Mycteroperca Tigris (Valenciennes, 1833) MKT Frequent Synonyms / Misidentifications: None / None

Total Page:16

File Type:pdf, Size:1020Kb

Mycteroperca Tigris (Valenciennes, 1833) MKT Frequent Synonyms / Misidentifications: None / None click for previous page Perciformes: Percoidei: Serranidae 1359 Mycteroperca tigris (Valenciennes, 1833) MKT Frequent synonyms / misidentifications: None / None. FAO names: En - Tiger grouper; Fr - Badèche tigre; Sp - Cuna gata. Diagnostic characters:Body depth contained 3.1 to 3.6 times, head length 2.5 to 2.8 times in standard length (for fish 19 to 43 cm standard length). Rear nostrils of adults 3 to 5 times larger than front nostrils. Teeth large, canines well developed. Preopercle without a projecting bony lobe at ‘corner’. Gill rakers on first arch short, 8 (including 5 or 6 rudiments) on upper limb, 15 to 17 (including 7 to 9 rudiments) on lower limb, total 23 to 25. Dorsal fin with 11 spines and 15 to 17 soft rays, the interspinous membranes distinctly in- dented; anal fin with 3 spines and 11 soft rays; soft dorsal and anal fins pointed, with middle rays elon- gate in large adults; caudal fin rounded in juveniles, truncate to emarginate with exserted rays in fish 60 to 80 cm; pectoral-fin rays 17. Midlateral body scales ctenoid in juveniles, smooth in adults; lateral-line scales 82 or 83;lateral-scale series about 120.Colour: adults greenish brown to brownish grey with close-set, small, brown or orange-brown spots, the interspaces forming a pale green or whitish network; head and body darker dorsally, with 9 to 11 alternating oblique pale stripes and broader dark bars; median fins with irregular pale spots and stripes; pectoral fins pale yellow distally; inside of mouth reddish orange or dusky orange-yel- low. Live coloration of small juveniles (3 to 10 cm standard length) yellow, with blackish brown midlateral stripe from tip of lower jaw through eye and along body almost to caudal fin, the stripes of left and right sides do not meet on lower jaw, and become fainter with growth, being mostly obscured by the dark oblique dorsal bars on the body of fish larger than 20 cm standard length.Small juveniles may show the oblique dark bars of adults as a stress pattern. Size: Maximum total length 100 cm; maximum weight at least 10 kg. Habitat, biology, and fisheries: On coral reefs and rocky bottom in 10 to 40 m. The size/sex distribution of Bermuda and Puerto Rican fish indicates that M. tigris is a protogynous hermaphrodite: all fish less than 37 cm were females, and all fish larger than 45 cm were males. A spawning aggregation was observed at Puerto Rico in February 1992. Males in courtship displayed a pale yellow to bronze head, pectoral fins black with yellow tip, anal-fin base and area on body above anal fin white. Females exhibited the usual colour and pattern, but a white blotch like that of males was displayed at the time of spawning, when the female rose off the bottom to join a male hovering 1 to 2 m above the bottom and displaying an intensely pale head and white ven- tral area. Gametes were released as the fish came together a few metres above the bottom. Annual fecundity estimates for 13 females 255 to 375 mm standard length ranged from 154 030 to 986 217 oocytes per fish. Sexual maturity is estimated to be attained at 2 years (25 cm standard length) and a fish of 42 cm standard length is 9 years old. A sedentary am- bush predator that feeds almost exclusively on a wide variety of fishes. Of commercial interest in the Caribbean. Caught with traps, hook-and-line, and with spears. Distribution: Bermuda; south Florida, Gulf of Mexico (common on the Flower Garden Banks off Texas), West Indies, Venezuela (oceanic is- lands but not known from the mainland) to south- ern Brazil. 