An Analysis of Bivalve Larval Shell Pigments Using Microraman

Total Page:16

File Type:pdf, Size:1020Kb

An Analysis of Bivalve Larval Shell Pigments Using Microraman Research article Received: 13 August 2013 Revised: 24 February 2014 Accepted: 6 March 2014 Published online in Wiley Online Library: 1 April 2014 (wileyonlinelibrary.com) DOI 10.1002/jrs.4470 An analysis of bivalve larval shell pigments using micro-Raman spectroscopy Christine M. Thompson,a* Elizabeth W. North,a Sheri N. Whiteb and Scott M. Gallagerb Micro-Raman spectroscopy has been used on adult bivalve shells to investigate organic and inorganic shell components but has not yet been applied to bivalve larvae. It is known that the organic matrix of larval shells contains pigments, but less is known about the presence or source of these molecules in larvae. We investigated Raman spectra of seven species of bivalve larvae to assess the types of pigments present in shells of each species and how the ratio of inorganic : organic material changes in a dorso-ventral direction. In laboratory experiments, we reared larvae of three clam species in waters containing different organic signatures to determine if larvae incorporated compounds from source waters into their shells. We found differences in spectra and pigments between most species but found less intraspecific differences. A neural network classifier for Raman spectra classified five out of seven species with greater than 85% accuracy. There were slight differences between the amount and type of pigment present along the shell, with the prodissoconch I and shell margin areas being the most variable. Raman spectra of 1-day-old larvae were found to be differentiable when larvae were reared in waters with different organic signatures. With micro-Raman spectroscopy, it may be possible to identify some unknown species in the wild and trace their natal origins, which could enhance identification accuracy of bivalve larvae and ultimately aid management and restoration efforts. Copyright © 2014 John Wiley & Sons, Ltd. Additional supporting information may be found in the online version of this article at the publisher’s web site. Keywords: Raman spectroscopy; polyenes; bivalve larvae; chemotaxonomy; classification Introduction each genera being the result of both biological and environmental forces.[6] Recent work has suggested that the organization of the Most research on bivalve shell formation has investigated adult organic matrix of larval shells may differ between species because shells, leaving a gap in research involving bivalve larval shell birefringence patterns that reflect the orientation of aragonite microstructure. Pigments, often polyenes similar to carotenoids crystals in the organic matrix appear to be species-specific.[9–11] or porphyrins, have been identified in adult bivalve shells and Studies of mineralization of larval bivalves have traditionally – in pearls mineralized from bivalves.[1 3] The types of pigments focused on the calcium-carbonate portions of the PDI and PDII which exist in larval shells, how they are distributed, and their using electron microscopy and infrared spectroscopy. This re- origins remain unknown. Knowledge of the role of pigments in search focuses on a novel method for studying the content of the larval shell could enhance our current understanding of larval the shells of bivalve larvae: Raman spectroscopy. Raman spec- shell formation as well as provide applications in larval ecology troscopy is a nondestructive method that provides qualitative research, particularly aiding in identification of larvae in the field. structural information on a mixture of organic molecules in a Much of our current understanding of the larval shell structure sample. By radiating a sample with focused laser light, a spectrum comes from comparisons with adult shells. Unlike adult shells, is produced on the basis of the light scattering from the excited which can be either calcite or aragonite or a mixture of the two, functional groups in organic molecules. Raman spectroscopy has all bivalve larval shells consist of aragonite, a calcium-carbonate been employed to study pigments in calcium-carbonate material polymorph, embedded in an organic matrix.[4] Bivalve larvae start in various mollusk shells,[1,12,13] pearls from bivalves,[2,3] and out by secreting a shell made of amorphous calcium-carbonate, corals.[14,15] Pigments that have been identified in mollusk shells which then becomes a crystalline aragonite after a few days.[5] include substituted polyenes such as carotenoids, unsubstituted Whereas adults can have different shell ultrastructure based on polyenes, and porphyrins.[12] Most commonly, Raman spectra indi- species groups, larval shell ultrastructure observed using electron cate the presence of all-trans-polygenic pigments containing microscopy is similar between species indicating that larval shell formation is a highly conserved evolutionary process.[4–6] Larval shells have two main components: the youngest part of the shell, * Correspondence to: Christine M. Thompson, University of Maryland Center for prodissoconch I (PDI), which is secreted <24 h after fertilization, Environmental Science, Horn Point Laboratory, Cambridge, MD 21613, USA. and the prodissoconch II (PDII), which is secreted approximately E-mail: [email protected] 40 h after fertilization and contains regions of mineral between a University of Maryland Center for Environmental Science, Horn Point Labora- darker growth bands.[7] Genera of adult bivalves have different [8] tory, Cambridge, MD, 21613, USA organic matrix organizations reflecting a unidirectional miner- 349 alogical evolution at the superfamily level with divergences in b Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA J. Raman Spectrosc. 