Fish Populations and Habitat Assessment on the Oculina Bank

Total Page:16

File Type:pdf, Size:1020Kb

Fish Populations and Habitat Assessment on the Oculina Bank 195 Abstract—A portion of the Oculina Assessment of fish populations and habitat Bank located off eastern Florida is a marine protected area (MPA) pre- on Oculina Bank, a deep-sea coral marine served for its dense populations of the ivory tree coral (Oculina varicosa), protected area off eastern Florida which provides important habitat for fish. Surveys of fish assemblages Stacey L. Harter (contact author)1 and benthic habitat were conducted 1 inside and outside the MPA in 2003 Marta M. Ribera and 2005 by using remotely operated Andrew N. Shepard2 vehicle video transects and digital 3 still imagery. Fish species composi- John K. Reed tion, biodiversity, and grouper densi- Email address for contact author: [email protected] ties were used to determine whether 1 National Marine Fisheries Service O. varicosa forms an essential habitat Southeast Fisheries Science Center compared to other structure-forming 3500 Delwood Beach Rd. habitats and to examine the effective- Panama City, Florida 32408 ness of the MPA. Multivariate analy- 2 NOAA Undersea Research Center ses indicated no differences in fish University of North Carolina at Wilmington assemblages or biodiversity among 5600 Marvin Moss Lane hardbottom habitat types and grou- Wilmington, North Carolina 28409 per densities were highest among the most complex habitats; however the 3 Harbor Branch Oceanographic Institute higher densities were not exclusive to Florida Atlantic University coral habitat. Therefore, we conclude 5600 U.S. 1 North that O. varicosa was functionally Ft. Pierce, Florida 34946 equivalent to other hardbottom habi- tats. Even though fish assemblages were not different among manage- ment areas, biodiversity and grouper densities were higher inside the MPA compared to outside. The percentage Like shallow tropical coral reefs, deep- al., 1998; Bohnsack, 1998; Guenette of intact coral was also higher inside sea coral habitats support important et al., 1998). the MPA. These results provide initial ecosystem functions, for example, One of the world’s first deep-sea evidence demonstrating effectiveness as hotspots for biodiversity and bio- coral ecosystems to be designated a of the MPA for restoring reef fish and mass production (Husebo et al., 2002; marine protected area is located ap- their habitat. This is the first study Jonsson et al., 2004; George et al., proximately 37 km off Florida’s east to compare reef fish populations on O. 2007) and as important fish habitat coast in depths of 60–120 m. This varicosa with other structure-form- (Gilmore and Jones, 1992; Fosså et area is known as the Oculina Bank, ing reef habitats and also the first al., 2002; Ross and Quattrini, 2007). a series of reefs and high-relief bio- to examine the effectiveness of the MPA for restoring fish populations Like their shallow-water counter- herms (thickets of live coral, capping and live reef cover. parts, deep-sea coral ecosystems are mounds of sediment and coral rubble, affected by human activities. As har- built upon an underlying lithified vests have declined in shallow eco- base structure) constructed by the systems, fishing pressure has moved scleractinian ivory tree coral (Ocu- further offshore (Watling and Norse, lina varicosa). This species lives in 1998; Koslow et al., 2000; Roberts, water depths of 49 to 152 m without 2002), thus raising interest in deep- zooxanthellae and may form extensive sea coral ecosystem protection. With thickets 1 m tall, which over thou- the passage of the Magnuson-Ste- sands of years have built up mounds vens Fishery Management and Con- and ridges extending as much as 200 servation Act of 1996, an ecosystem m laterally and 35 m above the sur- approach to fishery management in rounding seafloor (Reed, 