Fish Assemblages Associated with Red Grouper Pits at Pulley Ridge, A

Total Page:16

File Type:pdf, Size:1020Kb

Fish Assemblages Associated with Red Grouper Pits at Pulley Ridge, A 419 Abstract—Red grouper (Epineph- elus morio) modify their habitat by Fish assemblages associated with red grouper excavating sediment to expose rocky pits, providing structurally complex pits at Pulley Ridge, a mesophotic reef in the habitat for many fish species. Sur- Gulf of Mexico veys conducted with remotely op- erated vehicles from 2012 through 2015 were used to characterize fish Stacey L. Harter (contact author)1 assemblages associated with grouper Heather Moe1 pits at Pulley Ridge, a mesophotic 2 coral ecosystem and habitat area John K. Reed of particular concern in the Gulf Andrew W. David1 of Mexico, and to examine whether invasive species of lionfish (Pterois Email address for contact author: [email protected] spp.) have had an effect on these as- semblages. Overall, 208 grouper pits 1 Southeast Fisheries Science Center were examined, and 66 fish species National Marine Fisheries Service, NOAA were associated with them. Fish as- 3500 Delwood Beach Road semblages were compared by using Panama City, Florida 32408 several factors but were considered 2 Harbor Branch Oceanographic Institute to be significantly different only on Florida Atlantic University the basis of the presence or absence 5600 U.S. 1 North of predator species in their pit (no Fort Pierce, Florida 34946 predators, lionfish only, red grou- per only, or both lionfish and red grouper). The data do not indicate a negative effect from lionfish. Abun- dances of most species were higher in grouper pits that had lionfish, and species diversity was higher in grouper pits with a predator (lion- The red grouper (Epinephelus morio) waters (>70 m) of the shelf edge and fish, red grouper, or both). These re- has been harvested in the United have been known to modify their sults may indicate that grouper pits States since the 1880s and is cur- habitat by excavating sediment to are a favorable habitat for both lion- rently the most common grouper spe- expose rocky depressions (or pits) on fish and native fish species or that cies landed in both commercial and the seafloor in areas where vertical the presence of lionfish is too recent recreational fisheries of the Gulf of relief is not already present (Cole- to have caused changes to fish com- Mexico (Fisheries Statistics Division, man et al., 2010). Red grouper use munity structure. National Marine Fisheries Service, these pits as their home territories Annual Commercial Landing Statis- (Scanlon et al., 2005). These exca- tics, website, and Saltwater Recre- vations increase the architectural ational Data and Statistics, website). complexity of the habitat, attract- Like other grouper species, the red ing many reef-associated species and grouper is a slow growing, late ma- providing shelter for juveniles of turing, relatively stationary, and long some economically important species lived fish (Moe1; Jory and Iversen2). and, thereby, increasing biodiversity Adult red grouper inhabit the deeper (Coleman et al., 2010). By excavat- ing the sediments, red grouper act as 1 Moe, M. A., Jr. 1969. Biology of the “ecological engineers” and may play Manuscript submitted 15 August 2016. red grouper Epinephelus morio (Valen- an important role in influencing com- Manuscript accepted 2 June 2017. ciennes) from the eastern Gulf of Mex- munity dynamics (Jones et al., 1994; Fish. Bull. 115:419–432 (2017). ico. Fla. Dep. Nat. Resour. Mar. Res. Coleman and Williams, 2002; Cole- Online publication date: 23 June 2017. Lab. Prof. Pap. Ser. 10, 95 p. 2 man et al., 2010). doi: 10.7755/FB.115.3.11 Jory, D. E., and E. S. Iversen. 