2014, 45, 349–358 Copyright © 2014 John Wiley & Sons, Ltd. C. M. Thompson et al. chains of conjugated C=C bonds (i.e., polyenes). These pigment We compared the spectra from the PDI region to the later larval bands exhibit strong absorption due to coupling of electronic and shell, and we compared spectra between growth band and vibrational translations and can be detected at low concentrations mineral areas. The third part of the study tested whether PDI in the shells even among other biological materials.[3,16] Although shells of early larvae incorporate pigments from their surround- structurally similar to β-carotene and other natural carotenoids, ing environment. We reared three clam species in the laboratory these polyenes showed different spectral bands when compared in waters with different organic signatures to test if pigment with those of pure β-carotene, indicating that they have different peaks in Raman spectra differed between treatments and chain lengths, lack methyl groups (unsubstituted), and occur in thereby determine if early larvae that are not feeding might multiple combinations.[1–3,12,15,17] In bivalves and pearls, different incorporate pigment from surrounding waters into their shells. pigment peaks were seen in different colored regions of the specimens,[1,2] indicating that they are responsible for coloration. Different chain lengths, combinations, and relative proportions of Methods pigments can be responsible for coloration, but pigments can be detected in low concentrations due to resonance even if they do We carried out micro-Raman analysis on seven species of lab- not play a role in coloration.[3] In mollusks, polyenes likely form spawned or hatchery-spawned larvae and two species which were complexes with organic matrix proteins[3] and may play additional grown in experimental conditions. This analysis targeted the pig- roles stabilizing the aragonite crystals and mediating crystal- ment regions of the spectra to determine (1) whether pigments lization.[2] In corals, C=C bands of polyenes shifted to lower in the larval shell differed between species, (2) how pigment com- wavenumbers after demineralization, indicating interactions with position differed within a shell, and (3) if early PDI larval shells incor- the mineral constituents.[18] A Raman mapping study on an adult porate pigments from their surrounding environment. gastropod shell revealed thin peaks of polyenes associated with growth lines.[13] Similar molecules are present in bivalve larvae Differences between species and may have comparable roles (S.M. Gallager, unpub. data). Raman spectroscopy of bivalve larval shells could have useful We obtained 7-day-old (7 d) Argopecten irradians (bay scallop), applications for identification or tracing origins of bivalve larvae. Mercenaria mercenaria (hard clam), and Crassostrea virginica Although Raman spectroscopy has been applied as a chemotax- (eastern oyster) larvae from the Aquaculture Research Corpora- onomic method to distinguish microbial cells[19,20] and species of tion in Dennis, MA, in 2011 and 6–8 days Mulinia lateralis (coot lichens and other fungi,[21,22] it has not been tested for bivalve clam), Tagelus plebeius (razor clam), Ischadium recurvum (hooked larvae. In addition, it is not known if the pigment material in larval mussel), and Rangia cuneata (common rangia) larvae from shells could be associated with waters of their natal origin. If adults spawned in the laboratory at University of Maryland these pigments are associated with other organic molecules Center for Environmental Science, Horn Point Laboratory, in known to accumulate in growth bands,[23] we might see more 2009. Larval samples had been stored in ethanol or formalde- presence of pigments in this region. Raman spectra of fish oto- hyde prior to analysis. liths have shown higher organic signals in dark bands; however, Before the micro-Raman analysis, it was necessary
Recommended publications
  • Archaeomalacological Data and Paleoenvironmental
    ARCHAEOMALACOLOGICAL DATA AND PALEOENVIRONMENTAL RECONSTRUCTION AT THE JUPITER INLET I SITE (8PB34A), SOUTHEAST FLORIDA by Jennifer Green A Thesis Submitted to the Faculty of The Dorothy F. Schmidt College of Arts and Letters In Partial Fulfillment of the Requirements for the Degree of Master of Arts Florida Atlantic University Boca Raton, FL May 2016 Copyright 2016 by Jennifer Green ii ACKNOWLEDGEMENTS This thesis has been a journey of growth and exploration. There are several people who deserve recognition for my path of success. First, and foremost, I could have never gotten to where I am without the love and never-ending support of my parents. My dad initially stimulated my interest in archaeology as a kid. He took me to see my first site on Captiva Island during a vacation, and since then I was hooked. In addition, my mom has always been there to listen, and provide compassion and support in any way needed. My thesis advisor Dr. Arlene Fradkin deserves special recognition. If not for her agreeing to take me on as a Master’s student, I may have never gotten the opportunity to grow as a scholar. Her meticulous zooarchaeological practices have imprinted on me and have provided the baseline for all of my future endeavors. The time she has spent side- by-side with me proof-reading all of my documents has granted me several awards and grants throughout my studies, for which I am extremely thankful. Dr. Clifford Brown is one of the most brilliant men I know and his comprehensive knowledge of archaeological science will always amaze me.