1980). These the United States has been encour- O. varicosa bioherms are known to aged by linking the preservation of exist only off the east coast of Florida essential fish habitat with protection from Ft. Pierce to St. Augustine, a Manuscript submitted 26 March 2008. Manuscript accepted 14 November 2008. of fishery resources. Reauthoriza- stretch of almost 150 km along the Fish. Bull 107:195–206 (2009). tion of the Act in 2006 mandated the edge of the Florida-Hatteras slope conservation and studies of deep-sea and beneath the western edge of the The views and opinions expressed coral ecosystems. These mandates are Gulf Stream. Surface water currents or implied in this article are those expected to lead to the increasing use may exceed 150 cm/sec and bottom of the author and do not necessarily reflect the position of the National of marine protected areas (MPAs) as currents may exceed 50 cm/sec (Reed, Marine Fisheries Service, NOAA. a fishery management tool (Allison et 2002a). Intact, live O. varicosa sup- 196 Fishery Bulletin 107(2) ports a diverse and dense assemblage of invertebrates to protect the fragile coral. Within the OHAPC, the and fishes (Avent et al., 1977; Reed, 2002a, 2002b; Koe- 315 km² (92 nm²) Oculina Experimental Closed Area nig et al., 2005), and it may serve as spawning grounds (OECA) (Fig. 1) was designated in 1994 in response to for a number of economically important or threatened the rapidly diminishing grouper (Mycteroperca and Epi- reef fish species (Gilmore and Jones, 1992; Koenig et nephelus spp.) populations and excludes all bottom fish- al., 2005). ing, including fishing with hook-and-line gear, in order A portion of the Oculina Bank known as the Oculina to assess the use of a MPA for recovering over-fished Habitat Area of Particular Concern (OHAPC) first re- reef fish populations, especially those of grouper. ceived protection in 1984 (Koenig et al., 2005; Reed et Management requirements to protect many deep-sea al., 2005). Current management regulations established coral ecosystems have been delayed owing to the dif- by the South Atlantic Fishery Management Council ficulty in quantifying, monitoring, and restoring dam- include a 1029 km² (300 nm²) OHAPC (Fig. 1), within aged reefs (Pyle, 2000). Despite efforts to understand which bottom-fishing gear such as trawls, dredges, long- and protect the Oculina Bank, extensive damage to lines, traps, and anchors are not permitted, in order the fragile coral had already occurred from fishing gear prior to the implementation of management regulations (Koenig et al., 2000; Reed et al., 2007). When the first management action was taken in 1984, only about 30% of the reef sys- tem was afforded protection (Reed et al., 2005). Fishing, including shrimp trawling, was allowed to continue in the northern section of the Oculina Bank until the OHAPC was expanded in 2000. Decades of shrimp trawling and scallop dredging before protec- tion had reduced most of the 150- km stretch of healthy reefs to coral rubble (Reed et al., 2007). Remotely operated vehicle (ROV) transects and multi-beam mapping surveys since 2000, however, have indicated that Jeff’s Reef and Chapman’s Reef, both located in the southern portion of the OECA, still contain a large amount of intact live O. varicosa (Fig. 1) (Reed et al., 2005). Over-fishing has significantly di- minished populations of reef fishes, especially those of groupers (Koenig et al., 2000, 2005). Historical observa- tions made during the 1970s and 1980s indicate that O. varicosa reefs were once dominated by large groupers, but later surveys found grouper popula- tions greatly diminished and the reefs dominated by small, non-fishery spe- cies like small sea basses (Serranus and Centropristis spp.), butterflyfishes (Chaetodon spp.), and damselfishes (Chromis spp.) (Koenig et al., 2005). A current topic of discussion regard- Figure 1 ing deep water