1360 Bony Fishes Mycteroperca venenosa (Linnaeus, 1758) MKV Frequent synonyms / misidentifications: None / None. FAO Names: En - Yellowfin grouper; Fr - Badèche de roche; Sp - Cuna de piedra. Diagnostic characters: Body depth contained 2.9 to 3.2 times, head length 2.6-2.9 times in standard length (for fish 15 to 54 cm standard length); in standard length. Nostrils subequal or rear nostrils about twice di- ameter of anterior nostrils. Interorbital area convex; preopercle evenly rounded or with a slight notch, but no projecting bony lobe at angle.Gill rakers on first arch 8 to 10 on upper limb, 17 to 18 on lower limb, in- cluding 4 to 7 rudiments on each limb, total 24 to 27. Dorsal fin with 11 spines and 15 or 16 soft rays, the interspinous membranes distinctly indented; anal fin with 3 spines and 10 to 12 soft rays; soft dorsal- and anal-fin margins rounded; no exserted fin rays; caudal fin truncate in juveniles, concave in adults; pectoral-fin rays 16 to 18. Midlateral body scales ctenoid in juveniles, smooth in adults, with numerous auxil- iary scales;lateral-line scales 72 to 81;lateral-scale series 111 to 125. Colour: 2 colour morphs:a deep-water reddish form and a shallow-water greenish form; head and body with oblong dark blotches overlying groups of small black spots; ventral part of head and body with dark red spots; soft dorsal, anal, and caudal fins with dark margin and white edge; distal third of pectoral fins abruptly yellow, the basal part of fin with small irregular dark spots. Habitat, biology and fisheries: Juveniles occur in shallow turtle grass beds; adults usually found on rocky and coral reefs in depths of 2 to 137 m, but has also been taken in trawls over mud bottoms in the northern Gulf of Mexico.Spawning occurs at Bermuda in July, in the Florida Keys during March, in the eastern Gulf of Mexico from March to August, at Jamaica from February to April and off Puerto Rico in April.Batch fecundity estimates of vitellogenic eggs for 2 fish, 696 and 725 mm standard length, are 2.0 X 106 and 2.8 X 106 respectively.Ripe males as small as 54 cm standard length were found in the Florida Keys population. The food at 18 to 75 cm standard length was 95% fishes (mainly coral reef species ) and 4% squids. One of the most abundant group- ers in the Caribbean. Although often implicated in ciguatera poisonings (as its name implies), a desirable foodfish;and even large fish (5 to 10 kg) from localities considered safe are readily sold in markets.Caught with traps, spears, and hook-and-line. Size: Attains at least 100 cm total length. The 2002 all-tackle record of the International Game Fish Association is a 18.48 kg fish caught off Texas. Distribution: Bermuda, North Carolina, south Florida, Gulf of Mexico (rare), West Indies, Hon- duras, Nicaragua, Venezuela (common at Islas Los Roques and Blanquilla) to São Paulo, Brazil. Remarks: Local Names: Bermuda: red rockfish, princess rockfish;Cuba:bonaci cardenal, arigua, bonaci de piedra; Venezuela: cuna cucaracha, cuna cabrilla. Perciformes: Percoidei: Serranidae 1361 Paralabrax dewegeri (Metzelaar, 1919) Frequent synonyms / misidentifications: Serranus dewegeri Metzelaar, 1919 / None. FAO names: En - Vieja; Fr - Serran vieux; Sp - Mero viejo. Diagnostic characters: Body depth contained 2.3 to 2.9 times, head length 2.2 to 2.6 times in standard length (for fish 12 to 35 cm standard length). Anterior nostril a short tube with fimbriate flap posteri- orly; posterior nostril with a low fimbriate flange. Interorbital area flat; preopercle evenly rounded, finely serrate;upper spine on opercle blunt and inconspicuous, middle and lower spines sharp and exposed.Maxilla naked, reaching vertical at centre of eye; no supramaxilla; jaws with short, conical teeth; villiform teeth on vomer and palatines. Gill rakers on first arch on upper limb 7, lower limb 14 (including 4 rudiments), total 21. Dorsal fin with 10 spines and 13 or 14 soft rays, the third and fourth spines distinctly longer than others and about equal to longest dorsal rays; the interspinous membranes distinctly indented; anal fin with 3 spines and 7 soft rays; soft dorsal and anal fin margins rounded; caudal fin truncate, with 15 branched rays; pectoral-fin rays 17. Midlateral body scales ctenoid; lateral-line scales 55 to 58; lateral-scale series 75 to 85.Colour: dorsal part of head and body mottled with irregular spots of dark brown and greenish white;ventral part of body with 6 or 7 dark brown or blackish vertical bars that reach almost to the ventral midline and are wider than the greenish white interspaces. Sides of head with rounded, brownish orange spots (some joined) on a pale greenish background.A row of small, rounded, blackish spots from rear end of maxilla to base of pel- vic fins. Throat dusky yellow. Pectoral fin greyish brown, the base with a round dark brown spot followed by a white area and 4 spots forming a dark brown semicircle. Rear margin of caudal fin