    [Show full text]
  • To Down Load Appendix 1
    APPENDIX 1 Chapter 1 Pictures of dominant species ................................................................................................................................. 2 Species inventory of micro-invertebrate species found ....................................................................................... 16 Bathymetry Map of Pleasant Bay ........................................................................................................................ 18 Eelgrass Locations in Pleasant Bay ..................................................................................................................... 19 Sidescan Map of Pleasant Bay ............................................................................................................................. 20 Chapter 2 Species inventory of macro-invertebrate and fish species by gear type .............................................................. 21 Chapter 3 Prey otoliths and hard parts recovered during seal scat processing ..................................................................... 24 1 Pictures of dominant species Disclaimer: biological samples were treated with ethanol and Rose Bengal in the laboratory to preserve the samples. Rose Bengal is a stain commonly used in microscopy and stains cell tissue a bright pink. This is useful in the visual detection of microscopic animals in sediment samples. An overwhelming majority of micro invertebrate species do not have common names. The common names used here are listed in Pollock’s “A Practical Guide
    [Show full text]
  • Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora)
    Gulf of Mexico Science Volume 34 Article 4 Number 1 Number 1/2 (Combined Issue) 2018 Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Laguna Madre, Tamaulipas, Mexico: Spatial and Temporal Distribution Martha Reguero Universidad Nacional Autónoma de México Andrea Raz-Guzmán Universidad Nacional Autónoma de México DOI: 10.18785/goms.3401.04 Follow this and additional works at: https://aquila.usm.edu/goms Recommended Citation Reguero, M. and A. Raz-Guzmán. 2018. Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Laguna Madre, Tamaulipas, Mexico: Spatial and Temporal Distribution. Gulf of Mexico Science 34 (1). Retrieved from https://aquila.usm.edu/goms/vol34/iss1/4 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf of Mexico Science by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Reguero and Raz-Guzmán: Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Lagu Gulf of Mexico Science, 2018(1), pp. 32–55 Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Laguna Madre, Tamaulipas, Mexico: Spatial and Temporal Distribution MARTHA REGUERO AND ANDREA RAZ-GUZMA´ N Molluscs were collected in Laguna Madre from seagrass beds, macroalgae, and bare substrates with a Renfro beam net and an otter trawl. The species list includes 96 species and 48 families. Six species are dominant (Bittiolum varium, Costoanachis semiplicata, Brachidontes exustus, Crassostrea virginica, Chione cancellata, and Mulinia lateralis) and 25 are commercially important (e.g., Strombus alatus, Busycoarctum coarctatum, Triplofusus giganteus, Anadara transversa, Noetia ponderosa, Brachidontes exustus, Crassostrea virginica, Argopecten irradians, Argopecten gibbus, Chione cancellata, Mercenaria campechiensis, and Rangia flexuosa).