corals is whether they Remotely operated vehicle (ROV) transects overlain on the multi- serve as essential habitat for some fish beam map of the Oculina marine protected area (MPA) off east- species or whether any type of 3-di- ern Florida. Location of the OHAPC and OECA (OHAPC=areas where all bottom gear except hook and line are restricted, i.e., mensional structure (e.g., rock ledges) excluding the OECA, and OECA=inside the MPA where all is important. Auster (2005) proposed bottom gear, including hook and line fishing, are restricted) are that examination of the distribution of shown along with Chapman’s and Jeff’s Reefs. ROV transects fish in relation to all available habitats were conducted during April–May 2003 and October 2005. is one method to assess the “essential” Harter et al.: Assessment of fish populations and habitat on Oculina Bank 197 role of deep water corals. Several studies have concluded habitat classification and that of SEAMAP is that we that deep water corals were no more important to fishes distinguished between live and dead coral. Pavement than other reef structures (Auster, 2005; Tissot et al., habitat was fairly flat rock pavement often with small 2006) suggesting an opportunistic fish association with cracks or crevices present. Rubble habitat consisted of deep corals. Ross and Quattrini (2007), however, found small coral fragments exhibiting little to no relief. Rock that deep reef habitats along the southeast United outcrop habitat was small rock outcrops approximately States slope contain a unique and possibly obligate 0.3–0.9 m relief, occasionally 1.2–1.8 m relief. O. vari- assemblage of fish. No previous studies have examined cosa existed mostly as small individual heads (about whether O. varicosa supports a distinct assemblage of 0.3–0.9 m relief), but occasionally as larger mounds fish compared to other structure-forming, hardbottom and thickets. habitats. In 2014, the South Atlantic Fishery Management Collection methods Council will re-evaluate the effectiveness of the OECA. To aid the Council in making future management deci- The Phantom Spectrum II ROV (National Undersea sions, our goals for this project were to (1) compare fish Research Center, University of North Carolina at Wilm- assemblage composition, biodiversity, and grouper densi- ington) was used to conduct video and digital still tran- ties among hardbottom reef habitat types to examine sects to estimate fish densities and characterize habitat.
Recommended publications
  • Coral Reef Monitoring in Kofiau and Boo Islands Marine Protected Area, Raja Ampat, West Papua. 2009—2011
    August 2012 Indo-Pacific Division Indonesia Report No 6/12 Coral Reef Monitoring in Kofiau and Boo Islands Marine Protected Area, Raja Ampat, West Papua. 2009—2011 Report Compiled By: Purwanto, Muhajir, Joanne Wilson, Rizya Ardiwijaya, and Sangeeta Mangubhai August 2012 Indo-Pacific Division Indonesia Report No 6/12 Coral Reef Monitoring in Kofiau and Boo Islands Marine Protected Area, Raja Ampat, West Papua. 2009—2011 Report Compiled By: Purwanto, Muhajir, Joanne Wilson, Rizya Ardiwijaya, and Sangeeta Mangubhai Published by: TheNatureConservancy,Indo-PacificDivision Purwanto:TheNatureConservancy,IndonesiaMarineProgram,Jl.Pengembak2,Sanur,Bali, Indonesia.Email: [email protected] Muhajir: TheNatureConservancy,IndonesiaMarineProgram,Jl.Pengembak2,Sanur,Bali, Indonesia.Email: [email protected] JoanneWilson: TheNatureConservancy,IndonesiaMarineProgram,Jl.Pengembak2,Sanur,Bali, Indonesia. RizyaArdiwijaya:TheNatureConservancy,IndonesiaMarineProgram,Jl.Pengembak2,Sanur, Bali,Indonesia.Email: [email protected] SangeetaMangubhai: TheNatureConservancy,IndonesiaMarineProgram,Jl.Pengembak2, Sanur,Bali,Indonesia.Email: [email protected] Suggested Citation: Purwanto,Muhajir,Wilson,J.,Ardiwijaya,R.,Mangubhai,S.2012.CoralReefMonitoringinKofiau andBooIslandsMarineProtectedArea,RajaAmpat,WestPapua.2009-2011.TheNature Conservancy,Indo-PacificDivision,Indonesia.ReportN,6/12.50pp. © 2012012012201 222 The Nature Conservancy AllRightsReserved.Reproductionforanypurposeisprohibitedwithoutpriorpermission. AllmapsdesignedandcreatedbyMuhajir. CoverPhoto:
    [Show full text]
  • Checklist of Serranid and Epinephelid Fishes (Perciformes: Serranidae & Epinephelidae) of India
    Journal of the Ocean Science Foundation 2021, Volume 38 Checklist of serranid and epinephelid fishes (Perciformes: Serranidae & Epinephelidae) of India AKHILESH, K.V. 1, RAJAN, P.T. 2, VINEESH, N. 3, IDREESBABU, K.K. 4, BINEESH, K.K. 5, MUKTHA, M. 6, ANULEKSHMI, C. 1, MANJEBRAYAKATH, H. 7, GLADSTON, Y. 8 & NASHAD M. 9 1 ICAR-Central Marine Fisheries Research Institute, Mumbai Regional Station, Maharashtra, India. Corresponding author: [email protected]; Email: [email protected] 2 Andaman & Nicobar Regional Centre, Zoological Survey of India, Port Blair, India. Email: [email protected] 3 Department of Health & Family Welfare, Government of West Bengal, India. Email: [email protected] 4 Department of Science and Technology, U.T. of Lakshadweep, Kavaratti, India. Email: [email protected] 5 Southern Regional Centre, Zoological Survey of India, Chennai, Tamil Nadu, India. Email: [email protected] 6 ICAR-Central Marine Fisheries Research Institute, Visakhapatnam Regional Centre, Andhra Pradesh, India. Email: [email protected] 7 Centre for Marine Living Resources and Ecology, Kochi, Kerala, India. Email: [email protected] 8 ICAR-Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, India. Email: [email protected] 9 Fishery Survey of India, Port Blair, Andaman and Nicobar Islands, 744101, India. Email: [email protected] Abstract We provide an updated checklist of fishes of the families Serranidae and Epinephelidae reported or listed from India, along with photographs. A total of 120 fishes in this group are listed as occurring in India based on published literature, of which 25 require further confirmation and validation. We confirm here the presence of at least 95 species in 22 genera occurring in Indian marine waters.
    [Show full text]
  • Fish Assemblages Associated with Red Grouper Pits at Pulley Ridge, A
    419 Abstract—Red grouper (Epineph- elus morio) modify their habitat by Fish assemblages associated with red grouper excavating sediment to expose rocky pits, providing structurally complex pits at Pulley Ridge, a mesophotic reef in the habitat for many fish species. Sur- Gulf of Mexico veys conducted with remotely op- erated vehicles from 2012 through 2015 were used to characterize fish Stacey L. Harter (contact author)1 assemblages associated with grouper Heather Moe1 pits at Pulley Ridge, a mesophotic 2 coral ecosystem and habitat area John K. Reed of particular concern in the Gulf Andrew W. David1 of Mexico, and to examine whether invasive species of lionfish (Pterois Email address for contact author: [email protected] spp.) have had an effect on these as- semblages. Overall, 208 grouper pits 1 Southeast Fisheries Science Center were examined, and 66 fish species National Marine Fisheries Service, NOAA were associated with them. Fish as- 3500 Delwood Beach Road semblages were compared by using Panama City, Florida 32408 several factors but were considered 2 Harbor Branch Oceanographic Institute to be significantly different only on Florida Atlantic University the basis of the presence or absence 5600 U.S. 1 North of predator species in their pit (no Fort Pierce, Florida 34946 predators, lionfish only, red grou- per only, or both lionfish and red grouper). The data do not indicate a negative effect from lionfish. Abun- dances of most species were higher in grouper pits that had lionfish, and species diversity was higher in grouper pits with a predator (lion- The red grouper (Epinephelus morio) waters (>70 m) of the shelf edge and fish, red grouper, or both).