orange dorsally, the rest of fin with round greyish spots;margin of soft dorsal fin orange, rest of fin with round greyish spots like the spinous dorsal and anal fin. The colours of juveniles more vivid and more distinctly contrasting. Size: Maximum about 40 cm and a weight of 1.3 kg. Habitat, biology, and fisheries: Found in a variety of habitats from shore to 50 m; juveniles occur in seagrass beds; adults are common in 10 to 25 m among soft corals. Feeds mainly on crustaceans (crabs and shrimps) and also fishes, molluscs, worms, and brittle stars. A protogynous hermaphrodite, with fe- males mature at 11 cm standard length. Flesh ex- cellent, but not of much commercial importance because of its relatively small size (compared to most groupers), and it is usually caught in small numbers. Caught with traps and hook-and-line.
Recommended publications
  • Modeling Gag Grouper (Mycteroperca Microlepis
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2009 Modeling gag grouper (Mycteroperca microlepis) in the Gulf of Mexico: exploring the impact of marine reserves on the population dynamics of a protogynous grouper Robert D. Ellis Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Oceanography and Atmospheric Sciences and Meteorology Commons Recommended Citation Ellis, Robert D., "Modeling gag grouper (Mycteroperca microlepis) in the Gulf of Mexico: exploring the impact of marine reserves on the population dynamics of a protogynous grouper" (2009). LSU Master's Theses. 4146. https://digitalcommons.lsu.edu/gradschool_theses/4146 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. MODELING GAG GROUPER (MYCTEROPERCA MICROLEPIS) IN THE GULF OF MEXICO: EXPLORING THE IMPACT OF MARINE RESERVES ON THE POPULATION DYNAMICS OF A PROTOGYNOUS GROUPER A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Oceanography and Coastal Sciences by Robert D. Ellis B.S., University of California Santa Barbara, 2004 August 2009 ACKNOWLEDGEMENTS I would like to thank the State of Louisiana Board of Regents for funding this research with an 8G Fellowship. My research and thesis were greatly improved by the comments and assistance of many people, first among them my advisor Dr.
    [Show full text]
  • Pacific Plate Biogeography, with Special Reference to Shorefishes
    Pacific Plate Biogeography, with Special Reference to Shorefishes VICTOR G. SPRINGER m SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 367 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoo/ogy Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world cf science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]
  • Final Report Characterization of Commercial Reef Fish Catch And
    SEDAR 15-RD07 Final Report Characterization of commercial reef fish catch and bycatch off the southeast coast of the United States. CRP Grant No. NA03NMF4540416 Funding amount: $100,000 Federal $4,130 Match Patrick J. Harris and Jessica Stephen Marine Resources Research Institute South Carolina Department of Natural Resources 217 Fort Johnson Road P.O. Box 12559 Charleston, SC 29412 I. Characterization of commercial reef fish catch and bycatch off the southeast coast of the United States. Patrick J. Harris, South Carolina Department of Natural Resources, Charleston, SC 29412. Grant Number: NA03NMF4540416 July 2005. II. Abstract There is clearly a need to characterize the entire catch of commercial fishermen and compare differences in abundance and species diversity to what is caught in fishery-independent gear. As we move towards a multi-species management approach, these types of data are essential. In addition, estimates of release mortality are needed for stock assessments but currently this is not being measured for fishery-dependent data. Many reef fishes captured at depths greater than ~ 20 m often have problems submerging when released by commercial fishermen. The goal of the research project was to characterize the entire (retained and discarded) catch of reef fishes from a selected commercial fisherman including total catch composition and disposition of fishes that were released. During April- November 2004, Captain Mark Marhefka dedicated one fishing trip (5-7 day duration) each month to the collection of fishery-dependent data. Date, location and collection number were recorded for each site fished by Captain Marhefka using a PDA equipped with a GPS.