    [Show full text]
  • Benthic Macroinvertebrate Sampling
    Benthic Macroinvertebrate Sampling Norton Basin, Little Bay, Grass Hassock Channel, and the Raunt Submitted to: The Port Authority of New York and New Jersey New York State Department of Environmental Conservation Submitted by: Barry A. Vittor & Associates, Inc. Kingston, NY February 2003 TABLE OF CONTENTS 1.0 INTRODUCTION...............................................................................................1 2.0 STUDY AREA......................................................................................................3 2.1 Norton Basin........................................................................................................ 3 2.2 Little Bay ............................................................................................................. 3 2.3 Reference Areas.................................................................................................... 3 2.3.1 The Raunt .................................................................................................... 3 2.3.2 Grass Hassock Channel ............................................................................... 4 3.0 METHODS..........................................................................................................4 3.1 Benthic Grab Sampling......................................................................................... 4 4.0 RESULTS.............................................................................................................7 4.1 Benthic Macroinvertebrates................................................................................
    [Show full text]
  • Investigating Population Dynamics of Red Knot Migration Along the Georgia Coast Through Mark/Recapture Analysis of Resights: 2015 Spring Season
    Investigating Population Dynamics of Red Knot Migration along the Georgia Coast through Mark/Recapture Analysis of Resights: 2015 Spring Season A Cooperative Project by: US Fish and Wildlife Service, US Geological Survey, Georgia Department of Natural Resources Non-game Program, and the Center for Conservation Biology at the College of William & Mary and Virginia Commonwealth University. Investigating Population Dynamics of Red Knot Migration along the Georgia Coast through Mark/Recapture Analysis of Resights: 2015 Spring Season Fletcher M. Smith1 Bryan D. Watts, PhD1 Jim Lyons, PhD2 Tim Keyes3 1Center for Conservation Biology at the College of William & Mary and Virginia Commonwealth University, Williamsburg, Virginia 23187. 2USGS Patuxent Wildlife Research Center, Laurel, MD. 3Georgia Department of Natural Resources, Wildlife Resources Division, Non-game Program Brunswick, Georgia 31520 Project Partners: US Fish and Wildlife Service US Geological Survey Georgia Department of Natural Resources Non-game Program The Center for Conservation Biology Recommended Citation: F.M. Smith, B.D. Watts, J. E. Lyons, and T. S. Keyes. 2016. Investigating Population Dynamics of Red Knot Migration along the Georgia Coast through Mark/Recapture Analysis of Resights: Spring 2015 Season. Center for Conservation Biology Technical Report Series, CCBTR-16-05. College of William and Mary/Virginia Commonwealth University, Williamsburg, VA. 13 pp. The Center for Conservation Biology is an organization dedicated to discovering innovative solutions to environmental problems that are both scientifically sound and practical within today’s social context. Our philosophy has been to use a general systems approach to locate critical information needs and to plot a deliberate course of action to reach what we believe are essential information endpoints.
    [Show full text]
  • Discocilia and Paddle Cilia in the Larvae of Mulinia Lateralis and Spisula Solidissima (Mollusca: Bivalvia)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by College of William & Mary: W&M Publish W&M ScholarWorks VIMS Articles 12-1988 Discocilia and Paddle Cilia in the Larvae of Mulinia lateralis and Spisula solidissima (Mollusca: Bivalvia) Bernardita Campos Roger L. Mann Virginia Institute of Marine Science, [email protected] Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Aquaculture and Fisheries Commons, and the Marine Biology Commons Recommended Citation Campos, Bernardita and Mann, Roger L., "Discocilia and Paddle Cilia in the Larvae of Mulinia lateralis and Spisula solidissima (Mollusca: Bivalvia)" (1988). VIMS Articles. 1693. https://scholarworks.wm.edu/vimsarticles/1693 This Article is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Reference: Biol. Bull. 175: 343—348.(December, 1988) Discocilia and Paddle Cilia in the Larvae of Mulinia lateralis and Spisula solidissima (Mollusca: Bivalvia) BERNARDITA CAMPOS' AND ROGER MANN2@* ‘¿InstituteofOceanology, University ofValparaiso, P.O. Box 13-D, Vina delMar, Chile, 2Virginia Institute ofMarine Science, School ofMarine Science, The College of William and Mary, Gloucester Point, Virginia 23062 Abstract. The bivalve larval velum contains four bands ing, oval, ciliated velum. The velum contains four bands of cilia: inner and outer preoral bands, an adoral band, of cilia: inner and outer preoral bands, an adorn! band, and a postoral band. The preoral bands of compound and a postoral band (Elston, 1980; Waller, 198 1).