    [Show full text]
  • Drum and Croaker (Family Sciaenidae) Diversity in North Carolina
    Drum and Croaker (Family Sciaenidae) Diversity in North Carolina The waters along and off the coast are where you will find 18 of the 19 species within the Family Sciaenidae (Table 1) known from North Carolina. Until recently, the 19th species and the only truly freshwater species in this family, Freshwater Drum, was found approximately 420 miles WNW from Cape Hatteras in the French Broad River near Hot Springs. Table 1. Species of drums and croakers found in or along the coast of North Carolina. Scientific Name/ Scientific Name/ American Fisheries Society Accepted Common Name American Fisheries Society Accepted Common Name Aplodinotus grunniens – Freshwater Drum Menticirrhus saxatilis – Northern Kingfish Bairdiella chrysoura – Silver Perch Micropogonias undulatus – Atlantic Croaker Cynoscion nebulosus – Spotted Seatrout Pareques acuminatus – High-hat Cynoscion nothus – Silver Seatrout Pareques iwamotoi – Blackbar Drum Cynoscion regalis – Weakfish Pareques umbrosus – Cubbyu Equetus lanceolatus – Jackknife-fish Pogonias cromis – Black Drum Larimus fasciatus – Banded Drum Sciaenops ocellatus – Red Drum Leiostomus xanthurus – Spot Stellifer lanceolatus – Star Drum Menticirrhus americanus – Southern Kingfish Umbrina coroides – Sand Drum Menticirrhus littoralis – Gulf Kingfish With so many species historically so well-known to recreational and commercial fishermen, to lay people, and their availability in seafood markets, it is not surprising that these 19 species are known by many local and vernacular names. Skimming through the ETYFish Project
    [Show full text]
  • Phylogeny of the Epinephelinae (Teleostei: Serranidae)
    BULLETIN OF MARINE SCIENCE, 52(1): 240-283, 1993 PHYLOGENY OF THE EPINEPHELINAE (TELEOSTEI: SERRANIDAE) Carole C. Baldwin and G. David Johnson ABSTRACT Relationships among epinepheline genera are investigated based on cladistic analysis of larval and adult morphology. Five monophyletic tribes are delineated, and relationships among tribes and among genera of the tribe Grammistini are hypothesized. Generic com- position of tribes differs from Johnson's (1983) classification only in the allocation of Je- boehlkia to the tribe Grammistini rather than the Liopropomini. Despite the presence of the skin toxin grammistin in the Diploprionini and Grammistini, we consider the latter to be the sister group of the Liopropomini. This hypothesis is based, in part, on previously un- recognized larval features. Larval morphology also provides evidence of monophyly of the subfamily Epinephelinae, the clade comprising all epinepheline tribes except Niphonini, and the tribe Grammistini. Larval features provide the only evidence of a monophyletic Epine- phelini and a monophyletic clade comprising the Diploprionini, Liopropomini and Gram- mistini; identification of larvae of more epinephelines is needed to test those hypotheses. Within the tribe Grammistini, we propose that Jeboehlkia gladifer is the sister group of a natural assemblage comprising the former pseudogrammid genera (Aporops, Pseudogramma and Suttonia). The "soapfishes" (Grammistes, Grammistops, Pogonoperca and Rypticus) are not monophyletic, but form a series of sequential sister groups to Jeboehlkia, Aporops, Pseu- dogramma and Suttonia (the closest of these being Grammistops, followed by Rypticus, then Grammistes plus Pogonoperca). The absence in adult Jeboehlkia of several derived features shared by Grammistops, Aporops, Pseudogramma and Suttonia is incongruous with our hypothesis but may be attributable to paedomorphosis.