1989. Species profiles: life histories and en- Grouper pits have been described vironmental requirements of coastal for 2 marine protected areas (MPAs) The views and opinions expressed or fishes and invertebrates (South Flori- implied in this article are those of the in the northeastern Gulf of Mexico: da)—black, red, and Nassau groupers, Madison-Swanson and Steamboat author (or authors) and do not necessarily 21 p. U.S. Fish Wildl. Serv. Biol. Rep. reflect the position of the National 82(11.110). U.S. Army Corps Eng., TR Lumps MPAs, which were estab- Marine Fisheries Service, NOAA. EL-82-4. [Available from website.] lished in 2000 on the shelf break (at 420 Fishery Bulletin 115(3) depths of 50–120 m) to alleviate fishing pressure on tively influence abundance and diversity of fish spe- aggregations of gag (Mycteroperca microlepis). Grouper cies (McClanahan, 1994; Öhman and Rajasuriya, 1998; pits at Steamboat Lumps consist of carbonate rocks Gratwicke and Speight, 2005; Harter et al., 2009). Most that have been scoured out from a thick veneer of of Pulley Ridge is a low relief, low rugosity, rock and carbonate-derived sediment. The pits are on average rubble habitat. The highest densities of fish reside on 5–6 m in diameter but can become as large as 25 m in 2 biologically derived habitat features that provide diameter and 1–2 m deep with a density of about 250 more structural complexity: mounds of rock rubble and pits/km2 (Scanlon et al., 2005; Coleman et al., 2010; cobble created by sand tilefish (Malacanthus plumieri) Wall et al., 2011). Pits in the Madison-Swanson MPA and grouper pits (Halley et al.7). The grouper pits are differ in their level of relief; some have a thin veneer large enough (8–15 m in diameter and 1–2 m deep) to of carbonate-derived sediments and some have more be visible in high-resolution bathymetric images col- relief (Coleman et al., 2010). lected with a multibeam sonar during a research cruise Our study area was at Pulley Ridge, a mesophotic in September 2011 (NOAA8), and up to 340 pits/km2 coral ecosystem (MCE) in the northeastern Gulf of are visible in those images. Approximately 90 species Mexico, which has large populations of red grouper and of fish, both shallow-water and deepwater species, have a high density of grouper pits. This geological feature been observed on Pulley Ridge (Jaap et al., 2015). The is a carbonate ridge that extends for nearly 300 km fish communities of Pulley Ridge have been character- along the southwestern shelf of Florida and lies about ized previously, but communities associated with the 250 km west of the Florida coastline (Hine et al., 2008). grouper pits specifically have not. The southern end of Pulley Ridge supports an MCE at Species of lionfish (Pterois spp.) first were discov- depths of 60–100 m and covers an area of ~600 km2 ered on Pulley Ridge during submersible dives in 2010 (Fig. 1; Jarrett et al., 2005; Cross et al.3; USGS4; Hine (Reed and Rogers9) when 6 fish were observed. Since et al., 2008; Reed, 2016). Mesophotic coral ecosystems then, exponential increases in the abundance of this are characterized by the presence of light-dependent population of lionfish have been observed (Andradi- corals and their associated communities, and Pulley Brown et al., 2016). It is unknown at this time wheth- Ridge is the deepest MCE on the U.S. continental shelf er red lionfish P.