    [Show full text]
  • Biological Resources
    Biological Evaluation Form Main CSJ: 0902-90-077 Form Prepared By: Civil Associates, Inc. Date of Evaluation: April 10, 2018 Project has no Federal nexus. Proposed Letting Date: March 2019 Project not assigned to TxDOT under the NEPA Assignment MOU District(s): Fort Worth County(ies): Tarrant Roadway Name: Dallas Road TOD Corridor/Cotton Belt Extension Limits From: Intersection of W. Dallas Road and William D. Tate Avenue Limits To: Existing Links Trail at Texan Trail Roadway Project Description: Please see the following document that has been uploaded into TXECOS: Project Description (0902-90-077).pdf The environmental review, consultation, and other actions required by applicable Federal environmental laws for this project are being, or have been, carried-out by TxDOT pursuant to 23 U.S.C. 327 and a Memorandum of Understanding dated December 16, 2014, and executed by FHWA and TxDOT. Endangered Species Act (ESA) Yes Is the action area of the proposed project within the range of federally protected species? Yes Did the USFWS IPaC system identify any endangered species that may occur or could potentially be affected by the proposed project activities? Date that the IPaC system was accessed: March 14, 2018 No Is the action area of the proposed project in suitable habitat of federally protected species? *Explain: The habitat preferences for federally listed threatened/endangered species, a brief discussion of habitat availability within the project's construction footprint, and an assessment of potential adverse effects on these federally-listed
    [Show full text]
  • List of All Nominal Recent Species Belonging to the Superfamily Mactroidea Distributed in American Waters
    Appendix A: List of All Nominal Recent Species Belonging to the Superfamily Mactroidea Distributed in American Waters Valid species (in the current combination) Synonym Examined type material Harvella elegans NHMUK 20190673, two syntypes (G.B. Sowerby I, 1825) Harvella pacifica ANSP 51308, syntype Conrad, 1867 Mactra estrellana PRI 21265, holotype Olsson, 1922 M. (Harvella) PRI 2354, holotype sanctiblasii Maury, 1925 Raeta maxima Li, AMNH 268093, lectotype; AMNH 268093a, 1930 paralectotype Harvella elegans PRI 2252, holotype tucilla Olsson, 1932 Mactrellona alata ZMUC-BIV, holotype, articulated specimen; (Spengler, 1802) ZMUC-BIV, paratype, one complete specimen Mactra laevigata ZMUC-BIV 1036, holotype Schumacher, 1817 Mactra carinata MNHN-IM-2000-7038, syntypes Lamarck, 1818 Mactrellona Types not found, based on the figure of the concentrica (Bory de “Tableau of Encyclopedique Methodique…” Saint Vincent, (pl. 251, Fig. 2a, b, pl. 252, Fig. 2c) published in 1827, in Bruguière 1797 without a nomenclatorial act et al. 1791–1827) Mactrellona clisia USNM 271481, holotype (Dall, 1915) Mactrellona exoleta NHMUK 196327, syntype, one complete (Gray, 1837) specimen © Springer Nature Switzerland AG 2019 103 J. H. Signorelli, The Superfamily Mactroidea (Mollusca:Bivalvia) in American Waters, https://doi.org/10.1007/978-3-030-29097-9 104 Appendix A: List of All Nominal Recent Species Belonging to the Superfamily… Valid species (in the current combination) Synonym Examined type material Lutraria ventricosa MCZ 169451, holotype; MCZ 169452, paratype;
    [Show full text]
  • Invertebrate Identification Guide for Chesmmap and NEAMAP Diet Analysis Studies
    W&M ScholarWorks Reports 11-13-2013 Invertebrate Identification Guide for ChesMMAP and NEAMAP Diet Analysis Studies Chesapeake Bay Multispecies Monitoring and Assessment Program Follow this and additional works at: https://scholarworks.wm.edu/reports Part of the Marine Biology Commons Recommended Citation Chesapeake Bay Multispecies Monitoring and Assessment Program. (2013) Invertebrate Identification Guide for ChesMMAP and NEAMAP Diet Analysis Studies. Virginia Institute of Marine Science, William & Mary. https://doi.org/10.25773/b0y5-k411 This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. 11/13/13 1 This book is a compilation of identification resources for invertebrates found in stomach samples. By no means is it a complete list of all possible prey types. It is simply what has been found in past ChesMMAP and NEAMAP diet studies. A copy of this document is stored in both the ChesMMAP and NEAMAP lab network drives in a folder called ID Guides, along with other useful identification keys, articles, documents, and photos. If you want to see a larger version of any of the images in this document you can simply open the file and zoom in on the picture, or you can open the original file for the photo by navigating to the appropriate subfolder within the Fisheries Gut Lab folder. Other useful links for identification: Isopods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-33/htm/doc.html