    [Show full text]
  • A New Species of Serranid Fish of the Genus Anthias from the Hawaiian Islands and Johnston Island1
    Pacific Science (1984), vol. 38, no. 3 © 1984 by the University of Hawaii Press. All rights reserved A New Species of Serranid Fish of the Genus Anthias from the Hawaiian Islands and Johnston Island1 JOHN E. RANDALL 2 AND STEPHEN RALSTON 3 ABSTRACT: The serranid fish Anthiasfucinus is described from 15 specimens collected from steep rocky slopes atdepths of168-198 m in the Hawaiian Islands and 214-237 m atJohnston Island. It is unique among the known species of the genus in lacking vomerine teeth. Other diagnostic characters are 9 soft anal rays (ofthe Indo-Pacific species ofAnthias only A. ventralis has this count); 16 dorsal soft rays; 15 or 16 pectoral rays (all unbranched); lateral line with a distinct angle at anterior end of straight peduncular part, the pored scales 34-36 (only A. boulengeri from the GulfofOman has this number ofpored scales); membranes ofdorsal fin not incised; no prolonged dorsal spine (fourth or fifth spines barely longest); and a distinctive head color pattern ofalternating stripes ofviolet and yellow. THE FISHES OF THE GENUS Anthias (family Ser­ Randall (1979) reviewed the three Hawai­ ranidae, subfamily Anthiinae) are small color­ ian species of Anthias known to him at that ful species generally found on coral reefs or time, the endemic A. thompsoni (Fowler) and rocky bottoms in tropical and subtropical two widespread new species, A. bicolor and A. seas. They feed on zooplankton, usually in ventralis. The latter is subspecifically different small aggregations a meter or more above the in the Hawaiian region, hence was named A. substratum, retiring to the shelter of the reef ventralis hawaiiensis.
    [Show full text]
  • FAU Institutional Repository
    FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©1992 Rosenstiel School of Marine and Atmospheric Science, University of Miami. This manuscript is available at http://www.rsmas.miami.edu/bms and may be cited as: Gilmore, R.G. & Jones, R. S. (1992). Color variation and associated behavior in the epinepheline groupers, Mycteroperca microlepis (Goode and Bean) and M. phenax Jordan and Swain. Bulletin of Marine Science, 51(1), 83-103. BULLETIN OF MARINE SCIENCE, 51(1): 83-103,1992 CORAL REEF PAPER COLOR VARIATION AND ASSOCIATED BEHAVIOR IN THE EPINEPHELINE GROUPERS, MYCTEROPERCA MICROLEPIS (GOODE AND BEAN) AND M. PHENAX JORDAN AND SWAIN R. Grant Gilmore and Robert S. Jones ABSTRACT Color variants and behavior of scamp, Mycteroperca phenax. and gag, M, microlepis, are described from 64 submersible dives made on reef structures at depths between 20 and 100 m off the east coast of Florida from February 1977 to September 1982. These dives yielded 146 h of observations augmented with video and 35 mm photography. Both species display a variety of color phases associated with social behavior. They are expressed in each case by an aggressive, dominant territorial individual which displays to a group of smaller subor- dinates. Social hierarchy is evident in both species, with the alpha individual being a male in the gag and of undetermined sex in the scamp. Although actual spawning was not docu- mented, hierarchical behavior and displays are interpreted as courtship associated with spawn- ing activity. Courtship is further implied based on the similarity of these behaviors to those recorded for a variety of other fishes including serranids.
    [Show full text]
  • Reef Fishes of the Bird's Head Peninsula, West
    Check List 5(3): 587–628, 2009. ISSN: 1809-127X LISTS OF SPECIES Reef fishes of the Bird’s Head Peninsula, West Papua, Indonesia Gerald R. Allen 1 Mark V. Erdmann 2 1 Department of Aquatic Zoology, Western Australian Museum. Locked Bag 49, Welshpool DC, Perth, Western Australia 6986. E-mail: [email protected] 2 Conservation International Indonesia Marine Program. Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235 Indonesia. Abstract A checklist of shallow (to 60 m depth) reef fishes is provided for the Bird’s Head Peninsula region of West Papua, Indonesia. The area, which occupies the extreme western end of New Guinea, contains the world’s most diverse assemblage of coral reef fishes. The current checklist, which includes both historical records and recent survey results, includes 1,511 species in 451 genera and 111 families. Respective species totals for the three main coral reef areas – Raja Ampat Islands, Fakfak-Kaimana coast, and Cenderawasih Bay – are 1320, 995, and 877. In addition to its extraordinary species diversity, the region exhibits a remarkable level of endemism considering its relatively small area. A total of 26 species in 14 families are currently considered to be confined to the region. Introduction and finally a complex geologic past highlighted The region consisting of eastern Indonesia, East by shifting island arcs, oceanic plate collisions, Timor, Sabah, Philippines, Papua New Guinea, and widely fluctuating sea levels (Polhemus and the Solomon Islands is the global centre of 2007). reef fish diversity (Allen 2008). Approximately 2,460 species or 60 percent of the entire reef fish The Bird’s Head Peninsula and surrounding fauna of the Indo-West Pacific inhabits this waters has attracted the attention of naturalists and region, which is commonly referred to as the scientists ever since it was first visited by Coral Triangle (CT).
