionary Biology Commons, and the Zoology Commons Recommended Citation Thoney, Dennis A., "Comparative ecology of the parasites of the spot, Leiostomus xanthurus Lacepede, and the Atlantic croaker, Micropogonias undulatus Linnaeus (Sciaenidae), in the Cape Hatteras region" (1989). Dissertations, Theses, and Masters Projects. Paper 1539616876. https://dx.doi.org/doi:10.25773/v5-j3p5-0627 This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. INFORMATION TO USERS The most advanced technology has been used to photo­ graph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are re­ produced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. These are also available as one exposure on a standard 35mm slide or as a 17" x 23" black and white photographic print for an additional charge. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University Microfilms International A Bell & Howell Information Company 3 00 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 313/761-4700 800/521-0600 Order number 8923062 Comparative ecology of the parasites of the spot, Leiostomus xanthurus Lacepede, and the Atlantic croaker, Micropogonias undulatus Linnaeus (Sciaenidae), in the Cape Hatteras Region Thoney, Dennis Allan, Ph.D. The College of William and Mary, 1989 Copyright (fi) 1990 by Thoney, Dennis Allan. All rights reserved. 300 N. ZeebRd. Ann Arbor, MI 48106 -----·-----------------------~ COMPARATIVE ECOLOGY OF THE PARASITES OF THE SPOT, LEIOSTOHUS XANTHURUS LACEPEDE, AND THE ATLANTIC CROAKER, MICR0P060NIAS UNDULATUS LINNAEUS (SCIAENIDAE), IN THE CAPE HATTERAS REGION A DISSERTATION Presented to The Faculty of the School of Marine Science The College of William and Mary in Virginia In Partial Fulfillment Of the Requirements for the Degree of Doctor of Philosophy by Dennis A. Thoney 1989 APPROVAL SHEET This dissertation is submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Dennis A. Thoney Approved, May 1989 Dr. Willi&m J. Hargis, Jr. Committee Chairman/Advisor fit. y * v , Dr. Eugene M. Burreson ir. John A.yMusick Dr. Evon Ruzecki Dr. Mafk W . Luckenbach V V \ . ___ Dr. Robin M. Overstreet Gulf Coast Research Laboratory, Ocean Springs, Mississippi i i TABLE OF CONTENTS Page ACKNOWLEDGMENTS...................................................................................... iv LIST OF TABLES...................................................................................... v LIST OF FIGURES.................................................................................... vii ABSTRACT..................................................................................................... x GENERAL INTRODUCTION......................................................................... 1 CHAPTER I - Population Dynamics and Community Analysis of the Parasite Fauna of Juvenile Leiostomus xanthurus and Micropoaonias undulatus (Sciaenidae) in Two Estuaries Along the Middle Atlantic Coast of the U. S. A........................................................................................ 4 Introduction ................................................................................. 4 Materials and Methods .............................................................. 6 Results........................................ 9 Discussion ...................................................................................... 42 CHAPTER II - Community Ecology and Abundance of the Parasites of Adult Leiostomus xanthurus and Micropoaonias undulatus (Sciaenidae) Collected in the Cape Hatteras Region ........................................................... 52 Introduction ................................................................................. 52 Materials and Methods .............................................................. 55 Results............................................................................................ 58 Discussion ...................................................................................... 94 GENERAL SUMMARY AND CONCLUSIONS.................................................... 106 LITERATURE CITED................................................................................. 109 VITA........................................................................................................... 115 iii ACKNOWLEDGMENTS I thank Jess Hawkins, Mac Currin, and John Miller for collecting fish in Pamlico Sound and the National Marine Fisheries Service (NOAA) for allowing me to participate in their ground fish surveys. I also thank Robin M. Overstreet and Tom Mattis for assistance in identification of digenean and cestode parasites. Constructive comments of the manuscript by Drs. William J. Hargis, Jr., Eugene M. Burreson, and Robin M. Overstreet are also greatly appreciated. iv LIST OF TABLES Table Page Chapter I 1. Abundances (mean number per host) of parasites found in juvenile Leiostomus xanthurus and Micropoaonias undul atus ...................................................................................... 