    [Show full text]
  • Download Book (PDF)
    e · ~ e t · aI ' A Field Guide to Grouper and Snapper Fishes of Andaman and Nicobar Islands (Family: SERRANIDAE, Subfamily: EPINEPHELINAE and Family: LUTJANIDAE) P. T. RAJAN Andaman & Nicobar Regional Station Zoological Survey of India Haddo, Port Blair - 744102 Edited by the Director, Zoological Survey of India, Kolkata Zoological Survey of India Kolkata CITATION Rajan, P. T. 2001. Afield guide to Grouper and Snapper Fishes of Andaman and Nicobar Islands. (Published - Director, Z.5.1.) Published : December, 2001 ISBN 81-85874-40-9 Front cover: Roving Coral Grouper (Plectropomus pessuliferus) Back cover : A School of Blue banded Snapper (Lutjanus lcasmira) © Government of India, 2001 ALL RIGHTS RESERVED • No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the publisher. • This book is sold subject to the condition that it shall not, by way of trade, be lent, re-sold, hired out or otherwise disposed of without the publisher'S consent, in any form of binding or cover other than that in which it is published. • The correct price of this publication is the price printed on this page. Any revised price indicated by a rubber stamp or by a sticker or by any other means is incorrect and should be unacceptable. PRICE Indian Rs. 400.00 Foreign $ 25; £ 20 Published at the Publication Division by the Director, Zoological Survey of India, 234/4, AJe Bose Road, 2nd MSO Building, (13th Floor), Nizam Palace, Calcutta-700 020 after laser typesetting by Computech Graphics, Calcutta 700019 and printed at Power Printers, New Delhi - 110002.
    [Show full text]
  • Perciformes: Epinephelidae)
    NOTE BRAZILIAN JOURNAL OF OCEANOGRAPHY, 57(2):145-147, 2009 FIRST RECORD OF PARTIAL MELANISM IN THE CONEY CEPHALOPHOLIS FULVA (PERCIFORMES: EPINEPHELIDAE) Thiony Simon 1; Jean-Christophe Joyeux 2 and Raphael Mariano Macieira 3 Universidade Federal do Espírito Santo Departamento de Oceanografia e Ecologia - Laboratório de Ictiologia (Av. Fernando Ferrari, 514, 29075-910 Vitória, ES, Brasil) [email protected]; [email protected]; [email protected] Many abnormalities in the coloration of during sampling. None, however, presented any type fishes have been recorded, including albinism, of coloration abnormality. The frequency of melanism and ambicoloration (e.g . DAHLBERG, occurrence of the anomaly was therefore estimated to 1970). Melanism, according to Gould and Pyle (1896), be 0.68 %. The specimen was photographed still fresh is characterized by the presence of an excessive (Fig. 1a) and maintained frozen until fixation in 10 % amount of pigment in tissues and skin. In fishes, formaldehyde and preservation in 70 % ethanol. The melanism may occur in varying degrees of intensity area of the melanic part of the body was estimated (PIGG, 1998) and can, in some cases, result from from a digital photography of the right side of the fish injury (DAHLBERG, 1970), genetic inheritance (Fig. 1a). A 1300-square grid was digitally overlaid (HORTH, 2006), intergeneric hybridization (ELWIN, onto the photography to determine the proportion of 1957) or parasite infestation (HSIAO, 1941). squares over melanic skin. As both sides displayed the The coney Cephalopholis fulva (Linnaeus, some pattern and extent of melanosis, there was no 1758) is distributed in the Western Atlantic from need for measuring the area on the left side, and the South Carolina, USA, to Southeastern Brazil result obtained for the right side was extrapolated for (FIGUEIREDO; MENEZES, 1980).