( volitans), devil firefishP. ( miles), or (Halley et al.5). The hard-bottom substrate along this both species exist at Pulley Ridge. At this time, posi- ridge consists of rock and coral pavements and cement- tive identification can be achieved only through genet- ed conglomerates of carbonate rubble and cobble rock ic analysis; therefore, lionfish were identified only to (5–15 cm in diameter) that provide habitat for herma- genus level for this study. The invasion of lionfish is typic corals (primarily Agaricia spp., great star coral regarded as one of the most successful colonizations of [Montastraea cavernosa], and Madracis spp.), macroal- a marine species ever documented (Albins and Hixon, gae, sponges, and a large variety of species of tropical 2008; Green and Côte, 2009; Albins, 2013). Lionfish fish (Phillips et al., 1990; Halley et al.5; Reed, 2016). first were recorded in waters of the Atlantic Ocean in The Pulley Ridge Habitat Area of Particular Concern the mid-1980s, but their range has expanded to include (HAPC) was established in 2005 by the Gulf of Mexico the Gulf of Mexico, Caribbean, and much of the tropi- Fishery Management Council6 to provide protection cal and subtropical western Atlantic Ocean (Schofield, from bottom longlines and trawls. Hook-and-line fish- 2009, 2010). Over the years, densities of lionfish in the ing, however, is still allowed. The established HAPC western Atlantic Ocean have expanded rapidly to the provides protection for 348 km2, an area that is rough- point that they are nearly 5 times more abundant in ly half the total MCE area (Reed, 2016). the invaded range (Green and Côte, 2009) than in the Structural complexity has often been shown to posi- Pacific Ocean (Kulbicki et al., 2012). High individual growth and reproductive rates (Morris and Whitfield, 2009) have contributed to the rapid increase of the 3 Cross, V., D. C. Twichell, R. B. Halley, K. T. Ciembronowicz, B. D. Jarrett, E. S. Hammar-Klose, A. C. Hine, S. D. Locker, and population in the western Atlantic Ocean. Many stud- D. F. Naar. 2005. GIS compilation of data collected from the Pulley Ridge deep coral reef region. U.S. Geol. Surv. Open-File Rep. 2005-1089. [Available from website.] 7 Halley, R., G. P. Dennis, D. Weaver, and F. Coleman. Halley, 4 USGS (U.S. Geological Survey). 2005. Recently discovered R., G. P. Dennis, D. Weaver, and F. Coleman. 2005. Part reef is deepest known off continental U.S. ScienceDaily, 5 II: characterization of the Pulley Ridge coral and fish fau- January 2005. [Internet press release available from web- na. Final report to the National Oceanic and Atmospheric site.] Administration Coral Reef Conservation Grant Program, 25 5 Halley, R.
Recommended publications
  • Modeling Gag Grouper (Mycteroperca Microlepis
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2009 Modeling gag grouper (Mycteroperca microlepis) in the Gulf of Mexico: exploring the impact of marine reserves on the population dynamics of a protogynous grouper Robert D. Ellis Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Oceanography and Atmospheric Sciences and Meteorology Commons Recommended Citation Ellis, Robert D., "Modeling gag grouper (Mycteroperca microlepis) in the Gulf of Mexico: exploring the impact of marine reserves on the population dynamics of a protogynous grouper" (2009). LSU Master's Theses. 4146. https://digitalcommons.lsu.edu/gradschool_theses/4146 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. MODELING GAG GROUPER (MYCTEROPERCA MICROLEPIS) IN THE GULF OF MEXICO: EXPLORING THE IMPACT OF MARINE RESERVES ON THE POPULATION DYNAMICS OF A PROTOGYNOUS GROUPER A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Oceanography and Coastal Sciences by Robert D. Ellis B.S., University of California Santa Barbara, 2004 August 2009 ACKNOWLEDGEMENTS I would like to thank the State of Louisiana Board of Regents for funding this research with an 8G Fellowship. My research and thesis were greatly improved by the comments and assistance of many people, first among them my advisor Dr.