10 2. Abundance of parasites (mean number per host) from Leiostomus xanthurus from Chesapeake Bay (numbers of hosts examined in parentheses). ........................................... 13 3. Abundance of parasites (mean number per host) from Leiostomus xanthurus from Pamlico Sound (numbers of hosts examined 1t. in parentheses) ............................................................................. 4. Abundance of parasites (mean number per host) from Micropoaonius undulatus from Chesapeake Bay (numbers of hosts examined in parentheses) .......................................... 17 5. Abundance of parasites (mean number per host) from Micropoqonius undulatus from Pamlico Sound (numbers of hosts examined in parentheses) ............................................ 19 6. Diversity parameters of parasite infracommunities of Leiostomus xanthurus from Chesapeake Bay by length (S, species richness; H, diversity; E, species evenness). 29 7. Diversity parameters of parasite infracommunities of Leiostomus xanthurus from Pamlico Sound by length (S, species richness; H. diversity; E, species evenness). 30 8. Diversity parameters of parasite infracommunities of Micropoqonias undulatus from Chesapeake Bay by length (S, species richness; H. diversity; E, species evenness). 31 9. Diversity parameters of parasite infracommunities of Micropoqonias undulatus from Pamlico Sound by length (S, species richness; H. diversity; E, species evenness). 32 10. Percent occurrence of prey in the gastrointestinal tract of Leiostomus xanthurus from Chesapeake Bay and Pamlico .n S o u n d . ............................................................................................... 40 11. Percent occurrence of prey in the gastrointestinal tract of Micropoqonias undulatus from Chesapeake Bay and Pamlico Sound ............................................................................................... Chapter II 1. Population parameters of parasites from Leiostomus xanthurus fin = ■•***••*•**•*•***••*•• 2. Population parameters of parasites from Micropoqonias undulatus (n = 156) • ••••••....................................... 3. Parasite intensity regressed against standard length of Leiostomus xanthurus ............................................................... 66 4. Parasite intensity regressed against standard length of Micropoqonias undulatus ........................................................... 68 5. Mean abundance of parasites from Leiostomus xanthurus in each area followed by range in parentheses and then frequency (values with same letter are not significantly different). ...............................................................................
Recommended publications
  • Marine Ecology Progress Series 605:1
    Vol. 605: 1–16, 2018 MARINE ECOLOGY PROGRESS SERIES Published October 26 https://doi.org/10.3354/meps12751 Mar Ecol Prog Ser OPEN ACCESS FEATURE ARTICLE Host diet influences parasite diversity: a case study looking at tapeworm diversity among sharks Trent K. Rasmussen1,*, Haseeb S. Randhawa1,2,3,4 1Ecology Degree Programme, University of Otago, PO Box 56, Dunedin 9054, New Zealand 2Present address: Falkland Islands Fisheries Department, Directorate of Natural Resources, Falkland Islands Government, Bypass Road, Stanley FIQQ 1ZZ, Falkland Islands 3Present address: South Atlantic Environmental Research Institute, PO Box 609, Stanley Cottage, Stanley FIQQ 1ZZ, Falkland Islands 4Present address: New Brunswick Museum, 277 Douglas Avenue, Saint John, New Brunswick E2K 1E5, Canada ABSTRACT: In theory, animal diets may act as impor- tant filters for different parasite species. However, there is currently a lack of empirical research looking at host diet as a potential predictor of parasite diversity among different host species. The aim of this study was to assess the influence of several host diet features (including diet breadth, diet composition, and trophic level) on tapeworm diversity in sharks, relative to other key factors, including host size, habitat, phylogeny, latitude, and depth. Data on these host features were compiled from a comprehensive analysis of literature records including 91 different shark species, and 3 measures of tapeworm diversity were examined: tape- worm species richness, tapeworm taxonomic distinct- ness (TD), and variance in tapeworm TD. The diet breadth of a shark species was revealed to be a better The variety of prey in sharks’ diets may have a large influ- predictor of tapeworm species richness than other host ence on how many parasite species infect them.