    [Show full text]
  • Diet Composition of Juvenile Black Grouper (Mycteroperca Bonaci) from Coastal Nursery Areas of the Yucatán Peninsula, Mexico
    BULLETIN OF MARINE SCIENCE, 77(3): 441–452, 2005 NOTE DIET COMPOSITION OF JUVENILE BLACK GROUPER (MYCTEROPERCA BONACI) FROM COASTAL NURSERY AREAS OF THE YUCATÁN PENINSULA, MEXICO Thierry Brulé, Enrique Puerto-Novelo, Esperanza Pérez-Díaz, and Ximena Renán-Galindo Groupers (Epinephelinae, Epinephelini) are top-level predators that influence the trophic web of coral reef ecosystems (Parrish, 1987; Heemstra and Randall, 1993; Sluka et al., 2001). They are demersal mesocarnivores and stalk and ambush preda- tors that sit and wait for larger moving prey such as fish and mobile invertebrates (Cailliet et al., 1986). Groupers contribute to the ecological balance of complex tropi- cal hard-bottom communities (Sluka et al., 1994), and thus large changes in their populations may significantly alter other community components (Parrish, 1987). The black grouper (Mycteroperca bonaci Poey, 1860) is an important commercial and recreational fin fish resource in the western Atlantic region (Bullock and Smith, 1991; Heemstra and Randall, 1993). The southern Gulf of Mexico grouper fishery is currently considered to be deteriorated and M. bonaci, along with red grouper (Epinephelus morio Valenciennes, 1828) and gag (Mycteroperca microlepis Goode and Bean, 1880), is one of the most heavily exploited fish species in this region (Co- lás-Marrufo et al., 1998; SEMARNAP, 2000). Currently, M. bonaci is considered a threatened species (Morris et al., 2000; IUCN, 2003) and has been classified as vul- nerable in U.S. waters because male biomass in the Atlantic dropped from 20% in 1982 to 6% in 1995 (Musick et al., 2000). The black grouper is usually found on irregular bottoms such as coral reefs, drop- off walls, and rocky ledges, at depths from 10 to 100 m (Roe, 1977; Manooch and Mason, 1987; Bullock and Smith, 1991; Heemstra and Randall, 1993).
    [Show full text]
  • 011706 Status Report on the Goliath Grouper
    Status report on the continental United States distinct population segment of the goliath grouper (Epinephelus itajara) January 2006 National Marine Fisheries Service Southeast Regional Office 263 13th Avenue South St. Petersburg, FL 33701 Acknowledgements The authors acknowledge and appreciate the efforts of all who contributed to the contents of this report. In particular, we wish to recognize Lew Bullock, Felicia Coleman, Chris Koenig, and Rich McBride for reviewing the draft document. The participation and considerable contributions to the contents of the report by Andy Strelcheck and Peter Hood are also greatly appreciated. The team responsible for compiling this report included: Michael Barnette, Stephania Bolden, Jennifer Moore, Clay Porch, Jennifer Schull, and Phil Steele. This document should be cited as: NMFS. 2006. Status report on the continental United States distinct population segment of the goliath grouper (Epinephelus itajara). January 12, 2006. 49 pp. Cover: goliath grouper illustration courtesy of Diane Peebles. ii Table of Contents List of Tables.................................................................................................................... iv Abbreviations and Acronyms ......................................................................................... vi Summary ............................................................................................................................ 1 Introduction......................................................................................................................