    [Show full text]
  • Zootaxa, Marine Fish Diversity: History of Knowledge and Discovery
    Zootaxa 2525: 19–50 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) Marine fish diversity: history of knowledge and discovery (Pisces) WILLIAM N. ESCHMEYER1, 5, RONALD FRICKE2, JON D. FONG3 & DENNIS A. POLACK4 1Curator emeritus, California Academy of Sciences, San Francisco, California, U.S.A. 94118 and Research Associate, Florida Museum of Natural History, Gainesville, Florida, U.S.A. 32611. E-mail: [email protected] 2Ichthyology, Staatliches Museum für Naturkunde, Rosenstein 1, 70191 Stuttgart, Germany. E-mail: [email protected] 3California Academy of Sciences, San Francisco, California, U.S.A. 94118. E-mail: [email protected] 4P.O. Box 518, Halfway House 1685, South Africa. E-mail: [email protected] 5Corresponding Author. E-mail: [email protected] Abstract The increase in knowledge of marine fish biodiversity over the last 250 years is assessed. The Catalog of Fishes database (http://research.calacademy.org/ichthyology/catalog) on which this study is based, has been maintained for 25 years and includes information on more than 50,000 available species names of fishes, with more than 31,000 of them currently regarded as valid species. New marine species are being described at a rate of about 100–150 per year, with freshwater numbers slightly higher. In addition, over 10,000 generic names are available ones of which 3,118 are deemed valid for marine fishes (as of Feb. 19, 2010). This report concentrates on fishes with at least some stage of their life cycle in the sea. The number of valid marine species, about 16,764 (Feb.
    [Show full text]
  • Hotspots, Extinction Risk and Conservation Priorities of Greater Caribbean and Gulf of Mexico Marine Bony Shorefishes
    Old Dominion University ODU Digital Commons Biological Sciences Theses & Dissertations Biological Sciences Summer 2016 Hotspots, Extinction Risk and Conservation Priorities of Greater Caribbean and Gulf of Mexico Marine Bony Shorefishes Christi Linardich Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the Biodiversity Commons, Biology Commons, Environmental Health and Protection Commons, and the Marine Biology Commons Recommended Citation Linardich, Christi. "Hotspots, Extinction Risk and Conservation Priorities of Greater Caribbean and Gulf of Mexico Marine Bony Shorefishes" (2016). Master of Science (MS), Thesis, Biological Sciences, Old Dominion University, DOI: 10.25777/hydh-jp82 https://digitalcommons.odu.edu/biology_etds/13 This Thesis is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. HOTSPOTS, EXTINCTION RISK AND CONSERVATION PRIORITIES OF GREATER CARIBBEAN AND GULF OF MEXICO MARINE BONY SHOREFISHES by Christi Linardich B.A. December 2006, Florida Gulf Coast University A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE BIOLOGY OLD DOMINION UNIVERSITY August 2016 Approved by: Kent E. Carpenter (Advisor) Beth Polidoro (Member) Holly Gaff (Member) ABSTRACT HOTSPOTS, EXTINCTION RISK AND CONSERVATION PRIORITIES OF GREATER CARIBBEAN AND GULF OF MEXICO MARINE BONY SHOREFISHES Christi Linardich Old Dominion University, 2016 Advisor: Dr. Kent E. Carpenter Understanding the status of species is important for allocation of resources to redress biodiversity loss.