    [Show full text]
  • A Practical Handbook for Determining the Ages of Gulf of Mexico And
    A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes THIRD EDITION GSMFC No. 300 NOVEMBER 2020 i Gulf States Marine Fisheries Commission Commissioners and Proxies ALABAMA Senator R.L. “Bret” Allain, II Chris Blankenship, Commissioner State Senator District 21 Alabama Department of Conservation Franklin, Louisiana and Natural Resources John Roussel Montgomery, Alabama Zachary, Louisiana Representative Chris Pringle Mobile, Alabama MISSISSIPPI Chris Nelson Joe Spraggins, Executive Director Bon Secour Fisheries, Inc. Mississippi Department of Marine Bon Secour, Alabama Resources Biloxi, Mississippi FLORIDA Read Hendon Eric Sutton, Executive Director USM/Gulf Coast Research Laboratory Florida Fish and Wildlife Ocean Springs, Mississippi Conservation Commission Tallahassee, Florida TEXAS Representative Jay Trumbull Carter Smith, Executive Director Tallahassee, Florida Texas Parks and Wildlife Department Austin, Texas LOUISIANA Doug Boyd Jack Montoucet, Secretary Boerne, Texas Louisiana Department of Wildlife and Fisheries Baton Rouge, Louisiana GSMFC Staff ASMFC Staff Mr. David M. Donaldson Mr. Bob Beal Executive Director Executive Director Mr. Steven J. VanderKooy Mr. Jeffrey Kipp IJF Program Coordinator Stock Assessment Scientist Ms. Debora McIntyre Dr. Kristen Anstead IJF Staff Assistant Fisheries Scientist ii A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes Third Edition Edited by Steve VanderKooy Jessica Carroll Scott Elzey Jessica Gilmore Jeffrey Kipp Gulf States Marine Fisheries Commission 2404 Government St Ocean Springs, MS 39564 and Atlantic States Marine Fisheries Commission 1050 N. Highland Street Suite 200 A-N Arlington, VA 22201 Publication Number 300 November 2020 A publication of the Gulf States Marine Fisheries Commission pursuant to National Oceanic and Atmospheric Administration Award Number NA15NMF4070076 and NA15NMF4720399.
    [Show full text]
  • Rhinopristiformes: Pristidae) in the Gulf of Mexico
    Institute of Parasitology, Biology Centre CAS Folia Parasitologica 2020, 67: 009 doi: 10.14411/fp.2020.009 http://folia.paru.cas.cz Research Article A new genus and species of fish blood fluke, Achorovermis testisinuosus gen. et sp. n. (Digenea: Aporocotylidae), infecting critically endangered smalltooth sawfish, Pristis pectinata (Rhinopristiformes: Pristidae) in the Gulf of Mexico Micah B. Warren1, Micah D. Bakenhaster2, Rachel M. Scharer3, Gregg R. Poulakis3 and Stephen A. Bullard1 1 Auburn University, School of Fisheries, Aquaculture & Aquatic Sciences and Aquatic Parasitology Laboratory, Auburn, AL, USA; 2 Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL, USA; 3 Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Charlotte Harbor Field Laboratory, Port Charlotte, FL, USA Abstract: Achorovermis testisinuosus gen. et sp. n. (Digenea: Aporocotylidae) infects the heart of the smalltooth sawfish, Pristis pect- inata Latham (Rhinopristiformes: Pristidae), in the eastern Gulf of Mexico. Specimens of the new genus, along with the other blood flukes that infect batoids are similar by having an inverse U-shaped intestine and a curving testis as well as by lacking tegumental spines. The new genus differs from all of the other blood flukes infecting batoids by having an elongate body (>50 × longer than wide), a testis having >100 curves, and an ovary wholly anterior to the uterus. It differs from Ogawaia glaucostegi Cutmore, Cribb et Yong, 2018, the only other blood fluke infecting a rhinopristiform, by having a body that is >50 × (vs <30 ×) longer than wide, a testis that is >75 × (vs <40 ×) longer than wide and has >100 (vs <70) curves, an ovary wholly anterior to (vs lateral and dorsal to) the seminal vesi- cle, a uterus wholly posterior to (vs overlapping and lateral to both) the testis and ovary, and a sinuous (vs convoluted) uterus.