    [Show full text]
  • Age Estimates of Two Large Misty Grouper, Epinephelus Mystacinus
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Aquila Digital Community Gulf and Caribbean Research Volume 21 | Issue 1 2009 Age Estimates of Two Large Misty Grouper, Epinephelus mystacinus (Serranidae) from Bermuda with a Comparison of the Age of Tropical Groupers in the Western Atlantic Brian E. Luckhurst Marine Resources Division, Bermuda John M. Dean University of South Carolina DOI: 10.18785/gcr.2101.09 Follow this and additional works at: http://aquila.usm.edu/gcr Part of the Marine Biology Commons Recommended Citation Luckhurst, B. E. and J. M. Dean. 2009. Age Estimates of Two Large Misty Grouper, Epinephelus mystacinus (Serranidae) from Bermuda with a Comparison of the Age of Tropical Groupers in the Western Atlantic. Gulf and Caribbean Research 21 (1): 73-77. Retrieved from http://aquila.usm.edu/gcr/vol21/iss1/9 This Short Communication is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf and Caribbean Research by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Gulf and CaribbeanGulf Research and Caribbean Vol 21, 73-77,Research 2009 Vol 21, 73-77, 2009 Manuscript receivedManuscript January 7,received 2009; Januaryaccepted 7, February 2009; accepted 6, 2009 February 6, 2009 Gulf and Caribbean Research Vol 21, 73-77, 2009 Manuscript received January 7, 2009; accepted February 6, 2009 SHORT COMMUNICATIONSHORT COMMUNICATION SHORT COMMUNICATION AGE ESTIMATESAGE ESTIMATES OF TWO OF LARGE TWO MISTYLARGE GROUPER, MISTY GROUPER, AGE ESTIMATES OF TWO LARGE MISTY GROUPER, EPINEPHELUSEPINEPHELUS MYSTACINUS MYSTACINUS (SERRANIDAE) (SERRANIDAE) FROM BERMUDA FROM BERMUDA EPINEPHELUS MYSTACINUS (SERRANIDAE) FROM BERMUDA WITH A WITHCOMPARISON A COMPARISON OF THE OFAGE THE OF AGETROPICAL OF TROPICAL WITH A COMPARISON OF THE AGE OF TROPICAL GROUPERSGROUPERS IN THE WESTERNIN THE WESTERN ATLANTIC ATLANTIC GROUPERS IN THE WESTERN ATLANTIC Brian E.
    [Show full text]
  • Download Book (PDF)
    e · ~ e t · aI ' A Field Guide to Grouper and Snapper Fishes of Andaman and Nicobar Islands (Family: SERRANIDAE, Subfamily: EPINEPHELINAE and Family: LUTJANIDAE) P. T. RAJAN Andaman & Nicobar Regional Station Zoological Survey of India Haddo, Port Blair - 744102 Edited by the Director, Zoological Survey of India, Kolkata Zoological Survey of India Kolkata CITATION Rajan, P. T. 2001. Afield guide to Grouper and Snapper Fishes of Andaman and Nicobar Islands. (Published - Director, Z.5.1.) Published : December, 2001 ISBN 81-85874-40-9 Front cover: Roving Coral Grouper (Plectropomus pessuliferus) Back cover : A School of Blue banded Snapper (Lutjanus lcasmira) © Government of India, 2001 ALL RIGHTS RESERVED • No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the publisher. • This book is sold subject to the condition that it shall not, by way of trade, be lent, re-sold, hired out or otherwise disposed of without the publisher'S consent, in any form of binding or cover other than that in which it is published. • The correct price of this publication is the price printed on this page. Any revised price indicated by a rubber stamp or by a sticker or by any other means is incorrect and should be unacceptable. PRICE Indian Rs. 400.00 Foreign $ 25; £ 20 Published at the Publication Division by the Director, Zoological Survey of India, 234/4, AJe Bose Road, 2nd MSO Building, (13th Floor), Nizam Palace, Calcutta-700 020 after laser typesetting by Computech Graphics, Calcutta 700019 and printed at Power Printers, New Delhi - 110002.