    [Show full text]
  • V a Tion & Management of Reef Fish Sp a Wning Aggrega Tions
    handbook CONSERVATION & MANAGEMENT OF REEF FISH SPAWNING AGGREGATIONS A Handbook for the Conservation & Management of Reef Fish Spawning Aggregations © Seapics.com Without the Land and the Sea, and their Bounties, the People and their Traditional Ways would be Poor and without Cultural Identity Fijian Proverb Why a Handbook? 1 What are Spawning Aggregations? 2 How to Identify Spawning Aggregations 2 Species that Aggregate to Spawn 2 Contents Places Where Aggregations Form 9 Concern for Spawning Aggregations 10 Importance for Fish and Fishermen 10 Trends in Exploited Aggregations 12 Managing & Conserving Spawning Aggregations 13 Research and Monitoring 13 Management Options 15 What is SCRFA? 16 How can SCRFA Help? 16 SCRFA Work to Date 17 Useful References 18 SCRFA Board of Directors 20 Since 2000, scientists, fishery managers, conservationists and politicians have become increasingly aware, not only that many commercially important coral reef fish species aggregate to spawn (reproduce) but also that these important reproductive gatherings are particularly susceptible to fishing. In extreme cases, when fishing pressure is high, aggregations can dwindle and even cease to form, sometimes within just a few years. Whether or not they will recover and what the long-term effects on the fish population(s) might be of such declines are not yet known. We do know, however, that healthy aggregations tend to be associated with healthy fisheries. It is, therefore, important to understand and better protect this critical part of the life cycle of aggregating species to ensure that they continue to yield food and support livelihoods. Why a Handbook? As fishing technology improved in the second half of the twentieth century, engines came to replace sails and oars, the cash economy developed rapidly, and human populations and demand for seafood grew, the pressures on reef fishes for food, and especially for money, increased enormously.
    [Show full text]
  • Academic Paper on “Restricting the Size of Groupers (Serranidae
    ACADEMIC PAPER ON “RESTRICTING THE SIZE OF GROUPERS (SERRANIDAE) EXPORTED FROM INDONESIA IN THE LIVE REEF FOOD FISH TRADE” Coastal and Marine Resources Management in the Coral Triangle-Southeast Asia (TA 7813-REG) Tehcnical Report ACADEMIC PAPER ON RESTRICTING THE SIZE OFLIVE GROUPERS FOR EXPORT ACADEMIC PAPER ON “RESTRICTING THE SIZE OF GROUPERS (SERRANIDAE) EXPORTED FROM INDONESIA IN THE LIVE REEF FOOD FISH TRADE” FINAL VERSION COASTAL AND MARINE RESOURCES MANAGEMENT IN THE CORAL TRIANGLE: SOUTHEAST ASIA, INDONESIA, MALAYSIA, PHILIPPINES (TA 7813-REG) ACADEMIC PAPER ON RESTRICTING THE SIZE OFLIVE GROUPERS FOR EXPORT Page i FOREWORD Indonesia is the largest exporter of live groupers for the live reef fish food trade. This fisheries sub-sector plays an important role in the livelihoods of fishing communities, especially those living on small islands. As a member of the Coral Triangle Initiative (CTI), in partnership with the Asian Development Bank (ADB) under RETA [7813], Indonesia (represented by a team from Hasanuddin University) has compiled this academic paper as a contribution towards sustainable management of live reef fish resources in Indonesia. Challenges faced in managing the live grouper fishery and trade in Indonesia include the ongoing activities and practices which damage grouper habitat; the lack of protection for grouper spawning sites; overfishing of groupers which have not yet reached sexual maturity/not reproduced; and the prevalence of illegal and unreported fishing for live groupers. These factors have resulted in declining wild grouper stocks. The Aquaculture sector is, at least as yet, unable to replace or enable a balanced wild caught fishery, and thus there is still a heavy reliance on wild-caught groupers.
    [Show full text]
  • Fish Assemblages Associated with Red Grouper Pits at Pulley Ridge, A
    419 Abstract—Red grouper (Epineph- elus morio) modify their habitat by Fish assemblages associated with red grouper excavating sediment to expose rocky pits, providing structurally complex pits at Pulley Ridge, a mesophotic reef in the habitat for many fish species. Sur- Gulf of Mexico veys conducted with remotely op- erated vehicles from 2012 through 2015 were used to characterize fish Stacey L. Harter (contact author)1 assemblages associated with grouper Heather Moe1 pits at Pulley Ridge, a mesophotic 2 coral ecosystem and habitat area John K. Reed of particular concern in the Gulf Andrew W. David1 of Mexico, and to examine whether invasive species of lionfish (Pterois Email address for contact author: [email protected] spp.) have had an effect on these as- semblages. Overall, 208 grouper pits 1 Southeast Fisheries Science Center were examined, and 66 fish species National Marine Fisheries Service, NOAA were associated with them. Fish as- 3500 Delwood Beach Road semblages were compared by using Panama City, Florida 32408 several factors but were considered 2 Harbor Branch Oceanographic Institute to be significantly different only on Florida Atlantic University the basis of the presence or absence 5600 U.S. 1 North of predator species in their pit (no Fort Pierce, Florida 34946 predators, lionfish only, red grou- per only, or both lionfish and red grouper). The data do not indicate a negative effect from lionfish. Abun- dances of most species were higher in grouper pits that had lionfish, and species diversity was higher in grouper pits with a predator (lion- The red grouper (Epinephelus morio) waters (>70 m) of the shelf edge and fish, red grouper, or both).