    [Show full text]
  • Candidate Species for Florida Aquaculture: Atlantic Croaker, Micropogonias Undulatus1
    FA 148 Candidate Species for Florida Aquaculture: Atlantic Croaker, Micropogonias undulatus1 R. LeRoy Creswell, Cortney L. Ohs, and Christian L. Miller2 Atlantic Croaker Geographic Distribution and Habitat The Atlantic croaker is known to occur in the northern and eastern parts of the Gulf of Mexico, along the Atlantic coast of the United States from south Florida to Massachusetts, in the Greater Antilles, and along the South American Atlantic Figure 1. Atlantic Croaker Micropogonias undulatus Credits: Food and Agriculture Organization of the United coast from Surinam to Argentina. Its U.S. fishing Nations 1978 grounds extend from the Rio Grande to Tampa Bay in the Gulf of Mexico and from northern Florida to General Description Cape Hatteras on the Atlantic coast. In Florida, Atlantic croaker are seldom found south of Tampa The Atlantic croaker, Micropogonias undulatus Bay or the Indian River Lagoon on the Atlantic coast (Figure 1), is a member of the family Sciaenidae, the (Lankford and Targett 1994). Croaker are found over drum family. This medium-sized fish is slightly mud and sandy mud bottoms in coastal waters to elongate, moderately compressed, and silvery in color about 1,000 meter depth and in estuaries where the with a pinkish cast; the back and upper sides are nursery and feeding grounds are located. grayish with black spots forming irregular, oblique lines above the lateral line. The dorsal fin has small Natural History black dots and a black edge; other fins are pale to yellowish. The chin has 3 to 5 pairs of barbels along Atlantic croaker are medium-sized members of the inner edge of the lower jaw.
    [Show full text]
  • Trypanorhyncha) from the Muséum National D’Histoire Naturelle, Paris
    Tentaculariid cestodes (Trypanorhyncha) from the Muséum national d’Histoire naturelle, Paris Harry W. PALM Institut für Zoomorphologie, Zellbiologie und Parasitologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf (Germany) [email protected] Thorsten WALTER Abteilung Fischereibiologie, Marine Pathologie, Institut für Meereskunde an der Universität Kiel, Düsternbrooker Weg 20, D-24105 Kiel (Germany) Palm H. W. & Walter T. 2000. — Tentaculariid cestodes (Trypanorhyncha) from the Muséum national d’Histoire naturelle, Paris. Zoosystema 22 (4) : 641-666. ABSTRACT The present study was carried out to examine unidentified and identified spe- cimens of Nybelinia, Heteronybelinia, Mixonybelinia and Kotorella deposited at the Muséum national d’Histoire naturelle, Paris. A total of 17 different species including type specimens was found: Nybelinia africana Dollfus, 1960; N. erythraea Dollfus, 1960; N. goreensis Dollfus, 1960; N. lingualis (Cuvier, 1817); Nybelinia cf. lingualis (Cuvier, 1817); N. riseri Dollfus, 1960; N. scoliodoni (Vijayalakshmi, Vijayalakshmi & Gangadharam, 1996); N. strongyla Dollfus, 1960; N. surmenicola Okada, 1929; N. thyrsites Korotaeva, 1971; Heteronybelinia estigmena (Dollfus, 1960); H. eureia (Dollfus, 1960); H. minima Palm, 1999; H. nipponica (Yamaguti, 1952); H. robusta (Dollfus, 1960); H. yamagutii (Dollfus, 1960); Mixonybelinia edwinlintoni (Dollfus, 1960) n.comb.; Kotorella pronosoma (Stossich, 1901). M. edwinlintoni is re-described. Nybelinia oodes Dollfus, 1960, H. alloiotica (Dollfus, 1960), H. cadenati (Dollfus, 1960), and H. senegalensis (Dollfus, 1960) are considered synonymous with H. estigmena (Dollfus, 1960). H. punctatissima (Dollfus, 1960) is considered synonymous with Nybelinia lingualis, and specimens of H. punctatissima as described in Dollfus (1960) are considered synonymous with H. estigmena. H. rougetcampanae (Dollfus, 1960) is considered synonymous with H. nipponica, and N.