    [Show full text]
  • Perciformes: Epinephelidae)
    NOTE BRAZILIAN JOURNAL OF OCEANOGRAPHY, 57(2):145-147, 2009 FIRST RECORD OF PARTIAL MELANISM IN THE CONEY CEPHALOPHOLIS FULVA (PERCIFORMES: EPINEPHELIDAE) Thiony Simon 1; Jean-Christophe Joyeux 2 and Raphael Mariano Macieira 3 Universidade Federal do Espírito Santo Departamento de Oceanografia e Ecologia - Laboratório de Ictiologia (Av. Fernando Ferrari, 514, 29075-910 Vitória, ES, Brasil) [email protected]; [email protected]; [email protected] Many abnormalities in the coloration of during sampling. None, however, presented any type fishes have been recorded, including albinism, of coloration abnormality. The frequency of melanism and ambicoloration (e.g . DAHLBERG, occurrence of the anomaly was therefore estimated to 1970). Melanism, according to Gould and Pyle (1896), be 0.68 %. The specimen was photographed still fresh is characterized by the presence of an excessive (Fig. 1a) and maintained frozen until fixation in 10 % amount of pigment in tissues and skin. In fishes, formaldehyde and preservation in 70 % ethanol. The melanism may occur in varying degrees of intensity area of the melanic part of the body was estimated (PIGG, 1998) and can, in some cases, result from from a digital photography of the right side of the fish injury (DAHLBERG, 1970), genetic inheritance (Fig. 1a). A 1300-square grid was digitally overlaid (HORTH, 2006), intergeneric hybridization (ELWIN, onto the photography to determine the proportion of 1957) or parasite infestation (HSIAO, 1941). squares over melanic skin. As both sides displayed the The coney Cephalopholis fulva (Linnaeus, some pattern and extent of melanosis, there was no 1758) is distributed in the Western Atlantic from need for measuring the area on the left side, and the South Carolina, USA, to Southeastern Brazil result obtained for the right side was extrapolated for (FIGUEIREDO; MENEZES, 1980).
    [Show full text]
  • Epinephelus Chlorostigma, Brownspotted Grouper
    The IUCN Red List of Threatened Species™ ISSN 2307-8235 (online) IUCN 2008: T118358386A100463851 Scope: Global Language: English Epinephelus chlorostigma, Brownspotted Grouper Assessment by: Fennessy, S., Choat, J.H., Nair, R. & Robinson, J. View on www.iucnredlist.org Citation: Fennessy, S., Choat, J.H., Nair, R. & Robinson, J. 2018. Epinephelus chlorostigma. The IUCN Red List of Threatened Species 2018: e.T118358386A100463851. http://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.T118358386A100463851.en Copyright: © 2018 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale, reposting or other commercial purposes is prohibited without prior written permission from the copyright holder. For further details see Terms of Use. The IUCN Red List of Threatened Species™ is produced and managed by the IUCN Global Species Programme, the IUCN Species Survival Commission (SSC) and The IUCN Red List Partnership. The IUCN Red List Partners are: Arizona State University; BirdLife International; Botanic Gardens Conservation International; Conservation International; NatureServe; Royal Botanic Gardens, Kew; Sapienza University of Rome; Texas A&M University; and Zoological Society of London. If you see any errors or have any questions or suggestions on what is shown in this document, please provide us with feedback so that we can correct or extend the information provided. THE IUCN RED LIST OF THREATENED SPECIES™ Taxonomy Kingdom Phylum Class Order Family Animalia Chordata Actinopterygii Perciformes Epinephelidae Taxon Name: Epinephelus chlorostigma (Valenciennes, 1828) Synonym(s): • Serranus areolatus ssp.