    [Show full text]
  • Transportation and Dispersal of Biogenic Material in the Nearshore Marine Environment
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1974 Transportation and Dispersal of Biogenic Material in the Nearshore Marine Environment. Macomb Trezevant Jervey Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Jervey, Macomb Trezevant, "Transportation and Dispersal of Biogenic Material in the Nearshore Marine Environment." (1974). LSU Historical Dissertations and Theses. 2674. https://digitalcommons.lsu.edu/gradschool_disstheses/2674 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]
  • Checklist of Species Within the CCBNEP Study Area: References, Habitats, Distribution, and Abundance
    Current Status and Historical Trends of the Estuarine Living Resources within the Corpus Christi Bay National Estuary Program Study Area Volume 4 of 4 Checklist of Species Within the CCBNEP Study Area: References, Habitats, Distribution, and Abundance Corpus Christi Bay National Estuary Program CCBNEP-06D • January 1996 This project has been funded in part by the United States Environmental Protection Agency under assistance agreement #CE-9963-01-2 to the Texas Natural Resource Conservation Commission. The contents of this document do not necessarily represent the views of the United States Environmental Protection Agency or the Texas Natural Resource Conservation Commission, nor do the contents of this document necessarily constitute the views or policy of the Corpus Christi Bay National Estuary Program Management Conference or its members. The information presented is intended to provide background information, including the professional opinion of the authors, for the Management Conference deliberations while drafting official policy in the Comprehensive Conservation and Management Plan (CCMP). The mention of trade names or commercial products does not in any way constitute an endorsement or recommendation for use. Volume 4 Checklist of Species within Corpus Christi Bay National Estuary Program Study Area: References, Habitats, Distribution, and Abundance John W. Tunnell, Jr. and Sandra A. Alvarado, Editors Center for Coastal Studies Texas A&M University - Corpus Christi 6300 Ocean Dr. Corpus Christi, Texas 78412 Current Status and Historical Trends of Estuarine Living Resources of the Corpus Christi Bay National Estuary Program Study Area January 1996 Policy Committee Commissioner John Baker Ms. Jane Saginaw Policy Committee Chair Policy Committee Vice-Chair Texas Natural Resource Regional Administrator, EPA Region 6 Conservation Commission Mr.
    [Show full text]
  • Dietary Composition of Black Drum Pogonias Cromis
    Dietary composition of black drum Pogonias cromis in a hypersaline estuary reflects water quality and prey availability K.S. RUBIO1, M. AJEMIAN2, G.W. STUNZ3, T.A. PALMER1, B.LEBRETON4 AND J. BESERES POLLACK1 1 Department of Life Sciences, Texas A&M University – Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412-5800, U.S.A. 2 Florida Atlantic University, Harbor Branch Oceanographic Institute, Fort Pierce, FL, 34946, U.S.A. 3 Harte Research Institute for Gulf of Mexico Studies, Texas A&M University—Corpus Christi, 6300 Ocean Drive, SL2 101 Corpus Christi, TX 78412-5869, U.S.A. 4 UMR Littoral, Environment et Societies, CNRS – University of La Rochelle, Institut du littoral et de l’environnement, 2 rue Olympe de Gouges, 17000 La Rochelle, France Correspondence J. Beseres Pollack Department of Life Sciences, Texas A&M University – Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412-5800, U.S.A. Email: [email protected] Funding information Accepted Article This article has been accepted for publication in the Journal of Fish Biology and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/jfb.13654 This article is protected by copyright. All rights reserved. The authors thank the organizations and agencies that helped fund this research, including the Texas Coastal Bend Bays & Estuaries Program (CBBEP), Harvey Weil Sportsman Conservation Award, Texas Sea Grant, and Texas A&M University-Corpus Christi. Running headline: POGONIAS CROMIS DIET IN A HYPERSALINE ESTUARY The Baffin Bay estuary is a hypersaline system in the Gulf of Mexico that supports an important recreational and commercial fishery for black drum Pogonias cromis, a benthic predator.
    [Show full text]