    [Show full text]
  • Drum and Croaker (Family Sciaenidae) Diversity in North Carolina
    Drum and Croaker (Family Sciaenidae) Diversity in North Carolina The waters along and off the coast are where you will find 18 of the 19 species within the Family Sciaenidae (Table 1) known from North Carolina. Until recently, the 19th species and the only truly freshwater species in this family, Freshwater Drum, was found approximately 420 miles WNW from Cape Hatteras in the French Broad River near Hot Springs. Table 1. Species of drums and croakers found in or along the coast of North Carolina. Scientific Name/ Scientific Name/ American Fisheries Society Accepted Common Name American Fisheries Society Accepted Common Name Aplodinotus grunniens – Freshwater Drum Menticirrhus saxatilis – Northern Kingfish Bairdiella chrysoura – Silver Perch Micropogonias undulatus – Atlantic Croaker Cynoscion nebulosus – Spotted Seatrout Pareques acuminatus – High-hat Cynoscion nothus – Silver Seatrout Pareques iwamotoi – Blackbar Drum Cynoscion regalis – Weakfish Pareques umbrosus – Cubbyu Equetus lanceolatus – Jackknife-fish Pogonias cromis – Black Drum Larimus fasciatus – Banded Drum Sciaenops ocellatus – Red Drum Leiostomus xanthurus – Spot Stellifer lanceolatus – Star Drum Menticirrhus americanus – Southern Kingfish Umbrina coroides – Sand Drum Menticirrhus littoralis – Gulf Kingfish With so many species historically so well-known to recreational and commercial fishermen, to lay people, and their availability in seafood markets, it is not surprising that these 19 species are known by many local and vernacular names. Skimming through the ETYFish Project
    [Show full text]
  • Parasites of Coral Reef Fish: How Much Do We Know? with a Bibliography of Fish Parasites in New Caledonia
    Belg. J. Zool., 140 (Suppl.): 155-190 July 2010 Parasites of coral reef fish: how much do we know? With a bibliography of fish parasites in New Caledonia Jean-Lou Justine (1) UMR 7138 Systématique, Adaptation, Évolution, Muséum National d’Histoire Naturelle, 57, rue Cuvier, F-75321 Paris Cedex 05, France (2) Aquarium des lagons, B.P. 8185, 98807 Nouméa, Nouvelle-Calédonie Corresponding author: Jean-Lou Justine; e-mail: [email protected] ABSTRACT. A compilation of 107 references dealing with fish parasites in New Caledonia permitted the production of a parasite-host list and a host-parasite list. The lists include Turbellaria, Monopisthocotylea, Polyopisthocotylea, Digenea, Cestoda, Nematoda, Copepoda, Isopoda, Acanthocephala and Hirudinea, with 580 host-parasite combinations, corresponding with more than 370 species of parasites. Protozoa are not included. Platyhelminthes are the major group, with 239 species, including 98 monopisthocotylean monogeneans and 105 digeneans. Copepods include 61 records, and nematodes include 41 records. The list of fish recorded with parasites includes 195 species, in which most (ca. 170 species) are coral reef associated, the rest being a few deep-sea, pelagic or freshwater fishes. The serranids, lethrinids and lutjanids are the most commonly represented fish families. Although a list of published records does not provide a reliable estimate of biodiversity because of the important bias in publications being mainly in the domain of interest of the authors, it provides a basis to compare parasite biodiversity with other localities, and especially with other coral reefs. The present list is probably the most complete published account of parasite biodiversity of coral reef fishes.