    [Show full text]
  • Diet Composition of Juvenile Black Grouper (Mycteroperca Bonaci) from Coastal Nursery Areas of the Yucatán Peninsula, Mexico
    BULLETIN OF MARINE SCIENCE, 77(3): 441–452, 2005 NOTE DIET COMPOSITION OF JUVENILE BLACK GROUPER (MYCTEROPERCA BONACI) FROM COASTAL NURSERY AREAS OF THE YUCATÁN PENINSULA, MEXICO Thierry Brulé, Enrique Puerto-Novelo, Esperanza Pérez-Díaz, and Ximena Renán-Galindo Groupers (Epinephelinae, Epinephelini) are top-level predators that influence the trophic web of coral reef ecosystems (Parrish, 1987; Heemstra and Randall, 1993; Sluka et al., 2001). They are demersal mesocarnivores and stalk and ambush preda- tors that sit and wait for larger moving prey such as fish and mobile invertebrates (Cailliet et al., 1986). Groupers contribute to the ecological balance of complex tropi- cal hard-bottom communities (Sluka et al., 1994), and thus large changes in their populations may significantly alter other community components (Parrish, 1987). The black grouper (Mycteroperca bonaci Poey, 1860) is an important commercial and recreational fin fish resource in the western Atlantic region (Bullock and Smith, 1991; Heemstra and Randall, 1993). The southern Gulf of Mexico grouper fishery is currently considered to be deteriorated and M. bonaci, along with red grouper (Epinephelus morio Valenciennes, 1828) and gag (Mycteroperca microlepis Goode and Bean, 1880), is one of the most heavily exploited fish species in this region (Co- lás-Marrufo et al., 1998; SEMARNAP, 2000). Currently, M. bonaci is considered a threatened species (Morris et al., 2000; IUCN, 2003) and has been classified as vul- nerable in U.S. waters because male biomass in the Atlantic dropped from 20% in 1982 to 6% in 1995 (Musick et al., 2000). The black grouper is usually found on irregular bottoms such as coral reefs, drop- off walls, and rocky ledges, at depths from 10 to 100 m (Roe, 1977; Manooch and Mason, 1987; Bullock and Smith, 1991; Heemstra and Randall, 1993).
    [Show full text]
  • V a Tion & Management of Reef Fish Sp a Wning Aggrega Tions
    handbook CONSERVATION & MANAGEMENT OF REEF FISH SPAWNING AGGREGATIONS A Handbook for the Conservation & Management of Reef Fish Spawning Aggregations © Seapics.com Without the Land and the Sea, and their Bounties, the People and their Traditional Ways would be Poor and without Cultural Identity Fijian Proverb Why a Handbook? 1 What are Spawning Aggregations? 2 How to Identify Spawning Aggregations 2 Species that Aggregate to Spawn 2 Contents Places Where Aggregations Form 9 Concern for Spawning Aggregations 10 Importance for Fish and Fishermen 10 Trends in Exploited Aggregations 12 Managing & Conserving Spawning Aggregations 13 Research and Monitoring 13 Management Options 15 What is SCRFA? 16 How can SCRFA Help? 16 SCRFA Work to Date 17 Useful References 18 SCRFA Board of Directors 20 Since 2000, scientists, fishery managers, conservationists and politicians have become increasingly aware, not only that many commercially important coral reef fish species aggregate to spawn (reproduce) but also that these important reproductive gatherings are particularly susceptible to fishing. In extreme cases, when fishing pressure is high, aggregations can dwindle and even cease to form, sometimes within just a few years. Whether or not they will recover and what the long-term effects on the fish population(s) might be of such declines are not yet known. We do know, however, that healthy aggregations tend to be associated with healthy fisheries. It is, therefore, important to understand and better protect this critical part of the life cycle of aggregating species to ensure that they continue to yield food and support livelihoods. Why a Handbook? As fishing technology improved in the second half of the twentieth century, engines came to replace sails and oars, the cash economy developed rapidly, and human populations and demand for seafood grew, the pressures on reef fishes for food, and especially for money, increased enormously.