    [Show full text]
  • Testicular Inducing Steroidogenic Cells Trigger Sex Change in Groupers
    www.nature.com/scientificreports OPEN Testicular inducing steroidogenic cells trigger sex change in groupers Ryosuke Murata1,2*, Ryo Nozu2,3,4, Yuji Mushirobira1, Takafumi Amagai1, Jun Fushimi5, Yasuhisa Kobayashi2,6, Kiyoshi Soyano1, Yoshitaka Nagahama7,8 & Masaru Nakamura2,3 Vertebrates usually exhibit gonochorism, whereby their sex is fxed throughout their lifetime. However, approximately 500 species (~ 2%) of extant teleost fshes change sex during their lifetime. Although phylogenetic and evolutionary ecological studies have recently revealed that the extant sequential hermaphroditism in teleost fsh is derived from gonochorism, the evolution of this transsexual ability remains unclear. We revealed in a previous study that the tunica of the ovaries of several protogynous hermaphrodite groupers contain functional androgen-producing cells, which were previously unknown structures in the ovaries of gonochoristic fshes. Additionally, we demonstrated that these androgen-producing cells play critical roles in initiating female-to-male sex change in several grouper species. In the present study, we widened the investigation to include 7 genera and 18 species of groupers and revealed that representatives from most major clades of extant groupers commonly contain these androgen-producing cells, termed testicular-inducing steroidogenic (TIS) cells. Our fndings suggest that groupers acquired TIS cells in the tunica of the gonads for successful sex change during their evolution. Thus, TIS cells trigger the evolution of sex change in groupers. Apart from fshes, vertebrates do not have a transsexual ability; however, approximately 2% of extant teleost fshes can change sex, an ability called sequential hermaphroditism 1–4. Sex change in fshes is widely divided into three types: female-to-male (protogyny), male-to-female (protandry), and change in both directions3–5.
    [Show full text]
  • FISHES (C) Val Kells–November, 2019
    VAL KELLS Marine Science Illustration 4257 Ballards Mill Road - Free Union - VA - 22940 www.valkellsillustration.com [email protected] STOCK ILLUSTRATION LIST FRESHWATER and SALTWATER FISHES (c) Val Kells–November, 2019 Eastern Atlantic and Gulf of Mexico: brackish and saltwater fishes Subject to change. New illustrations added weekly. Atlantic hagfish, Myxine glutinosa Sea lamprey, Petromyzon marinus Deepwater chimaera, Hydrolagus affinis Atlantic spearnose chimaera, Rhinochimaera atlantica Nurse shark, Ginglymostoma cirratum Whale shark, Rhincodon typus Sand tiger, Carcharias taurus Ragged-tooth shark, Odontaspis ferox Crocodile Shark, Pseudocarcharias kamoharai Thresher shark, Alopias vulpinus Bigeye thresher, Alopias superciliosus Basking shark, Cetorhinus maximus White shark, Carcharodon carcharias Shortfin mako, Isurus oxyrinchus Longfin mako, Isurus paucus Porbeagle, Lamna nasus Freckled Shark, Scyliorhinus haeckelii Marbled catshark, Galeus arae Chain dogfish, Scyliorhinus retifer Smooth dogfish, Mustelus canis Smalleye Smoothhound, Mustelus higmani Dwarf Smoothhound, Mustelus minicanis Florida smoothhound, Mustelus norrisi Gulf Smoothhound, Mustelus sinusmexicanus Blacknose shark, Carcharhinus acronotus Bignose shark, Carcharhinus altimus Narrowtooth Shark, Carcharhinus brachyurus Spinner shark, Carcharhinus brevipinna Silky shark, Carcharhinus faiformis Finetooth shark, Carcharhinus isodon Galapagos Shark, Carcharhinus galapagensis Bull shark, Carcharinus leucus Blacktip shark, Carcharhinus limbatus Oceanic whitetip shark,
    [Show full text]