    [Show full text]
  • Spatial and Temporal Resource Partitioning
    TEXAS J. OF SCI. 64(1):0-00 FEBRUARY, 2012 (PUBLISHED JUNE 2015) HABITAT USE AND DIETS OF JUVENILE SPOT (LEIOSTOMUS XANTHURUS) AND ATLANTIC CROAKER (MICROPOGONIAS UNDULATUS) IN A SMALL ESTUARY AT MAD ISLAND MARSH, TEXAS Senol Akin1, 2 and Kirk O. Winemiller1 1Department of Wildlife and Fisheries Sciences, Texas A&M University, 2258 TAMU College Station, TX 77843-2258 2 Current address: Faculty of Agriculture, Department of Fisheries, Gaziosmanpasa University, 60240, Tokat, Turkey ABSTRACT.–Spatial and temporal variation in feeding of immature stages (10-130 mm standard length) of two sciaenids, spot (Leiostomus xanthurus) and Atlantic croaker (Micropogonias undulatus), was investigated at Mad Island Marsh on the Texas Gulf coast from March 1998 through August 1999. Periods of peak abundance of each species were different (December for croaker, March for spot). The two species were dissimilar in diet and habitat use along the longitudinal gradient of a small estuary, except for the winter months of both years when postlarvae dominated samples and dietary overlap was high. Low dietary overlap occurred despite the fact that both species consumed mostly benthic organisms (amphipods, gastropods, nematodes, polychaetes), pelagic copepods, and detritus. Overall, spot consumed greater proportions of copepods, nematodes and chironomid larvae, and croakers had broader diets that included most of the abundant invertebrates in the habitat (e.g., amphipods, shrimp, blue crabs) plus smaller percentages of fish. Regardless of season and body size, the spot diet was dominated by copepods and nematodes. The croaker had a more pronounced ontogenetic diet shift, with the smallest size classes (10-25 mm) consuming mostly copepods, and larger juveniles having diets dominated by amphipods, polychaete worms, shrimp, crabs, and fish.
    [Show full text]
  • Diet Analysis of Stranded Bottlenose Dolphins (<I>Tursiops Truncatus</I
    Old Dominion University ODU Digital Commons Biological Sciences Theses & Dissertations Biological Sciences Spring 2020 Diet Analysis of Stranded Bottlenose Dolphins (Tursiops truncatus) in Virginia Kristen Marie Volker Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the Biology Commons, Ecology and Evolutionary Biology Commons, and the Marine Biology Commons Recommended Citation Volker, Kristen M.. "Diet Analysis of Stranded Bottlenose Dolphins (Tursiops truncatus) in Virginia" (2020). Master of Science (MS), Thesis, Biological Sciences, Old Dominion University, DOI: 10.25777/6bas-rj82 https://digitalcommons.odu.edu/biology_etds/113 This Thesis is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. DIET ANALYSIS OF STRANDED BOTTLENOSE DOLPHINS (TURSIOPS TRUNCATUS) IN VIRGINIA by Kristen Marie Volker B.S. December 2008, University of New England A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE BIOLOGY OLD DOMINION UNIVERSITY MAY 2020 Approved by: Ian Bartol (Director) Holly Gaff (Member) Kent Carpenter (Member) Damon Gannon (Member) ABSTRACT DIET ANALYSIS OF STRANDED BOTTLENOSE DOLPHINS (TURSIOPS TRUNCATUS) IN VIRGINIA Kristen Marie Volker Old Dominion University, 2020 Director: Dr. Ian Bartol This study describes the diet of bottlenose dolphins (Tursiops truncatus) stranded in Virginia via stomach content analysis and considers factors such as proportion of numerical abundance and reconstructed mass, frequency of occurrence, average reconstructed prey size, prey diversity and quantity, and otolith degradation code.
    [Show full text]
  • Atlantic Croaker Micropogonias Undulatus Contributor: J
    Atlantic Croaker Micropogonias undulatus Contributor: J. David Whitaker DESCRIPTION Taxonomy and Basic Description The Atlantic croaker is the only representative of the genus in the western North Atlantic. This species gets its name from the deep By Diane Rome Peebles from the Florida Division of Marine Resources Web Site. croaking sounds created by muscular action on the air bladder. It is one of 23 members of the family Sciaenidae found along the Atlantic and Gulf of Mexico coasts (Mercer 1987). The species has a typical fusiform shape, although it is somewhat vertically compressed. The fish is silvery overall with a faint pinkish-bronze cast. The back and upper sides are grayish, with brassy or brown spots forming wavy lines on the side (Manooch 1988). The gill cover has three to five prominent spines and there are three to five small chin barbels. It has a slightly convex caudal fin. Atlantic croaker south of Cape Hatteras reach maturity after one year at lengths of 140 to 180 mm (5.5 to 7 inches) and are thought to not survive longer than one or two years (Diaz and Onuf 1985). North of Cape Hatteras, the fish matures a year later at lengths greater than 200 mm (8 inches) and individuals may live several years. The Atlantic croaker reaches a maximum length of 500 mm (20 inches) (Hildebrand and Schroeder 1927). Catches of large Atlantic croaker appear to be relatively common on Chesapeake Bay, but large individuals of Atlantic croaker are rare in South Carolina. Bearden (1964) speculated that small croaker from South Carolina may migrate north, but limited tagging studies could not corroborate that assertion.