    [Show full text]
  • Fish Populations and Habitat Assessment on the Oculina Bank
    195 Abstract—A portion of the Oculina Assessment of fish populations and habitat Bank located off eastern Florida is a marine protected area (MPA) pre- on Oculina Bank, a deep-sea coral marine served for its dense populations of the ivory tree coral (Oculina varicosa), protected area off eastern Florida which provides important habitat for fish. Surveys of fish assemblages Stacey L. Harter (contact author)1 and benthic habitat were conducted 1 inside and outside the MPA in 2003 Marta M. Ribera and 2005 by using remotely operated Andrew N. Shepard2 vehicle video transects and digital 3 still imagery. Fish species composi- John K. Reed tion, biodiversity, and grouper densi- Email address for contact author: [email protected] ties were used to determine whether 1 National Marine Fisheries Service O. varicosa forms an essential habitat Southeast Fisheries Science Center compared to other structure-forming 3500 Delwood Beach Rd. habitats and to examine the effective- Panama City, Florida 32408 ness of the MPA. Multivariate analy- 2 NOAA Undersea Research Center ses indicated no differences in fish University of North Carolina at Wilmington assemblages or biodiversity among 5600 Marvin Moss Lane hardbottom habitat types and grou- Wilmington, North Carolina 28409 per densities were highest among the most complex habitats; however the 3 Harbor Branch Oceanographic Institute higher densities were not exclusive to Florida Atlantic University coral habitat. Therefore, we conclude 5600 U.S. 1 North that O. varicosa was functionally Ft. Pierce, Florida 34946 equivalent to other hardbottom habi- tats. Even though fish assemblages were not different among manage- ment areas, biodiversity and grouper densities were higher inside the MPA compared to outside.
    [Show full text]
  • Academic Paper on “Restricting the Size of Groupers (Serranidae
    ACADEMIC PAPER ON “RESTRICTING THE SIZE OF GROUPERS (SERRANIDAE) EXPORTED FROM INDONESIA IN THE LIVE REEF FOOD FISH TRADE” Coastal and Marine Resources Management in the Coral Triangle-Southeast Asia (TA 7813-REG) Tehcnical Report ACADEMIC PAPER ON RESTRICTING THE SIZE OFLIVE GROUPERS FOR EXPORT ACADEMIC PAPER ON “RESTRICTING THE SIZE OF GROUPERS (SERRANIDAE) EXPORTED FROM INDONESIA IN THE LIVE REEF FOOD FISH TRADE” FINAL VERSION COASTAL AND MARINE RESOURCES MANAGEMENT IN THE CORAL TRIANGLE: SOUTHEAST ASIA, INDONESIA, MALAYSIA, PHILIPPINES (TA 7813-REG) ACADEMIC PAPER ON RESTRICTING THE SIZE OFLIVE GROUPERS FOR EXPORT Page i FOREWORD Indonesia is the largest exporter of live groupers for the live reef fish food trade. This fisheries sub-sector plays an important role in the livelihoods of fishing communities, especially those living on small islands. As a member of the Coral Triangle Initiative (CTI), in partnership with the Asian Development Bank (ADB) under RETA [7813], Indonesia (represented by a team from Hasanuddin University) has compiled this academic paper as a contribution towards sustainable management of live reef fish resources in Indonesia. Challenges faced in managing the live grouper fishery and trade in Indonesia include the ongoing activities and practices which damage grouper habitat; the lack of protection for grouper spawning sites; overfishing of groupers which have not yet reached sexual maturity/not reproduced; and the prevalence of illegal and unreported fishing for live groupers. These factors have resulted in declining wild grouper stocks. The Aquaculture sector is, at least as yet, unable to replace or enable a balanced wild caught fishery, and thus there is still a heavy reliance on wild-caught groupers.