    [Show full text]
  • FAU Institutional Repository
    FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©1994 John Wiley & Sons, Inc. This manuscript is an author version with the final publication available at http://www.wiley.com/WileyCDA/ and may be cited as: Tucker, J. W., Jr. (1994). Spawning by captive serranid fishes: a review. Journal of the World Aquaculture Society, 25(3), 345‐ 359. doi:10.1111/j.1749‐7345.1994.tb00218.x JOURNAL OF THE Vol. 25, No.3 WORLD AQUACULTURE SOCIETY September, 1994 Spawning by Captive Serranid Fishes: A Review JOHN W. TUCKER, JR. Harbor Branch Oceanographic Institution. 5600 North U.S. Highway 1. Fort Pierce. Florida 34946 USA Abstract The current available information on spawning by serranid fishes in captivity is reviewed. Much work has been done on members of thefamily Serranidae becauseof their value as food or ornamental fish. At least 31 species have been induced to ovulate with honnones, and at least 23 species have spawned voluntarily (without chemical treatment) in captivity. Typically, a serranid female with fully-yolked oocytes will ovulate within 24-72 h (usually 36-50 h) after the first of 1-3 injectious of 500-1,000 IU human chorionic gonadotropin/kg body weight. Similar results have been obtained for several species given 1-3 injections of 10-50 Ilg luteinizing hormone-releasing hormone analogi kg body weight. Voluntary spawning has occurred mostly with well-fed uncrowded fish during the natural spawning season under conditions of ambient temperature and partial or total natural light.
    [Show full text]
  • Phylogeny of the Epinephelinae (Teleostei: Serranidae)
    BULLETIN OF MARINE SCIENCE, 52(1): 240-283, 1993 PHYLOGENY OF THE EPINEPHELINAE (TELEOSTEI: SERRANIDAE) Carole C. Baldwin and G. David Johnson ABSTRACT Relationships among epinepheline genera are investigated based on cladistic analysis of larval and adult morphology. Five monophyletic tribes are delineated, and relationships among tribes and among genera of the tribe Grammistini are hypothesized. Generic com- position of tribes differs from Johnson's (1983) classification only in the allocation of Je- boehlkia to the tribe Grammistini rather than the Liopropomini. Despite the presence of the skin toxin grammistin in the Diploprionini and Grammistini, we consider the latter to be the sister group of the Liopropomini. This hypothesis is based, in part, on previously un- recognized larval features. Larval morphology also provides evidence of monophyly of the subfamily Epinephelinae, the clade comprising all epinepheline tribes except Niphonini, and the tribe Grammistini. Larval features provide the only evidence of a monophyletic Epine- phelini and a monophyletic clade comprising the Diploprionini, Liopropomini and Gram- mistini; identification of larvae of more epinephelines is needed to test those hypotheses. Within the tribe Grammistini, we propose that Jeboehlkia gladifer is the sister group of a natural assemblage comprising the former pseudogrammid genera (Aporops, Pseudogramma and Suttonia). The "soapfishes" (Grammistes, Grammistops, Pogonoperca and Rypticus) are not monophyletic, but form a series of sequential sister groups to Jeboehlkia, Aporops, Pseu- dogramma and Suttonia (the closest of these being Grammistops, followed by Rypticus, then Grammistes plus Pogonoperca). The absence in adult Jeboehlkia of several derived features shared by Grammistops, Aporops, Pseudogramma and Suttonia is incongruous with our hypothesis but may be attributable to paedomorphosis.
    [Show full text]