    [Show full text]
  • November 7, 2019 Council Attendees: Joe Rizzo Eleanor Bochenek Sergio Radossi John Maxwell Bob Rush Dick Herb Barney Hollinger
    Marine Fisheries Council Meeting November 7, 2019 Council Attendees: Joe Rizzo Eleanor Bochenek Sergio Radossi John Maxwell Bob Rush Dick Herb Barney Hollinger Council Absentees: None DEP and Division of Fish and Wildlife Attendees: Jeff Brust, Chief, Bureau of Marine Fisheries (BMF) Joe Cimino, Administrator, Marine Fisheries Administration (MFA) Mike Celestino, Research Scientist, MFA Heather Corbett, Supervising Biologist, BMF Brendan Harrison, Assistant Biologist, BMF Matt Heyl, Assistant Biologist, BMF Timothy Daniels, Assistant Biologist, BMF Laura Versaggi, Fishery Specialist, ACCSP Linda Barry, Research Scientist, MFA Brian Neilan, Principal Biologist, BMF Jeff Normant, Supervising Biologist, BSF Chris Petruccelli, Conservation Officer, Bureau of Law Enforcement (BLE) Russ Babb, Chief, Bureau of Shellfisheries (BSF) The meeting was called to order. Notice of the Marine Fisheries Council (Council) meeting was filed with the Secretary of State on October 10, 2019. Acting Chairman Herb began the meeting with the Pledge of Allegiance. Approval of Minutes Meeting minutes from the September 5th meeting of the Council were approved without revision. Motion made by Mr. Radossi and seconded by Mr. Maxwell. Motion unanimously carried. 1. Enforcement Report – C. Petruccelli On August 31st, 2019, CPO Woerner was patrolling the Sandy Hook area when he observed individuals wading in an area where people frequently harvest clams from condemned waters. After thorough observation, CPO Woerner ended up apprehending three groups of individuals, including juveniles, harvesting clams in prohibited water. CPO Woerner seized several hundred hard clams and issued summonses for harvesting shellfish without a license and for harvesting shellfish from the prohibited waters of Sandy Hook Bay. In the late evening hours of September 13th into the early morning hours of September 14th, CPOs Moscatiello and Woerner were patrolling the area around the train tracks that run through Brielle and Point Pleasant Beach.
    [Show full text]
  • Restoration Planning of Degraded Tropical Forests for Biodiversity and Ecosystem Services
    Restoration planning of degraded tropical forests for biodiversity and ecosystem services Sugeng Budiharta Bachelor of Forestry Master of Science in Conservation Biology A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in January 2016 School of Biological Sciences Abstract Forest restoration has the potential to mitigate the impact of deforestation and forest degradation. Various global policies have been sought to put restoration into the mainstream agenda including under the Convention on Biological Diversity (CBD) and the program for Reducing Emissions from Deforestation and forest Degradation (REDD+). The Aichi Target of the CBD set a target for at least 15% of degraded ecosystems to be restored by 2020 for key goals including biodiversity conservation, carbon enhancement and the provision of livelihoods. A theoretical framework to underpin decision- making for landscape-scale restoration has been slow to emerge, resulting in a limited contribution from science towards achieving such policy targets. My thesis develops decision frameworks to guide the restoration of degraded tropical forests to enhance biodiversity and the delivery of ecosystem services. In this thesis, three critical questions on how to make better decisions for landscape-scale restoration are addressed by: (a) considering landscape heterogeneity in terms of degradation condition, restoration action and cost, and temporally-explicit restoration benefits; (b) leveraging restoration within competing land uses using emerging policy for offsetting; and (c) enhancing feasibility by accounting for the social and political dimensions related to restoration. I use Kalimantan (Indonesian Borneo) as a case study area, as it represents a region that is globally important in terms of biodiversity and carbon storage.
    [Show full text]