    [Show full text]
  • Sharkcam Fishes
    SharkCam Fishes A Guide to Nekton at Frying Pan Tower By Erin J. Burge, Christopher E. O’Brien, and jon-newbie 1 Table of Contents Identification Images Species Profiles Additional Info Index Trevor Mendelow, designer of SharkCam, on August 31, 2014, the day of the original SharkCam installation. SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 5th edition by Erin J. Burge, Christopher E. O’Brien, and jon-newbie is licensed under the Creative Commons Attribution-Noncommercial 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0/. For questions related to this guide or its usage contact Erin Burge. The suggested citation for this guide is: Burge EJ, CE O’Brien and jon-newbie. 2020. SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 5th edition. Los Angeles: Explore.org Ocean Frontiers. 201 pp. Available online http://explore.org/live-cams/player/shark-cam. Guide version 5.0. 24 February 2020. 2 Table of Contents Identification Images Species Profiles Additional Info Index TABLE OF CONTENTS SILVERY FISHES (23) ........................... 47 African Pompano ......................................... 48 FOREWORD AND INTRODUCTION .............. 6 Crevalle Jack ................................................. 49 IDENTIFICATION IMAGES ...................... 10 Permit .......................................................... 50 Sharks and Rays ........................................ 10 Almaco Jack ................................................. 51 Illustrations of SharkCam
    [Show full text]
  • Marine Ecology Progress Series 573:215
    This authors' personal copy may not be publicly or systematically copied or distributed, or posted on the Open Web, except with written permission of the copyright holder(s). It may be distributed to interested individuals on request. Vol. 573: 215–228, 2017 MARINE ECOLOGY PROGRESS SERIES Published June 21 https://doi.org/10.3354/meps12164 Mar Ecol Prog Ser Diet shifts in a native mesopredator across a range of invasive lionfish biomass Joseph S. Curtis1,*, Kara R. Wall1, Mark A. Albins2, Christopher D. Stallings1 1College of Marine Science, University of South Florida, St. Petersburg, FL 33705, USA 2University of South Alabama, Mobile, AL 36608, USA ABSTRACT: In marine ecosystems, little is known about how competition with invasive fishes may affect the resource use of native predators. Throughout the western Atlantic, invasive Indo-Pacific lionfishes (Pterois spp.) are likely to compete with native mesopredators such as the graysby Cephalopholis cruentata, an ecologically similar serranid. In conjunction with a before-after- control- impact lionfish removal experiment, this study measured whether graysby population size, diet, and condition varied in relation to cohabitant lionfish biomass. Lionfish, graysby, and prey popu- lations were surveyed and sampled along a contiguous reef ledge in Biscayne National Park, south Florida. Mesopredator diet was measured with stable isotope (δ13C and δ15N) and gut con- tent analyses, and isotopic niches were used to compare patterns of inter- and intraspecific resource use diversity. The isotopic niches of graysby and lionfishes overlapped by 67%, suggest- ing similar population-level resource use. On sites with higher lionfish biomass, graysby isotopic niche was 34% smaller and overlapped 47% less with that of lionfishes, possibly indicating both a narrower breadth of resource use and associated interspecific niche segregation.
    [Show full text]
  • FAU Institutional Repository
    FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©1994 John Wiley & Sons, Inc. This manuscript is an author version with the final publication available at http://www.wiley.com/WileyCDA/ and may be cited as: Tucker, J. W., Jr. (1994). Spawning by captive serranid fishes: a review. Journal of the World Aquaculture Society, 25(3), 345‐ 359. doi:10.1111/j.1749‐7345.1994.tb00218.x JOURNAL OF THE Vol. 25, No.3 WORLD AQUACULTURE SOCIETY September, 1994 Spawning by Captive Serranid Fishes: A Review JOHN W. TUCKER, JR. Harbor Branch Oceanographic Institution. 5600 North U.S. Highway 1. Fort Pierce. Florida 34946 USA Abstract The current available information on spawning by serranid fishes in captivity is reviewed. Much work has been done on members of thefamily Serranidae becauseof their value as food or ornamental fish. At least 31 species have been induced to ovulate with honnones, and at least 23 species have spawned voluntarily (without chemical treatment) in captivity. Typically, a serranid female with fully-yolked oocytes will ovulate within 24-72 h (usually 36-50 h) after the first of 1-3 injectious of 500-1,000 IU human chorionic gonadotropin/kg body weight. Similar results have been obtained for several species given 1-3 injections of 10-50 Ilg luteinizing hormone-releasing hormone analogi kg body weight. Voluntary spawning has occurred mostly with well-fed uncrowded fish during the natural spawning season under conditions of ambient temperature and partial or total natural light.
    [Show full text]