Modeling Gag Grouper (Mycteroperca Microlepis
Total Page:16
File Type:pdf, Size:1020Kb
Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2009 Modeling gag grouper (Mycteroperca microlepis) in the Gulf of Mexico: exploring the impact of marine reserves on the population dynamics of a protogynous grouper Robert D. Ellis Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Oceanography and Atmospheric Sciences and Meteorology Commons Recommended Citation Ellis, Robert D., "Modeling gag grouper (Mycteroperca microlepis) in the Gulf of Mexico: exploring the impact of marine reserves on the population dynamics of a protogynous grouper" (2009). LSU Master's Theses. 4146. https://digitalcommons.lsu.edu/gradschool_theses/4146 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. MODELING GAG GROUPER (MYCTEROPERCA MICROLEPIS) IN THE GULF OF MEXICO: EXPLORING THE IMPACT OF MARINE RESERVES ON THE POPULATION DYNAMICS OF A PROTOGYNOUS GROUPER A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Oceanography and Coastal Sciences by Robert D. Ellis B.S., University of California Santa Barbara, 2004 August 2009 ACKNOWLEDGEMENTS I would like to thank the State of Louisiana Board of Regents for funding this research with an 8G Fellowship. My research and thesis were greatly improved by the comments and assistance of many people, first among them my advisor Dr. Joseph Powers who provided valuable insight into the research process as well as general guidance and advice regarding my education. Thanks also to my committee members Dr. Dubravko Justic and Dr. Jay Geaghan whose comments throughout the process helped me to improve this thesis, and to Dr. Kenny Rose, in whose class the first version of the IBM was written, who provided not only valuable assistance with coding but also was a constant competitor on the basketball court. Thanks go out to all the assorted graduate students from the Department of Oceanography and Coastal Sciences and the members of the Marine Environmental Researchers, especially the other members of the Powers Lab, Shane Abeare and Melissa Hedges, and my office-mate Christian Briseno. Lastly, thanks to my mom for her unflagging confidence in her son, and to my grandfather for his constant encouragement throughout my academic life. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS ............................................................................................................ ii ABSTRACT .....................................................................................................................................v CHAPTER 1: GENERAL INTRODUCTION ................................................................................1 1.1 Gag Life History .....................................................................................................................1 1.2 Review of Protogyny ..............................................................................................................5 1.3 Marine Reserves .....................................................................................................................8 1.4 Managing Protogynous Fish Stocks .....................................................................................11 1.5 Objectives and Modeling Approaches .................................................................................13 CHAPTER 2: AGE-STRUCTURED MODEL ............................................................................16 2.1 Introduction ..........................................................................................................................16 2.2 Methods ................................................................................................................................18 2.2.1 Model Description .......................................................................................................18 2.2.2 Management Options ..................................................................................................23 2.2.3 Model Simulations ......................................................................................................25 2.3 Results ..................................................................................................................................26 2.4 Discussion ............................................................................................................................32 CHAPTER 3: INDIVIDUAL BASED MODEL ..........................................................................37 3.1 Introduction ..........................................................................................................................37 3.2 Methods ................................................................................................................................39 3.2.1 Model Description .......................................................................................................39 3.2.2 Management Options ...................................................................................................44 3.2.3 Model Simulations.......................................................................................................47 3.3 Results ..................................................................................................................................48 3.4 Discussion ............................................................................................................................56 CHAPTER 4: DENSITY-DEPENDENT SEX CHANGE ...........................................................60 4.1 Introduction ..........................................................................................................................60 4.2 Methods ................................................................................................................................64 4.2.1 Age-Structured Model .................................................................................................64 4.2.2 Individual Based Model ..............................................................................................67 4.3 Results ..................................................................................................................................69 4.3.1 Age-Structured Model .................................................................................................71 4.3.2 Individual Based Model ..............................................................................................76 4.4 Discussion ............................................................................................................................80 4.4.1 Age-Structured Model .................................................................................................80 4.4.2 Individual Based Model ..............................................................................................82 4.4.3 General Considerations ...............................................................................................84 CHAPTER 5: MODEL COMPARISON AND CONCLUSION .................................................86 5.1 Model Comparison ...............................................................................................................86 5.1.1 Fixed Sex Change ........................................................................................................86 iii 5.1.2 Density-Dependent Sex Change ..................................................................................92 5.2 Management Recommendations ..............................................................................................93 5.3 Conclusion ...............................................................................................................................95 REFERENCES ..............................................................................................................................97 APPENDIX A: AGE-STRUCTURED MODEL CODE .............................................................102 APPENDIX B: INDIVIDUAL BASED MODEL CODE ...........................................................113 VITA ............................................................................................................................................124 iv ABSTRACT The gag grouper (Mycteroperca microlepis) population in the Gulf of Mexico supports both a commercial and recreational fishery but has experienced a decrease in the male to female sex ratio over the past thirty years. Protogynous fish populations naturally have a smaller male to female ratio than gonochoristic fish populations; however the decline in the gag population is such that sperm limitation may be occurring. In an effort to correct the decline in sex ratio, fishery managers have recently implemented two marine reserves designed specifically to protect gag spawning aggregations. Results from two population models (an age-structured model and an individual based model) suggest that utilizing marine reserves in the management of gag (a female-first protogynous grouper) may be an effective method to increase the male